JPH04273219A - Acoustooptic element - Google Patents

Acoustooptic element

Info

Publication number
JPH04273219A
JPH04273219A JP5547691A JP5547691A JPH04273219A JP H04273219 A JPH04273219 A JP H04273219A JP 5547691 A JP5547691 A JP 5547691A JP 5547691 A JP5547691 A JP 5547691A JP H04273219 A JPH04273219 A JP H04273219A
Authority
JP
Japan
Prior art keywords
optical medium
electroacoustic transducer
thickness
acousto
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5547691A
Other languages
Japanese (ja)
Inventor
Atsushi Toyohara
豊原 篤志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5547691A priority Critical patent/JPH04273219A/en
Publication of JPH04273219A publication Critical patent/JPH04273219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the response time. CONSTITUTION:The acoustooptic element is equipped with an optical medium 10 which is formed in a rectangular prism shape and an electrooptic transducer 11 which is fixed to the joined surface 10A of the optical medium and transduces a high-frequency signal. This electrooptic transducer 11 decreases in thickness gradually from a laser light incidence side 11A to a laser light projection side 11B. In concrete, the thickness of the acoustooptic element 11 varies in a wedge shape having an angle theta (thetanot equal to 0, pi/2) in the length direction of the joined surface between the optical medium 10 and electrooptic transducer 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は音響光学効果により光ビ
ームの偏向もしくは変調を行う音響光学変調器に使用さ
れる音響光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acousto-optic element used in an acousto-optic modulator that deflects or modulates a light beam using an acousto-optic effect.

【0002】0002

【従来の技術】一般に音響光学効果とは音波(特に超音
波)により媒質中に生じた屈折率の疎密によって光が回
折し、屈折、反射、散乱を受ける効果をいう。この効果
を顕著に示す物質としては、溶融石英、水、TiO2 
、P6 Mo O4 、Te O2 、AS2S3 ガ
ラス等が知られており、光の変調、偏向等に用いられて
いる。
2. Description of the Related Art Generally, the acousto-optic effect refers to an effect in which light is diffracted, refracted, reflected, and scattered due to the density and density of the refractive index produced in a medium by sound waves (particularly ultrasonic waves). Substances that show this effect prominently include fused silica, water, TiO2
, P6 Mo O 4 , Te O 2 , and AS 2 S 3 glasses are known and are used for light modulation, deflection, and the like.

【0003】従来から既に提案されている音響光学素子
は、図2に示すように、直方体状に加工形成された光学
媒体1と、この光学媒体1の接合面1Aに対し均一の厚
みtを有し、高周波信号を機械的振動に変換する電気音
響変換子2とを備えた構成となっている。
As shown in FIG. 2, an acousto-optic device that has been proposed in the past includes an optical medium 1 processed and formed into a rectangular parallelepiped shape, and a bonding surface 1A of this optical medium 1 having a uniform thickness t. The structure also includes an electroacoustic transducer 2 that converts high frequency signals into mechanical vibrations.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述し
た従来の音響光学素子は、電気音響変換子2の厚みtが
一定であるため、f(MH2 )=3360/t(μm
)で決まる駆動周波数fにのみ駆動でき、光学媒体1に
入射したレーザ光3(波長λ)を回折することができる
。 この回折角θd は結晶中を伝搬する超音波の速度をV
とすると、次の式で近似される。
However, in the conventional acousto-optic device described above, since the thickness t of the electroacoustic transducer 2 is constant, f(MH2)=3360/t(μm
), and can diffract the laser beam 3 (wavelength λ) incident on the optical medium 1. This diffraction angle θd is the velocity of the ultrasonic wave propagating in the crystal, V
Then, it is approximated by the following formula.

【0005】[0005]

【数1】θd ≒λf/v[Equation 1] θd ≒ λf/v

【0006】したがって、回折角θd を可変させるに
は駆動周波数f、レーザ波長λまたは超音波伝搬速度V
のいずれかを可変しなければならない。しかし、実際に
AO変調器が使われているレーザプリンタ等の装置では
、レーザ波長λや超音波伝搬速度Vを変更することは不
可能に近いため、駆動周波数fを調整し、回折角θd 
を調整しなければならない。
Therefore, in order to vary the diffraction angle θd, the driving frequency f, the laser wavelength λ, or the ultrasonic propagation velocity V
One of these must be made variable. However, in devices such as laser printers in which AO modulators are actually used, it is almost impossible to change the laser wavelength λ or ultrasonic propagation velocity V, so the driving frequency f is adjusted and the diffraction angle θd
must be adjusted.

【0007】しかるに、回折角θd を駆動周波数fに
より可変するデバイスとしては既に音響光学偏向器(A
O偏向器ともいう)が提供されている。しかし、回折角
θd を可変させるために、例えば光学媒体1として二
酸化テルルを使用し、ある特定方向に横波長音波(超音
波の伝搬速度≒600m/s)を伝搬させている。この
ため、回折光の応答時間(立上がり・立下がり時間)が
数μsとなり、高速応答ができないという問題があった
However, an acousto-optic deflector (A
O deflector) is provided. However, in order to vary the diffraction angle θd, for example, tellurium dioxide is used as the optical medium 1, and transverse wavelength sound waves (ultrasonic propagation speed≈600 m/s) are propagated in a certain specific direction. For this reason, the response time (rise/fall time) of the diffracted light is several μs, resulting in a problem that high-speed response cannot be achieved.

【0008】本発明のもくてくは上述した問題に鑑みな
されたもので、応答時間の高速化を図ることのできる音
響光学素子を提供するにある。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide an acousto-optic device capable of increasing the response time.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
光学媒体と、この光学媒体の固定され高周波信号を機械
的振動に変換する電気音響変換子とを備えた音響光学素
子において、前記した電気音響変換子の厚みがレーザ光
入射側からレーザ光出射側に向けて漸次小さくなるよう
形成したものである。
[Means for solving the problem] The invention according to claim 1 includes:
In an acousto-optic element comprising an optical medium and an electroacoustic transducer fixed to the optical medium and converting a high-frequency signal into mechanical vibration, the thickness of the electroacoustic transducer varies from the laser light incident side to the laser light output side. It is formed so that it gradually becomes smaller towards the end.

【0010】請求項2記載の発明は、電気音響変換子の
厚みがレーザ光入射側からレーザ光出射側にかけて角度
θ(θ≠0、π/2)を有するくさび状に変化した構成
としたものである。
[0010] The invention according to claim 2 has a structure in which the thickness of the electroacoustic transducer changes in a wedge shape having an angle θ (θ≠0, π/2) from the laser beam incidence side to the laser beam output side. It is.

【0011】[0011]

【作用】本発明によれば、電気音響変換子の厚みをレー
ザ光入射側からレーザ光出射側に向けて漸次小さくなる
よう変化させているので、駆動周波数により回折角を可
変できる。また、縦波超音波を利用できるため、光学媒
体の材質は限定されない。したがって、応答時間を従来
に比べてかなり高速化できる。
According to the present invention, since the thickness of the electroacoustic transducer is gradually decreased from the laser beam incidence side to the laser beam output side, the diffraction angle can be varied by changing the driving frequency. Furthermore, since longitudinal ultrasound can be used, the material of the optical medium is not limited. Therefore, the response time can be considerably faster than in the past.

【0012】0012

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0013】図1は本発明に係わる音響光学素子を使用
した超音波光変調器の斜視図である。音響光学素子は、
直方体状に形成れた光学媒体10と、この光学媒体10
の接合面10Aに固定され、高周波信号を機械的振動に
変換する電気音響変換子11とを備えた構成となってい
る。本実施例にあって、光学媒体10には超音波伝搬速
度Vが3630m/sのモリブデン酸鉛を使用し、一方
電気音響変換子11にはニオブ酸リチウムを使用した。 また、電気音響変換子11には高周波信号発生器12が
接続されている。
FIG. 1 is a perspective view of an ultrasonic optical modulator using an acousto-optic device according to the present invention. The acousto-optic element is
An optical medium 10 formed in the shape of a rectangular parallelepiped, and this optical medium 10
The structure includes an electroacoustic transducer 11 that is fixed to the joint surface 10A of and converts a high frequency signal into mechanical vibration. In this example, lead molybdate with an ultrasonic propagation velocity V of 3630 m/s was used for the optical medium 10, while lithium niobate was used for the electroacoustic transducer 11. Further, a high frequency signal generator 12 is connected to the electroacoustic transducer 11.

【0014】電気音響変換子11はその厚みがレーザ光
入射側11Aからレーザ光出射側11Bに向けて漸次小
さくなるよう形成されている。より具体的には、電気音
響変換子11の厚みが光学媒体10と電気音響変換子1
1の接合面の長手方向に対して角度θ(θ≠0、π/2
)を持つくさび状に変化している。
The electroacoustic transducer 11 is formed so that its thickness gradually decreases from the laser light incident side 11A toward the laser light output side 11B. More specifically, the thickness of the electroacoustic transducer 11 is the same as that of the optical medium 10 and the electroacoustic transducer 1.
The angle θ (θ≠0, π/2
) has changed into a wedge shape.

【0015】本実施例において、電気音響変換子11の
長さは10mmとし、厚みは駆動周波数fが少なくとも
100MH2 ≦f≦200MH2となるように、レー
ザ光入射側11Aに近い方の厚みを30μm、レーザ光
出射側11Bに近い方の厚みを15μmとした。すなわ
ち、レーザ光入射側11Aの厚みとレーザ光出射側11
Bの厚みの間にはθ≒0.09radの傾斜を設けたこ
とに等しい。
In this embodiment, the length of the electroacoustic transducer 11 is 10 mm, and the thickness of the side closer to the laser beam incidence side 11A is 30 μm so that the driving frequency f is at least 100 MH2 ≦f≦200 MH2. The thickness of the side closer to the laser beam emission side 11B was set to 15 μm. That is, the thickness of the laser beam incident side 11A and the laser beam output side 11
This is equivalent to providing an inclination of θ≈0.09 rad between the thicknesses of B.

【0016】今、本音響光学素子の電気音響変換子11
に高周波信号発生器12を接続し、100、150、2
00MH2 の駆動周波数でそれぞれ駆動し、角周波数
での回折角θ、応答時間tr(立上がり時間)を測定し
た。入射レーザ光13は波長λ=633nmのHe−N
eレーザを使用し、光学媒体10へビーム径φ1mmで
入射させた。その結果、回折角θは次の通りとなった。 なお、図1は出射側から入射レーザ光13に対応して透
過光14が出射し、かつこの透過光14と所定の角度を
もって回折光15、16が出射した状態を示している。
Now, the electroacoustic transducer 11 of the present acousto-optic device
A high frequency signal generator 12 is connected to 100, 150, 2
Each was driven at a driving frequency of 00 MH2, and the diffraction angle θ and response time tr (rise time) at the angular frequency were measured. The incident laser beam 13 is He-N with a wavelength λ=633 nm.
An e-laser was used and the beam was incident on the optical medium 10 with a beam diameter of 1 mm. As a result, the diffraction angle θ was as follows. Note that FIG. 1 shows a state in which a transmitted light 14 is emitted from the emission side corresponding to the incident laser light 13, and diffracted lights 15 and 16 are emitted at a predetermined angle with the transmitted light 14.

【0017】[0017]

【数2】θ100=0.013(rad)θ150=0
.020(rad) θ200=0.027(rad)
[Formula 2] θ100=0.013 (rad) θ150=0
.. 020 (rad) θ200=0.027 (rad)

【0018】これによって、駆動周波数により可変でき
ることが実証された。
[0018] This proves that the driving frequency can be varied.

【0019】また、応答時間trについても、次の通り
となった。
The response time tr was also as follows.

【0020】[0020]

【数3】tr100=210ns tr150=200ns tr200=195ns[Math. 3] tr100=210ns tr150=200ns tr200=195ns

【0021】以上により、従来の数μsオーダと比較し
て大幅に改善されたことを確認した。
[0021] From the above, it was confirmed that the time was significantly improved compared to the conventional one on the order of several μs.

【0022】[0022]

【発明の効果】以上説明したように本発明に係わる音響
光学素子によれば、電気音響変換子の厚みをレーザ光入
射側からレーザ光出射側に向けて漸次小さくなるよう変
化させ、駆動周波数により回折角が可変可能となった。 また、縦波超音波を利用できるため、光学媒体の材質が
何ら限定されない。したがって、本発明によれば応答時
間を従来のμsオーダから数10nsオーダまで高速化
できるという優れた効果を奏する。
As explained above, according to the acousto-optic device of the present invention, the thickness of the electroacoustic transducer is gradually decreased from the laser beam incidence side to the laser beam output side, and the thickness of the electroacoustic transducer is changed by changing the driving frequency. Diffraction angle can now be changed. Furthermore, since longitudinal ultrasound can be used, the material of the optical medium is not limited at all. Therefore, according to the present invention, an excellent effect is achieved in that the response time can be increased from the conventional μs order to several tens of ns order.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係わる音響光学素子を使用した超音波
光変調器の斜視図である。
FIG. 1 is a perspective view of an ultrasonic light modulator using an acousto-optic element according to the present invention.

【図2】従来の音響光学素子の一例を示す斜視図である
FIG. 2 is a perspective view showing an example of a conventional acousto-optic device.

【符号の説明】[Explanation of symbols]

10  光学媒体 10A  接合面 11  電気音響変換子 11A  レーザ光入射側 11B  レーザ光出射側 10 Optical medium 10A joint surface 11 Electroacoustic transducer 11A Laser light incident side 11B Laser light emission side

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学媒体と、この光学媒体に固定され
高周波信号を機械的振動に変換する電気音響変換子とを
備えた音響光学素子において、前記電気音響変換子の厚
みがレーザ光入射側からレーザ光出射側に向けて漸次小
さくなるよう形成したことを特徴とする音響光学素子。
1. An acousto-optic element comprising an optical medium and an electroacoustic transducer fixed to the optical medium and converting a high frequency signal into mechanical vibration, wherein the thickness of the electroacoustic transducer is from the laser light incident side. An acousto-optic element characterized in that it is formed so as to become gradually smaller toward a laser beam emission side.
【請求項2】  前記した電気音響変換子の厚みはレー
ザ光入射側からレーザ光出射側にかけて角度θ(θ≠0
、π/2)を有するくさび状に変化して成ることを特徴
とする請求項1記載の音響光学素子。
2. The thickness of the electroacoustic transducer described above is determined by the angle θ (θ≠0
, π/2).
JP5547691A 1991-02-28 1991-02-28 Acoustooptic element Pending JPH04273219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547691A JPH04273219A (en) 1991-02-28 1991-02-28 Acoustooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547691A JPH04273219A (en) 1991-02-28 1991-02-28 Acoustooptic element

Publications (1)

Publication Number Publication Date
JPH04273219A true JPH04273219A (en) 1992-09-29

Family

ID=12999664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547691A Pending JPH04273219A (en) 1991-02-28 1991-02-28 Acoustooptic element

Country Status (1)

Country Link
JP (1) JPH04273219A (en)

Similar Documents

Publication Publication Date Title
EP0015685B1 (en) Acousto-optical modulator
US4346965A (en) Light modulator/deflector using acoustic surface waves
US3944335A (en) Acousto-optic filter
US5107368A (en) Light beam scanning apparatus
US4961632A (en) Light beam deflector/modulator
US4370030A (en) Extended resolution light deflector using surface acoustic waves
US4638266A (en) Acoustooptical modulator and/or deflector
JPH04273219A (en) Acoustooptic element
JPS6148689B2 (en)
US5706370A (en) Optical deflection scanning device
JPH01316724A (en) Wide-band driving system for acoustooptic deflector
US6008930A (en) Acoustooptical modulator
JPS6360889B2 (en)
JPH01107213A (en) Optical waveguide element
JPS622293B2 (en)
JPS58156919A (en) Acoustooptic optical modulator
JPS6210411B2 (en)
JPS6150291B2 (en)
JPS59222813A (en) Acoustooptic light modulating element
JPH07270736A (en) Waveguide type acousto-optical element
JP3533714B2 (en) Acousto-optic device and method of adjusting polarization characteristics thereof
JPS6083919A (en) Acoustooptical element
JP2625926B2 (en) Acousto-optic element
JPS62195620A (en) Reflector for optical fiber
JPS58125023A (en) Two-dimensional optical deflector