JPH04273009A - Device and method for shape measurement - Google Patents

Device and method for shape measurement

Info

Publication number
JPH04273009A
JPH04273009A JP3445591A JP3445591A JPH04273009A JP H04273009 A JPH04273009 A JP H04273009A JP 3445591 A JP3445591 A JP 3445591A JP 3445591 A JP3445591 A JP 3445591A JP H04273009 A JPH04273009 A JP H04273009A
Authority
JP
Japan
Prior art keywords
measured
probe
measuring device
shape
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3445591A
Other languages
Japanese (ja)
Inventor
Shigemi Tsukamoto
塚本 茂美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP3445591A priority Critical patent/JPH04273009A/en
Publication of JPH04273009A publication Critical patent/JPH04273009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a kinetic error of a drive system to relatively move a measured article from a measured value in the case when the shape of the measured article is measured by relatively moving a probe of a displacement measurement equipment against the measured article. CONSTITUTION:An angle of rotation of a rotary table 3 to rotate a male screw 2 is measured by a rotation angle sensor 12, vertical coordinate of a probe 4a is measured by a displacement sensor 13, a relative position error between the male screw 2 and the probe 4a is obtained on the basis of a measured values of these rotation angle sensor 12 and displacement sensor 13 in a computer 11, influence of the position error on the measured value of a displacement measurement equipment 4 is computed and the measured value of the displacement measurement equipment 4 is corrected by the computed influence. As a kinetic error of a drive system is eliminated from the measured value of the displacement measurement equipment 4, it is possible to grasp the correct shape of the measured article.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えばねじ溝の真円
度測定器等のように被測定物に対して変位測定器のプロ
ーブを相対的に移動させてその被測定物の形状を測定す
る方法及び装置の改良に関し、特に、被測定物に対して
プローブを相対移動させる駆動系の運動誤差が変位測定
器の測定値に与える影響を除去して、被測定物の形状を
正確に測定できるようにしたものである。
[Industrial Application Field] This invention measures the shape of a measured object by moving the probe of a displacement measuring device relative to the measured object, such as a thread groove roundness measuring device. In particular, the method and device for measuring the shape of the object to be measured can be accurately measured by eliminating the influence of motion errors in the drive system that moves the probe relative to the object to be measured on the measured values of the displacement measuring device. It has been made possible.

【0002】0002

【従来の技術】真円度測定器等の形状測定装置は、被測
定物に対して変位測定器のプローブを相対的に移動させ
、その変位測定器の測定値から被測定物表面の凹凸を認
識して形状を測定するものが一般的であり、このような
形状測定装置では、比較的長い距離に渡る表面の凹凸を
高精度に測定する必要があることから、通常は、被測定
物若しくは変位測定器のプローブを精度の良いスライド
に沿って移動させて測定を行っている。
[Prior Art] A shape measuring device such as a roundness measuring device moves the probe of a displacement measuring device relative to the object to be measured, and uses the measurement value of the displacement measuring device to determine the irregularities on the surface of the object to be measured. Generally, these shape measuring devices measure the shape of the object by recognizing it, and because it is necessary to measure surface irregularities over a relatively long distance with high precision, Measurements are taken by moving the probe of the displacement measuring device along a highly accurate slide.

【0003】そして、このような形状測定装置にあって
は、相対移動を案内するスライドに余分な力が加わらな
いように、ベルト駆動を用いたり、カップリングを介し
て駆動させる等の構成を採っている。
[0003] In such a shape measuring device, in order to prevent unnecessary force from being applied to the slide that guides the relative movement, a configuration is adopted such as using a belt drive or driving the slide via a coupling. ing.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記形
状測定装置のように、ベルト駆動を用いたり、カップリ
ングを介して駆動させる等の構成を採った場合、駆動力
伝達系の減衰係数が低く且つ剛性も低くなって、共振現
象を起こし易いという欠点があり、また、被駆動部と駆
動源とを剛結合しても、駆動源のリップル等の周期的な
誤差が生じることがあり、このため、上記のような形状
測定装置では、被測定物とプローブとの相対位置に、駆
動系の運動誤差に起因した周期的な位置誤差が生じてい
る場合が多い。
[Problems to be Solved by the Invention] However, when a configuration like the above-mentioned shape measuring device is adopted, such as using a belt drive or driving through a coupling, the damping coefficient of the driving force transmission system is low and The disadvantage is that the rigidity is low and resonance phenomena are likely to occur.Also, even if the driven part and the drive source are rigidly coupled, periodic errors such as ripples in the drive source may occur. In the shape measuring apparatus as described above, periodic positional errors often occur in the relative positions of the object to be measured and the probe due to motion errors of the drive system.

【0005】そして、このような位置誤差は、特に、ね
じ溝の真円度測定器等のように斜面の形状を測定する測
定器の測定値に与える影響が大きく、正確な形状を測定
するには、そのような位置誤差の影響を除去しなければ
ならなかった。
[0005] Such positional errors have a particularly large effect on the measurement values of measuring instruments that measure the shape of slopes, such as thread groove roundness measuring instruments, and it is difficult to accurately measure the shape. had to remove the effects of such position errors.

【0006】このような不具合に対して、位置誤差が周
期的に生じていることに着目して、変位測定器の測定値
をノッチフィルタで処理することにより位置誤差と同じ
周波数の成分を除去し、その除去後の値に基づいて被測
定物の形状を認識していたが、単に測定値をフィルタに
かけたのでは、雑音と同じ周波数の成分は全て除去され
てしまうから、測定値に含まれている真に必要な成分も
失われてしまうという問題点がある。
[0006] In order to deal with such problems, focusing on the fact that position errors occur periodically, a method has been developed that removes components of the same frequency as the position errors by processing the measured values of the displacement measuring device with a notch filter. The shape of the object to be measured was recognized based on the removed value, but simply filtering the measured value would remove all components with the same frequency as the noise, so it would be difficult to identify the shape of the object being measured. The problem is that the truly necessary ingredients contained in the liquid are also lost.

【0007】この発明は、このような従来の技術が有す
る未解決の課題に着目してなされたものであって、駆動
系の運動誤差に起因する雑音のみを除去して、正確な形
状を測定することができる方法及び装置を提供すること
を目的としている。
[0007] The present invention was made by focusing on the unresolved problems of the conventional technology, and it is possible to measure an accurate shape by removing only the noise caused by the motion error of the drive system. The purpose of the present invention is to provide a method and apparatus that can perform the following steps.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、被測定物に対して変位測定
器のプローブを相対移動させてその被測定物の形状を測
定する形状測定方法において、前記被測定物に対する前
記プローブの相対位置を測定してそれら被測定物及びプ
ローブの相対位置誤差を求め、前記被測定物の設計上の
形状に基づいて前記相対位置誤差が前記変位測定器の検
出値に与える影響を演算し、その演算された影響に基づ
いて前記変位測定器の測定値を補正し、そして、その補
正された値に基づいて前記被測定物の形状を認識する。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 measures the shape of the object by moving a probe of a displacement measuring device relative to the object. In the shape measuring method, the relative position of the probe with respect to the object to be measured is determined to determine the relative position error between the object and the probe, and the relative position error is determined based on the designed shape of the object to be measured. Calculating the influence on the detected value of the displacement measuring device, correcting the measured value of the displacement measuring device based on the calculated influence, and recognizing the shape of the object to be measured based on the corrected value. do.

【0009】また、上記目的を達成するために、請求項
2記載の発明は、変位測定器と、被測定物に対して前記
変位測定器のプローブを相対移動させる相対移動手段と
、を備えた形状測定装置において、前記被測定物に対す
る前記プローブの相対位置を測定する相対位置測定手段
と、この相対位置測定手段が測定した相対位置に基づい
て前記被測定物及びプローブの相対位置誤差を演算する
位置誤差演算手段と、前記被測定物の設計上の形状に基
づいて前記相対位置誤差が前記変位測定器の測定値に与
える影響を演算する影響演算手段と、この影響演算手段
が演算した影響に基づいて前記変位測定器の測定値を補
正する補正手段と、を設けた。
Further, in order to achieve the above object, the invention according to claim 2 comprises a displacement measuring device and a relative moving means for moving a probe of the displacement measuring device relative to an object to be measured. In the shape measuring device, a relative position measuring means for measuring the relative position of the probe with respect to the object to be measured, and a relative position error between the object to be measured and the probe are calculated based on the relative position measured by the relative position measuring means. a position error calculation means; an influence calculation means for calculating the influence of the relative position error on the measured value of the displacement measuring device based on the designed shape of the object to be measured; and a correction means for correcting the measured value of the displacement measuring device based on the displacement measuring device.

【0010】0010

【作用】請求項1記載の発明では、被測定物に対する変
位測定器のプローブの実際の相対位置からそれら被測定
物及びプローブの相対位置誤差が求められ、被測定物の
設計上の形状に基づいて被測定物及びプローブの相対位
置誤差が変位測定器の測定値に与える影響が演算される
から、その影響に基づいて変位測定器の測定値が補正さ
れると、その測定値から、被測定物及びプローブの相対
位置誤差に起因する雑音成分が除去されたことになる。
[Operation] In the invention as claimed in claim 1, the relative position error of the object to be measured and the probe is determined from the actual relative position of the probe of the displacement measuring device to the object to be measured, and is based on the designed shape of the object to be measured. The effect of the relative position error of the object to be measured and the probe on the measured value of the displacement measuring device is calculated, so when the measured value of the displacement measuring device is corrected based on that influence, the measured value can be calculated from the measured value. This means that noise components caused by relative position errors between the object and the probe have been removed.

【0011】そして、その補正された値に基づいて被測
定物の形状を認識するから、被測定物及びプローブの相
対位置誤差の影響が除去された正確な形状が測定される
。また、請求項2記載の発明では、相対位置測定手段が
、被測定物に対するプローブの相対位置を測定し、その
相対位置に基づいて、位置誤差演算手段が、被測定物及
びプローブの相対位置誤差を演算する。
Since the shape of the object to be measured is recognized based on the corrected value, an accurate shape can be measured in which the influence of the relative position error between the object and the probe is removed. Further, in the invention according to claim 2, the relative position measuring means measures the relative position of the probe with respect to the object to be measured, and based on the relative position, the position error calculating means calculates the relative position error of the object to be measured and the probe. Calculate.

【0012】そして、影響演算手段が、被測定物の設計
上の形状に基づいて、被測定物及びプローブの相対位置
誤差が変位測定器の測定値に与える影響を演算し、その
演算された影響に基づいて、補正手段が、変位測定器の
測定値を補正するから、変位測定器の測定値から、被測
定物及びプローブの相対位置誤差に起因する雑音成分が
除去されたことになる。
[0012] The influence calculation means calculates the influence of the relative position error of the object to be measured and the probe on the measurement value of the displacement measuring device based on the designed shape of the object to be measured, and calculates the effect calculated. Since the correction means corrects the measured value of the displacement measuring device based on , the noise component resulting from the relative position error of the object to be measured and the probe is removed from the measured value of the displacement measuring device.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1は、本発明を適用したねじ溝の真円度測定
器1の構成を示す図であり、先ず、図1に従って、本実
施例の構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a thread groove roundness measuring instrument 1 to which the present invention is applied.First, the configuration of this embodiment will be explained with reference to FIG.

【0014】この真円度測定器1は、被測定物としての
三角ねじである雄ねじ2のねじ溝の真円度を測定する装
置であって、雄ねじ2を、その軸線と回転軸とが一致す
るように回転テーブル3上に固定して回転させつつ、雄
ねじ2のねじ溝のフランクの径方向変位を測定する変位
測定器4のプローブ4aを上下動させ、その変位測定器
4の測定値から雄ねじ2のねじ溝の上下フランクの径方
向の凹凸を認識して、ねじ溝の真円度を測定するもので
ある。
This roundness measuring device 1 is a device for measuring the roundness of the thread groove of a male thread 2 which is a triangular thread as an object to be measured. The probe 4a of the displacement measuring device 4, which measures the radial displacement of the flank of the thread groove of the male screw 2, is moved up and down while the probe 4a of the displacement measuring device 4 is fixed on the rotary table 3 and rotated as shown in FIG. The roundness of the thread groove is measured by recognizing the radial unevenness of the upper and lower flanks of the thread groove of the male screw 2.

【0015】回転テーブル3は、その下方に配設された
電動モータ等から構成される回転駆動源5にカップリン
グ6を介して連結されていて、これにより、回転駆動源
5の回転駆動力を受けて回転する。
The rotary table 3 is connected via a coupling 6 to a rotary drive source 5 composed of an electric motor or the like disposed below the rotary table 3, whereby the rotary drive force of the rotary drive source 5 is transmitted. Receive it and rotate.

【0016】一方、変位測定器4のプローブ4aは、そ
の先端が雄ねじ2のねじ溝に接しつつ、回転テーブル3
の回転軸と平行に配設されたスライド7に案内されて移
動するものであって、その移動は、送りねじ機構8によ
って行われる。
On the other hand, the probe 4a of the displacement measuring device 4 is attached to the rotary table 3 while its tip is in contact with the thread groove of the male screw 2.
It moves while being guided by a slide 7 disposed parallel to the rotation axis of the slider, and the movement is performed by a feed screw mechanism 8.

【0017】そして、変位測定器4の測定値は、エリア
ジング防止のためのローパスフィルタ9と、A/Dコン
バータ10とを介して、コンピュータ11に供給される
。さらに、本実施例では、回転テーブル3の回転角を測
定する回転角センサ12と、プローブ4aの上下方向位
置を測定する変位センサ13とを設けていて、それら回
転角センサ12及び変位センサ13の測定値も、コンピ
ュータ11に供給される。
The measured value of the displacement measuring device 4 is supplied to a computer 11 via a low-pass filter 9 for preventing aliasing and an A/D converter 10. Further, in this embodiment, a rotation angle sensor 12 for measuring the rotation angle of the rotary table 3 and a displacement sensor 13 for measuring the vertical position of the probe 4a are provided. Measured values are also supplied to computer 11 .

【0018】そして、コンピュータ11は、雄ねじ2の
ねじ溝のフランクの径方向変位を測定する変位測定器4
から供給される測定値δt と、回転角センサ12から
供給される回転テーブル3の回転角θと、変位センサ1
3から供給されるプローブ4aの垂直座標yとに基づい
て所定の演算処理を実行して、雄ねじ2のねじ溝の真円
度を求める。なお、以下、時間をtで表現する。
The computer 11 also includes a displacement measuring device 4 for measuring the radial displacement of the flank of the thread groove of the male screw 2.
The measured value δt supplied from the rotation angle sensor 12, the rotation angle θ of the rotary table 3 supplied from the rotation angle sensor 12, and the displacement sensor 1
Based on the vertical coordinate y of the probe 4a supplied from the probe 3, a predetermined calculation process is executed to determine the roundness of the thread groove of the male screw 2. Note that time will hereinafter be expressed as t.

【0019】次に、本実施例の作用を説明する。今、プ
ローブ4aは、スライド7に案内されて滑らかにdy/
dt=一定で動き、回転テーブル3の回転速度のみにd
θ/dt=A cosωtの速度変動があるものとする
。 (A,ω:定数)すると、回転テーブル3とプローブ4
aとの間には、         θE (t) =(A/ω)sin 
ωt                       
 ……(1)に相当する位置の同期誤差が生じることに
なる。
Next, the operation of this embodiment will be explained. Now, the probe 4a is guided by the slide 7 and smoothly dy/
dt=Moves at a constant rate, d only depends on the rotational speed of the rotary table 3
It is assumed that there is a speed fluctuation of θ/dt=A cosωt. (A, ω: constant) Then, the rotary table 3 and the probe 4
between a and θE (t) = (A/ω) sin
ωt
...A positional synchronization error corresponding to (1) will occur.

【0020】この結果、図2に示すように、時刻tにお
いて本来ならば鎖線で表す位置にあるべき雄ねじ2は、
θE (t) だけ余分に回転して実線の位置に存在す
ることになり、測定していたフランクの水平面に対する
傾きを1/α(図2右上部参照)、ねじ溝のリードをL
(図2参照)とした場合、変位測定器4の測定値δt 
(t) には、上記同期誤差の影響を受けて、         (θE /2π)Lα=(α/2π)
L(A/ω)sin ω  ……(2)という誤差が含
まれていることになる。
As a result, as shown in FIG. 2, the male screw 2, which should normally be in the position indicated by the chain line at time t, is
It will be rotated by θE (t) extra and will be at the position indicated by the solid line, and the slope of the measured flank with respect to the horizontal plane will be reduced to 1/α (see the upper right corner of Figure 2), and the lead of the thread groove will be changed to L.
(See Figure 2), the measured value δt of the displacement measuring device 4
(t) is affected by the synchronization error mentioned above, (θE /2π)Lα=(α/2π)
This includes an error of L(A/ω) sin ω (2).

【0021】従って、変位測定器4の測定値δt (t
) から上記誤差を取り除けば、回転テーブル3の速度
変動の影響が取り除かれた正確な雄ねじ2の形状を認識
することができる。
Therefore, the measured value δt (t
) By removing the above-mentioned error from , it is possible to recognize the accurate shape of the male thread 2 from which the influence of speed fluctuations of the rotary table 3 has been removed.

【0022】そして、周波数ωの成分は、フィルタの特
性で既知の時間Δt(ω)だけローパスフィルタ9によ
って遅れるから、結局、回転テーブル3の速度変動の影
響を取り除いたフランクの真の測定値δR (t) は
、        δR (t) =δt (t) −
(αL/2π)θE (t−Δt)    ……(3)
となる。
Since the frequency ω component is delayed by the low-pass filter 9 by a time Δt(ω) which is known from the filter characteristics, the true measured value δR of the flank after removing the influence of the speed fluctuation of the rotary table 3 (t) is δR (t) = δt (t) −
(αL/2π)θE (t-Δt)...(3)
becomes.

【0023】なお、フランクの傾きαは雄ねじ2の設計
上の形状から判り、回転テーブル3とプローブ4aとの
間の位置の同期誤差θE (t) は、回転角センサ1
2が測定した回転テーブル3の回転角θと、同時刻にお
いて存在するべき回転テーブル3の回転角との差Δθ(
t) として求めることができ、また、遅れ時間Δtは
、位置の同期誤差として求めたΔθ(t) の最も顕著
な成分の遅れを用いればよい。
Incidentally, the flank inclination α can be determined from the designed shape of the male screw 2, and the positional synchronization error θE (t) between the rotary table 3 and the probe 4a can be determined by the rotation angle sensor 1.
The difference Δθ(
t), and the delay time Δt may be determined by using the delay of the most significant component of Δθ(t) determined as the position synchronization error.

【0024】従って、真の測定値δR (t) は、 
       δR (t) =δt (t) −(α
L/2π)Δθ(t−Δt)    ……(4)として
求めることができる。
Therefore, the true measured value δR (t) is
δR (t) = δt (t) − (α
It can be obtained as L/2π)Δθ(t−Δt) (4).

【0025】また、プローブ4aの速度dy/dtのみ
に周期的な速度変動がある場合には、変位センサ13が
測定したプローブ4aの垂直座標yと、同時刻において
存在するべきプローブ4aの垂直座標とからプローブ4
aの位置の同期誤差Δy(t)を求め、その位置の同期
誤差Δy(t) の最も顕著な成分の遅れをΔtとして
用いれば、真の測定値δR (t) は、         δR (t) =δt (t) −α
Δy(t−Δt)              ……(
5)として求めることができる。
In addition, if there is periodic velocity fluctuation only in the velocity dy/dt of the probe 4a, the vertical coordinate y of the probe 4a measured by the displacement sensor 13 and the vertical coordinate of the probe 4a that should exist at the same time. Tokara probe 4
If we find the synchronization error Δy(t) at the position a and use the delay of the most significant component of the synchronization error Δy(t) at that position as Δt, the true measured value δR (t) is calculated as δR (t) = δt (t) −α
Δy(t−Δt)……(
5).

【0026】さらに、回転テーブル3及びプローブ4a
の両方に速度変動がある場合であっても、回転角センサ
12及び変位センサ13の測定値θ及びyに基づいて求
められるトータルの同期誤差ΔS(t) (=Δy(t
) +(L/2π)Δθ(t) )が、顕著な周波数成
分ωのみで近似できる場合には、真の測定値δR (t
) は、        δR (t) =δt (t
) −αΔS(t−Δt)             
 ……(6)として求めることができる。
Furthermore, the rotary table 3 and the probe 4a
Even if there is a speed fluctuation in both, the total synchronization error ΔS(t) (=Δy(t
) +(L/2π)Δθ(t) ) can be approximated only by prominent frequency components ω, then the true measured value δR (t
) is δR (t) = δt (t
) −αΔS(t−Δt)
...It can be obtained as (6).

【0027】図3は、本実施例の効果の一例を示すグラ
フである。即ち、回転テーブル3及び駆動系の共振周波
数が6.6Hz、ローパスフィルタ9が遮断周波数25
Hz,減衰定数ζ=0.6の2次フィルタの時、遅れ時
間Δtを7msecとして変位測定器4の測定値に補正
をかけたところ、図3に示すように、全く補正をしなか
った場合(図4参照)に比べて、回転テーブル3の共振
の影響が取り除かれ、雄ねじ2の正確な形状を把握する
ことができる。
FIG. 3 is a graph showing an example of the effects of this embodiment. That is, the resonance frequency of the rotary table 3 and the drive system is 6.6Hz, and the cutoff frequency of the low-pass filter 9 is 25Hz.
Hz, when using a secondary filter with an attenuation constant ζ = 0.6, when the delay time Δt was set to 7 msec and the measured value of the displacement measuring device 4 was corrected, as shown in Figure 3, when no correction was made at all. (See FIG. 4), the influence of resonance of the rotary table 3 is removed, and the accurate shape of the male screw 2 can be grasped.

【0028】しかも、本実施例であれば、単にフィルタ
処理を行っていた従来とは異なり、形状の把握に必要な
データが失われる恐れがないという利点もある。ここで
、本実施例では、回転テーブル3,回転駆動源5,カッ
プリング6及び送りねじ機構8によって相対移動手段が
構成され、回転角センサ12及び変位センサ13によっ
て相対位置測定手段が構成され、コンピュータ11にお
ける位置の同期誤差Δθ(t) ,Δy(t) を求め
る処理が位置誤差演算手段に対応し、コンピュータ11
における上記(2)式に基づいた処理が影響演算手段に
対応し、コンピュータ11における上記(4)式,(5
)式,(6)式に基づいた処理が補正手段に対応してい
る。
Moreover, this embodiment has the advantage that there is no risk of data necessary for grasping the shape being lost, unlike the conventional method in which filter processing is simply performed. In this embodiment, the rotary table 3, the rotary drive source 5, the coupling 6, and the feed screw mechanism 8 constitute a relative moving means, and the rotation angle sensor 12 and the displacement sensor 13 constitute a relative position measuring means. The process of calculating position synchronization errors Δθ(t) and Δy(t) in the computer 11 corresponds to the position error calculation means, and the computer 11
The processing based on the above equation (2) in corresponds to the influence calculation means, and the processing based on the above equation (4) and (5) in the computer 11
) and (6) correspond to the correction means.

【0029】なお、上記実施例では、雄ねじ2のねじ溝
の真円度を測定する装置に本発明を適用した場合につい
て説明したが、本発明の適用対象は、上記実施例のよう
に、直動系と回転系との組み合わせでなくても、例えば
、直動系同士の組み合わせであっても、適用できる。
[0029] In the above embodiment, the present invention was applied to a device for measuring the roundness of the thread groove of the male screw 2. It is applicable not only to a combination of a dynamic system and a rotational system but also to a combination of linear motion systems, for example.

【0030】また、上記実施例では、被測定物として三
角ねじを用いた場合について説明したが、これに限定さ
れるものではなく、ボールねじのフランクのように、曲
面をもったものの形状を測定する場合であっても、例え
ば、プローブ4aでねらった点若しくは測定点の傾き(
dδ/dy)の設計値をαとして用いるか、或いは、δ
(Δθ,Δy)を設計値から求めてαΔSとして用いる
ことにより、同等の作用効果が得られる。
Furthermore, in the above embodiment, the case where a triangular screw is used as the object to be measured has been explained, but the present invention is not limited to this. For example, even if the slope (
dδ/dy) is used as α, or δ
The same effect can be obtained by finding (Δθ, Δy) from the design values and using it as αΔS.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
被測定物とプローブとの位置誤差を求め、その位置誤差
が変位測定器の測定値に与える影響を演算し、そして、
その演算された影響で変位測定器の測定値を補正するよ
うにしているため、駆動系の運動誤差が測定値に与える
影響を除去でき、被測定物の正確な形状を把握でき、し
かも、必要なデータが失われる恐れはないという効果が
ある。
[Effects of the Invention] As explained above, according to the present invention,
Find the positional error between the object to be measured and the probe, calculate the influence of that positional error on the measured value of the displacement measuring device, and
Since the measured value of the displacement measuring device is corrected using the calculated influence, it is possible to eliminate the influence of the movement error of the drive system on the measured value, and it is possible to grasp the accurate shape of the object to be measured. This has the effect that there is no risk of data loss.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本実施例の作用を説明する図である。FIG. 2 is a diagram illustrating the operation of this embodiment.

【図3】本実施例の効果を説明するグラフである。FIG. 3 is a graph explaining the effects of this embodiment.

【図4】補正をかけなかった場合の測定値を示すグラフ
である。
FIG. 4 is a graph showing measured values without correction.

【符号の説明】[Explanation of symbols]

1        真円度測定装置(形状測定装置)2
        雄ねじ(被測定物)3       
 回転テーブル 4        変位測定器 4a      プローブ 11      コンピュータ 12      回転角センサ 13      変位センサ
1 Roundness measuring device (shape measuring device) 2
Male thread (object to be measured) 3
Rotary table 4 Displacement measuring device 4a Probe 11 Computer 12 Rotation angle sensor 13 Displacement sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  被測定物に対して変位測定器のプロー
ブを相対移動させてその被測定物の形状を測定する形状
測定方法において、前記被測定物に対する前記プローブ
の相対位置を測定してそれら被測定物及びプローブの相
対位置誤差を求め、前記被測定物の設計上の形状に基づ
いて前記相対位置誤差が前記変位測定器の検出値に与え
る影響を演算し、その演算された影響に基づいて前記変
位測定器の測定値を補正し、そして、その補正された値
に基づいて前記被測定物の形状を認識することを特徴と
する形状測定方法。
1. A shape measuring method in which a probe of a displacement measuring device is moved relative to an object to be measured to measure the shape of the object, the method comprising measuring the relative position of the probe to the object to be measured and measuring the shape of the object. Determining the relative position error of the object to be measured and the probe, calculating the influence of the relative position error on the detected value of the displacement measuring device based on the designed shape of the object to be measured, and based on the calculated influence. A method for measuring a shape, comprising: correcting a measured value of the displacement measuring device, and recognizing the shape of the object based on the corrected value.
【請求項2】  変位測定器と、被測定物に対して前記
変位測定器のプローブを相対移動させる相対移動手段と
、を備えた形状測定装置において、前記被測定物に対す
る前記プローブの相対位置を測定する相対位置測定手段
と、この相対位置測定手段が測定した相対位置に基づい
て前記被測定物及びプローブの相対位置誤差を演算する
位置誤差演算手段と、前記被測定物の設計上の形状に基
づいて前記相対位置誤差が前記変位測定器の測定値に与
える影響を演算する影響演算手段と、この影響演算手段
が演算した影響に基づいて前記変位測定器の測定値を補
正する補正手段と、を設けたことを特徴とする形状測定
装置。
2. A shape measuring device comprising a displacement measuring device and relative moving means for moving a probe of the displacement measuring device relative to the object to be measured, wherein the relative position of the probe with respect to the object to be measured is determined. a relative position measuring means for measuring; a position error calculating means for calculating a relative position error between the object to be measured and the probe based on the relative position measured by the relative position measuring means; influence calculation means for calculating the influence of the relative position error on the measured value of the displacement measuring device based on the influence calculation means; and correction means for correcting the measured value of the displacement measuring device based on the influence calculated by the influence calculating means; A shape measuring device characterized by being provided with.
JP3445591A 1991-02-28 1991-02-28 Device and method for shape measurement Pending JPH04273009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3445591A JPH04273009A (en) 1991-02-28 1991-02-28 Device and method for shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3445591A JPH04273009A (en) 1991-02-28 1991-02-28 Device and method for shape measurement

Publications (1)

Publication Number Publication Date
JPH04273009A true JPH04273009A (en) 1992-09-29

Family

ID=12414725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3445591A Pending JPH04273009A (en) 1991-02-28 1991-02-28 Device and method for shape measurement

Country Status (1)

Country Link
JP (1) JPH04273009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141944A (en) * 1996-11-08 1998-05-29 Tokyo Seimitsu Co Ltd Method and machine for measuring-out of roundness
CN105222734A (en) * 2015-09-29 2016-01-06 河南科技大学 A kind of sensor installation adjusting device
CN105783806B (en) * 2016-03-14 2018-06-15 合肥工业大学 Articulated coordinate machine sampling emulation mode based on virtual prototype

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141944A (en) * 1996-11-08 1998-05-29 Tokyo Seimitsu Co Ltd Method and machine for measuring-out of roundness
CN105222734A (en) * 2015-09-29 2016-01-06 河南科技大学 A kind of sensor installation adjusting device
CN105222734B (en) * 2015-09-29 2018-04-06 河南科技大学 A kind of sensor installation adjusting device
CN105783806B (en) * 2016-03-14 2018-06-15 合肥工业大学 Articulated coordinate machine sampling emulation mode based on virtual prototype

Similar Documents

Publication Publication Date Title
JP3337245B2 (en) Method and apparatus for measuring the effective instantaneous position of a scanning element or tool supported by a slide
US7779553B2 (en) Oscillating scanning probe with constant contact force
EP1898428B1 (en) Surface-profile measuring instrument
JP5192196B2 (en) Surface shape measuring device
EP0787280B1 (en) Roundness measuring
WO2017033581A1 (en) Surface shape measuring method, misalignment amount calculating method, and surface shape measuring device
JPH04273009A (en) Device and method for shape measurement
TWI481183B (en) Method and system for measuring motor parameter
JPH0280909A (en) Measuring machine for contour shape such as surface roughness
US3953133A (en) Method of determining the angular position of a workpiece and apparatus therefor
JP7285595B2 (en) Contact detection method and processing device
JPS623882B2 (en)
JP2004219333A (en) Encoder output signal correcting device
CN113551600A (en) Detection system for path precision of two-dimensional motion platform
KR20190128565A (en) Apparatus for measuring the surface of an object having a linear cross-sectional shape and Measuring Method Using Same
JP2012137331A (en) Mechanical angle measuring device
JP7186571B2 (en) Apparatus and method for determining operation completion time of robot
JPH08210803A (en) Straightness measuring instrument
JPH0719856A (en) Shape measuring apparatus
JPS63175716A (en) Measuring instrument for tooth profile error
JP3002832B2 (en) NC machine tool equipment
PL208244B1 (en) Method for testing contactless instruments for measuring linear velocity and appliance for testing contactless instruments for measuring linear velocity
JPH04125401A (en) Measuring apparatus of precision of external thread
JPH0430949A (en) Work detecting with proximity switch
JP2001157477A (en) Position/speed controller and stage system using it