JPH0427296B2 - - Google Patents

Info

Publication number
JPH0427296B2
JPH0427296B2 JP20165085A JP20165085A JPH0427296B2 JP H0427296 B2 JPH0427296 B2 JP H0427296B2 JP 20165085 A JP20165085 A JP 20165085A JP 20165085 A JP20165085 A JP 20165085A JP H0427296 B2 JPH0427296 B2 JP H0427296B2
Authority
JP
Japan
Prior art keywords
chromium
metallic
hydrated
protruding
metallic chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20165085A
Other languages
Japanese (ja)
Other versions
JPS6263678A (en
Inventor
Nobuyoshi Shimizu
Fumio Kunishige
Terunori Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP60201650A priority Critical patent/JPS6263678A/en
Publication of JPS6263678A publication Critical patent/JPS6263678A/en
Publication of JPH0427296B2 publication Critical patent/JPH0427296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶接用テインフリースチールの製造
方法に関する。 〔従来の技術〕 鋼板表面に金属クロム層およびクロム水和酸化
物の二層皮膜を有するテインフリースチール(以
下、TFS−CTという)は約20年前に開発され、
主として、食缶、18缶、菓子缶、飲料缶に多量
に使用されている。このTFS−CTの缶胴接合
は、もつぱら、接着法(ナイロン接着剤を接合部
にはさみ加熱圧着する方法)を用いて行われるの
が普通であるが、近年、ブリキやニツケルメツキ
鋼板を材料とする溶接缶が多量に実用化されるよ
うになり、TFS−CTを溶接する試みがなされる
ようになつた。 ところが、通常のTFS−CTでは電気抵抗によ
る溶接は困難であり、特に、高速溶接において安
定した溶接強度、溶接外観を得ることは困難であ
ることが明らかとなつた。 そこで、このTFS−CTの溶接性を向上させる
方法として、例えば、 (1) 硫酸根、硝酸根、塩素イオン等の陰イオンを
意図的には添加しないクロム酸、重クロム酸な
どを主成分とする水溶液中で、片面当り0.5〜
30mg/m2の金属クロム、金属クロム換算で2〜
50mg/m2のクロム水和酸化物を生成させた
TFS−CT。(特開昭55−18542)、 (2) 鋼板表面に3〜40mg/m2の金属クロム層、そ
の上部に金属クロム換算で2〜15mg/m2のクロ
ム酸化物を主体とする非金属クロム層からな
り、金属クロム層をポーラスにしたことを特徴
とするクロムメツキ鋼板。(特開昭55−31124)、 (3) クロムメツキ鋼板に20%以下の調質圧延を行
うことを特徴とするクロムメツキ鋼板(特開昭
55−48406)、などが提案され、TFS−CTの溶
接性向上について鋭意検討がなされているのが
実情である。 これらのTFS−CTにおいて、溶接性向上を達
成するための技術思想は次のように説明されてい
る。 即ち、上記引例(1)においては、クロム水和酸化
物の質的改善により金属クロム目付量を減少させ
ることが可能となり、溶接性の向上がもたらされ
たと説明されている。引例(2),(3)においては、金
属クロム層自体が溶接開始直後の溶接電流通過を
阻害しているので、鋼板表面上において素地鋼の
露出面積を多くするため、金属クロム目付量を少
なくしたり、金属クロムの目付量の多い場合でも
調質圧延により鋼板に若干の伸びにより亀裂を与
えることにより、溶接性を向上させようとするも
のである。 〔発明が解決しようとする問題点〕 しかしながら、上述のいずれの方法も缶用材料
として必要な耐食性能の点から見ると、金属クロ
ム目付量の低下、あるいは調質圧延による露出鋼
面積の増大という耐食性に不利な点はまぬがれ難
いという問題を抱えていた。 〔問題点を解決するための手段〕 本発明は、上述のような技術思想とは全く異な
る角度から検討した結果見出したものである。即
ち、TFS−CTにおいて金属クロム層を多数の突
起状クロムが混在する析出形態とすることによ
り、接合部の電気接触抵抗が大はばに向上するこ
とを見出し、本発明を完成するに至つた。本発明
の最大の特徴は、TFS−CTにおいて、溶接性以
外の諸特性、即ち、未塗装時の耐食性、塗装後の
耐食性などをなんら低下させずに溶接性を向上さ
せるには、金属クロム層を多数の突起状クロムが
混在する析出形態とすれば良いことを見出したこ
とにある。通常のTFS−CTの金属クロム層の析
出形態は、第3図に示すように、突起状クロムが
素地鋼表面の主として{100}面に見られる程度
であるが、特定の電解条件で析出させた金属クロ
ム層においては、{100}面ばかりでなく全面にわ
たり突起状クロムの析出が起きてくる。(第4図)
この金属クロム層における突起状クロムの数と、
熱アルカリでクロム水和酸化物を溶解後に、JIS
Z 8741に従つて、20度における金属クロムメツ
キ前後の鏡面光沢度の差の関係をみたものが第2
図であり、クロム水和酸化物溶解前の電気接触抵
抗とクロム水和酸化物を溶解した後金属クロムメ
ツキ前後の鏡面光沢度の差の関係をみたものが第
1図である。第2図に示すように、透過電子顕微
鏡写真で観察される突起状クロムの単位面積あた
りの数と、金属クロムメツキ前後の鏡面光沢度の
差には良い関係があり、突起状クロムの数が減少
するにつれてクロムメツキ表面の鏡面光沢度は良
くなる。鋼板の粗度によつて異なるが、通常のぶ
りき、TFS用の原板を用いると、金属クロムの
方が鉄よりも光沢が良いため、一般にクロムメツ
キにより試料の鏡面光沢度は良くなるのが普通で
ある。しかし、金属クロムを突起状クロムが混在
する析出形態にし、突起状クロムの数を増してい
くと次第に金属クロム層の光沢が悪くなり、遂に
は、クロムメツキ前の鋼板の鏡面光沢度よりも悪
くなる。そこで、金属クロム層の析出状態を光沢
度計で正確に測定し、クロム水和酸化物溶解前の
電気接触抵抗との関係を見ると、第1図に示すよ
うに、光沢度が悪くなる程電気接触抵抗が小さく
なることがわかる。このことは、光沢度の良い金
属クロム層、即ち、平滑な表面は、溶接に良い作
用をしないことを示している。一方、光沢度の悪
い金属クロム層、即ち、第4図の顕微鏡写真に示
すように、1000オングストローム以下の径の突起
状クロムが多数混在する表面は、溶接に良い作用
をすることを示している。このように、突起状ク
ロムはシーム溶接時に電流通過の起点となる他、
加圧時に、電気絶縁性の表層のクロム水和酸化物
皮膜を破壊し易いという利点を有していると考え
られる。第1図に示したようにGa(20゜)−Gb
(20゜)の値が8%を超えると電気接触抵抗値で表
した溶接性が極端に悪くなる。また、Ga(20゜)−
Gb(20゜)の値が負になる程、即ち、鋼板よりも
クロムメツキ後の表面の光沢が悪くなる程溶接性
は良くなるが、突起状クロムの数を増していつて
も−6%を超えることはなかつた。従つて、本発
明における金属クロム層として、熱アルカリで上
層のクロム水和酸化物を溶解後、JIS Z 8741に
従つて、20度における金属クロムメツキ前後の鏡
面光沢度を測定し、クロムメツキ後の光沢度を
Ga(20゜)、クロムメツキ前の光沢度をGb(20゜)と
した時、Ga(20゜)−Gb(20゜)の値が−6〜+8%
の範囲に入るものと規定される。クロム水和酸化
物皮膜を溶解後の金属クロム層の鏡面光沢度を測
定したのは、クロム水和酸化物皮膜が鏡面光沢度
の値に与える影響を除くためであり、金属クロム
メツキ前後の鏡面光沢度の差で析出状態を評価し
たのは、鋼板の粗度が鏡面光沢度に与える影響を
除くためである。金属クロムの量が多いほど突起
状クロムを生成するのに有利であり、金属クロム
の量が30mg/m2よりも少なくなると突起状クロム
が生成しなくなる。金属クロムの量が500mg/m2
を超えても、性能上、何ら不都合な事はないが、
コストおよび生産性の観点から上限をこの値とし
た。従つて、本発明における金属クロム量とし
て、30〜500mg/m2と規定される。 突起状クロムを生成させる条件はいろいろある
が、例えば、 (1) 高濃度のクロム酸溶液中で断続電解を行う方
法。 (2) クロムメツキ中に、短時間の逆電解を行う方
法。 などがある。勿論、この方法以外にも、浴温、
電流密度、前処理等の電解条件を厳密に選べば、
通常のクロムメツキ方法によつても突起状クロム
を生成させることが可能である。しかしながら、
上記の(1)の方法では、十分な数の突起状クロムを
生成させることは難しく、電解条件によつては突
起状クロムが生成しない場合がある。また、(2)の
方法では、十分な数の突起状クロムを生成させる
ことはできるが表面汚れを発生しやすい。そこ
で、電解条件によらず安定して突起状クロムを生
成し、かつ、表面汚れを発生しにくいクロムメツ
キ方法を種々検討したところ、クロムメツキの途
中で水洗乾燥し、引き続き電解を行うのが効果的
であることを見出した。この中間乾燥により突起
状クロムが生成する理由は次にように考えられ
る。 電解クロム酸処理による金属クロムを生成させ
る際に、陰極となる鋼帯表面では最初に可溶性の
ゾル状クロム水和酸化物皮膜が生成し、この皮膜
を通して金属クロムの析出が起きると一般に考え
られている。連続電解の場合はゾル状のクロム水
和酸化物が表面をほぼ完全に覆つているため、突
起状クロムの生成は殆ど起こらない。これに対し
て、断続電解ではゾル状クロム水和酸化物皮膜が
断続時の溶解、電解時の生成を繰り返し、皮膜の
欠陥部において優先的に突起状クロムが生成す
る。高濃度のクロム酸を用いた方が粒状析出し易
い理由も、高濃度の方がゾル状のクロム水和酸化
物皮膜を溶解する力が強く、皮膜に欠陥を生成し
やすいためと説明される。 そこで、一端電解を中断し、水洗、乾燥後、再
度電解を続けると、ゾル状のクロム水和酸化物が
乾燥時に収縮して多数の欠陥部を生成するため、
単に断続電解を行う時のクロム水和酸化物皮膜よ
りもはるかに多くの欠陥部を有するようになり、
その結果、断続電解よりも数多くの突起状クロム
を生成する。乾燥の程度はゾル状のクロム水和酸
化物皮膜が一部ゲル化する程度で十分であり、通
常の熱風乾燥の場合は乾燥雰囲気中で板温を70゜
以上に数秒間保持するだけでよい。更に短時間で
加熱したい場合は、抵抗加熱や誘導加熱の方法を
併用することも有効である。かくして、突起状ク
ロムが結晶面に依らず安定して析出するようにな
ると考えられる。 公知のように、TFS−CTの製造法には一液法
と二液法とがあり、いずれの製造法においてもメ
ツキタンクを縦型に数槽並べて断続電解を行い、
メツキ槽間で、水洗、乾燥を行わないのが一般的
である。 一液法では金属クロムとクロム水和酸化物を同
時に析出させるため、比較的低濃度のクロム酸浴
が用いられる。本発明では、一液法の場合は、前
段のタンクで約3〜15mg/m2(以下、クロム換算
値で表記する)のクロム水和酸化物を生成させた
後、一旦、水洗、乾燥して表面のクロム水和酸化
物をゲル化させ、引き続き、同じ液を用いて後段
のタンクで電解クロム酸処理を行い、金属クロム
とクロム水和酸化物を生成させる。 一方、二液法では最初に高濃度のクロム酸浴中
で主として金属クロムを析出させた後、低濃度の
クロム酸浴中で主としてクロム水和酸化物を生成
させるのが普通である。本発明では、二液法の場
合は、クロムメツキ工程において、前段のタンク
で金属クロムと約3〜8mg/m2のクロム水和酸化
物を生成させた後、一旦、水洗、乾燥して表面の
クロム水和酸化物をゲル化させ、引き続き、同じ
液を用いて後段のタンクでクロムメツキを行い、
金属クロムと少量のクロム水和酸化物を生成させ
る。二液法の場合は必要に応じて、この後、主と
してクロム水和酸化物を生成する浴中で電解し、
所望の量のクロム水和酸化物を析出させる。 一液法、二液法とも複数個のメツキタンクがあ
る場合には、水洗、乾燥を各メツキタンクの前で
全て行つても良いし、一回だけ行つても良い。一
回しか水洗、乾燥を行わない場合は、できるだけ
前段のメツキタンク後に水洗、乾燥を行うのが良
い。 上層のクロム水和酸化物皮膜の膜厚の均一性が
TFS−CTの耐食性の確保するのに重要である。
金属クロム層を突起状クロムが混在する析出形態
とすることにより、耐食性が悪くなることはな
い。クロム水和酸化物の量は少ないほど溶接性は
良いが、5mg/m2よりも少なくなると著しく耐食
性が悪くなる。一方、クロム水和酸化物の量が多
いほど耐食性は良いが、20mg/m2をこえると著し
く溶接性が悪くなる。従つて、本発明におけるク
ロム水和酸化物の量として5〜20mg/m2と規定さ
れる。 〔作 用〕 TFS−CTの溶接性を良くするために金属クロ
ム層をポーラスにしたり金属クロム層に調質圧延
でクラツクを入れる方法は、TFS−CTの耐食性
を悪くするおそれがある。本発明では、連続した
金属クロム層を有しながらもその表面に突起状ク
ロムを多数析出させることにより最表層の絶縁性
のクロム水和酸化物皮膜を溶接の加圧時に破壊し
易くし、溶接電流が流れ易いようにした。金属ク
ロムメツキ工程の途中に乾燥工程をもうけて、突
起状クロムを安定して生成させるようにした。 かくすることにより、耐食性を損なうことなし
にTFS−CTの溶接性を著しく向上することがで
きる。 〔実施例〕 次に本発明の実施例を比較例とともに挙げる。 〔実施例 1〕 通常の方法で脱脂(NaOH70g/、温度80
℃、電流密度5A/dm2、時間2秒)、酸洗
(N2SO470g/、温度30℃、3秒間浸漬)の前
処理をした0.22mm厚の冷延鋼板を、55℃の
CrO3200g/、H2SO43g/のクロム酸浴中
で、電流密度30A/dm2で1.5秒間陰極処理し、
約50mg/m2の金属クロムと約6mg/m2のクロム水
和酸化物を析出させた。電解終了後、直ちに浴か
ら取りだし、水洗、乾燥(ドライヤーの約100℃
の熱風で十分に乾燥)し、引き続き同じ浴中で
30A/dm2で1.5秒間陰極処理し、約50mg/m2
金属クロムとクロム水和酸化物を析出させた。 〔比較例 1〕 通常の方法で脱脂、酸洗の前処理をした0.22mm
厚の冷延鋼板を、55℃のCrO3200g/、
H2SO43g/のクロム酸浴中で、電流密度
30A/dm2で1.5秒間陰極処理し、約50mg/m2
金属クロムと約6mg/m2のクロム水和酸化物を析
出させた。電解終了後、2秒間同じ浴中に浸漬
し、引き続き30A/dm2で1.5秒間陰極処理し、
約50mg/m2の金属クロムとクロム水和酸化物を析
出させた。 〔実施例 2〕 実施例1の冷延鋼板を、55℃のCrO3100g/
、MaF6g/のクロム酸浴中で、電流密度
40A/dm2で1.0秒間陰極処理し約50mg/m2の金
属クロムと約5mg/m2のクロム水和酸化物を析出
させた。電解終了後、直ちに浴から取りだし、水
洗、乾燥し、引き続き同じ浴中で20A/dm2
2.0秒間陰極処理し、約50mg/m2の金属クロムと
クロム水和酸化物を析出させた。 〔実施例 3〕 実施例2のTFS−CTを、水洗後、30℃の
CrO350g/、MaF2g/のクロム酸浴中で、
電流密度10A/dm2で2秒間陰極処理して、この
上にクロム水和酸化物を析出させた。 〔比較例 2〕 実施例1の冷延鋼板を、55℃のCrO3100g/
、MaF6g/のクロム酸浴中で、電流密度
40A/dm2で1.0秒間陰極処理し、約50mg/m2
金属クロムと約5mg/m2のクロム水和酸化物を析
出させた。電解終了後、2秒間浴中に浸漬し、引
き続き20A/dm2で2.0秒間陰極処理し、約50
mg/m2の金属クロムとクロム水和酸化物を析出さ
せた。水洗後更に、30℃のCrO350g/、NaF2
g/のクロム酸浴中で電流密度10A/dm2で2
秒間陰極処理し、この上にクロム水和酸化物を析
出させた。 第1表に、特性評価結果を示す。
[Industrial Application Field] The present invention relates to a method for producing a welding stain-free steel. [Prior art] Tein-free steel (hereinafter referred to as TFS-CT), which has a two-layer coating of a metallic chromium layer and a hydrated chromium oxide on the surface of a steel sheet, was developed about 20 years ago.
It is mainly used in large quantities in food cans, 18 cans, confectionery cans, and beverage cans. The TFS-CT can body is usually joined using an adhesive method (a method in which nylon adhesive is sandwiched between the joints and heat-pressed), but in recent years, tinplate or nickel-plated steel sheets have been used as materials. Many welded cans have come into practical use, and attempts have been made to weld TFS-CT. However, it has become clear that it is difficult to weld using electric resistance with ordinary TFS-CT, and that it is particularly difficult to obtain stable weld strength and weld appearance during high-speed welding. Therefore, as a method to improve the weldability of TFS-CT, for example, (1) welding using chromic acid, dichromic acid, etc. as the main component without intentionally adding anions such as sulfate radicals, nitrate radicals, and chloride ions; 0.5~ per side in an aqueous solution
30 mg/m 2 of metallic chromium, 2 to 2 in terms of metallic chromium
Produced 50mg/ m2 of chromium hydrated oxide
TFS−CT. (Japanese Unexamined Patent Publication No. 55-18542), (2) A metallic chromium layer of 3 to 40 mg/m 2 on the surface of the steel sheet, and on top of that a non-metallic chromium layer mainly composed of chromium oxides of 2 to 15 mg/m 2 in terms of metallic chromium. A chrome-plated steel sheet consisting of two layers, characterized by a porous metal chromium layer. (Japanese Unexamined Patent Publication No. 55-31124), (3) A chrome-plated steel sheet characterized by subjecting the chrome-plated steel sheet to temper rolling of 20% or less.
55-48406) have been proposed, and the current situation is that efforts are being made to improve the weldability of TFS-CT. The technical concept for achieving improved weldability in these TFS-CTs is explained as follows. That is, in the above-mentioned reference (1), it is explained that the qualitative improvement of the hydrated chromium oxide makes it possible to reduce the metallic chromium weight, resulting in improved weldability. In references (2) and (3), the metallic chromium layer itself obstructs the passage of welding current immediately after welding starts, so the amount of metallic chromium is reduced in order to increase the exposed area of the base steel on the steel plate surface. Even when the weight of chromium metal is high, the weldability is improved by applying cracks to the steel plate due to slight elongation through temper rolling. [Problems to be Solved by the Invention] However, from the viewpoint of the corrosion resistance required for can materials, all of the above-mentioned methods result in a decrease in the amount of metal chromium, or an increase in the exposed steel area due to skin pass rolling. The disadvantage of corrosion resistance was an unavoidable problem. [Means for Solving the Problems] The present invention was discovered as a result of studies from a completely different angle from the above-mentioned technical idea. In other words, the inventors discovered that by forming the metallic chromium layer in TFS-CT into a precipitation form in which a large number of protruding chromium particles coexist, the electrical contact resistance of the joint can be greatly improved, leading to the completion of the present invention. . The greatest feature of the present invention is that in TFS-CT, in order to improve weldability without reducing any properties other than weldability, such as corrosion resistance when unpainted and corrosion resistance after painting, it is necessary to use a metallic chromium layer. It has been found that it is possible to form a precipitation form in which a large number of protruding chromium particles coexist. As shown in Figure 3, the precipitation form of the metallic chromium layer in normal TFS-CT is such that protruding chromium is mainly seen on the {100} plane of the base steel surface, but it can be deposited under specific electrolytic conditions. In the metallic chromium layer, protrusive chromium precipitation occurs not only on the {100} plane but also over the entire surface. (Figure 4)
The number of protruding chromium in this metallic chromium layer,
After dissolving chromium hydrated oxide with hot alkali, JIS
According to Z 8741, the second study looked at the relationship between the difference in specular gloss before and after metal chrome plating at 20 degrees.
FIG. 1 shows the relationship between the electrical contact resistance before dissolving chromium hydrated oxide and the difference in specular gloss before and after metal chrome plating after dissolving chromium hydrated oxide. As shown in Figure 2, there is a good relationship between the number of chromium protrusions per unit area observed in transmission electron micrographs and the difference in specular gloss before and after metal chrome plating, and the number of chromium protrusions decreases. As this progresses, the specular gloss of the chrome plating surface improves. Although it depends on the roughness of the steel plate, when using regular tin plate or TFS plate, metallic chromium has a higher gloss than iron, so chrome plating generally improves the specular gloss of the sample. It is. However, when metallic chromium is made into a precipitation form in which protruding chromium is mixed, and the number of protruding chromium is increased, the gloss of the metallic chromium layer gradually deteriorates, and eventually becomes worse than the specular gloss of the steel sheet before chromium plating. . Therefore, when we accurately measured the precipitation state of the metallic chromium layer using a gloss meter and looked at its relationship with the electrical contact resistance before dissolving the chromium hydrated oxide, we found that the more the gloss deteriorates, the more the gloss deteriorates, as shown in Figure 1. It can be seen that the electrical contact resistance becomes smaller. This shows that a metallic chromium layer with good gloss, ie, a smooth surface, does not have a good effect on welding. On the other hand, a metallic chromium layer with poor gloss, that is, a surface where many protruding chromium particles with a diameter of 1000 angstroms or less coexist, as shown in the micrograph in Figure 4, has a good effect on welding. . In this way, the protruding chromium serves as a starting point for current passage during seam welding, and
This is thought to have the advantage that the electrically insulating surface chromium hydrated oxide film is easily destroyed when pressurized. As shown in Figure 1, Ga (20°) − Gb
(20°) exceeds 8%, weldability expressed in electrical contact resistance value becomes extremely poor. Also, Ga (20°) −
The more negative the value of Gb (20°) is, that is, the worse the gloss of the surface after chrome plating is than that of the steel plate, the better the weldability is, but even if the number of protruding chromium is increased, it still exceeds -6%. Nothing happened. Therefore, for the metallic chromium layer in the present invention, after dissolving the upper layer of chromium hydrated oxide with a hot alkali, the specular gloss before and after metallic chromium plating at 20 degrees was measured according to JIS Z 8741, and the gloss after chromium plating was measured. degree
Ga (20°), when the gloss before chrome plating is Gb (20°), the value of Ga (20°) - Gb (20°) is -6 to +8%
It is defined as falling within the scope of. The reason why we measured the specular gloss of the metallic chromium layer after dissolving the chromium hydrated oxide film was to eliminate the influence of the chromium hydrated oxide film on the specular gloss value. The reason why the precipitation state was evaluated based on the difference in degree was to eliminate the influence of the roughness of the steel plate on the specular gloss. The larger the amount of metallic chromium is, the more advantageous it is to generate protruding chromium, and when the amount of metallic chromium is less than 30 mg/ m2 , protruding chromium will not be produced. The amount of metallic chromium is 500mg/ m2
There is no inconvenience in terms of performance even if the value is exceeded, but
This value was set as the upper limit from the viewpoint of cost and productivity. Therefore, the amount of metallic chromium in the present invention is defined as 30 to 500 mg/m 2 . There are various conditions for producing protruding chromium, such as (1) intermittent electrolysis in a highly concentrated chromic acid solution. (2) A method of performing short-term reverse electrolysis during chrome plating. and so on. Of course, in addition to this method, bath temperature,
If the electrolytic conditions such as current density and pretreatment are carefully selected,
It is also possible to generate protruding chrome by a normal chrome plating method. however,
In method (1) above, it is difficult to generate a sufficient number of protruding chromium, and depending on the electrolysis conditions, protruding chromium may not be generated. Further, in method (2), although a sufficient number of protruding chromium particles can be generated, surface stains are likely to occur. Therefore, we investigated various chrome plating methods that stably produce protruding chromium regardless of electrolysis conditions and are less likely to cause surface stains.We found that it is effective to wash and dry with water during chrome plating and then continue with electrolysis. I discovered something. The reason why protruding chromium is produced by this intermediate drying is considered to be as follows. It is generally believed that when metallic chromium is produced by electrolytic chromic acid treatment, a soluble sol-like chromium hydrated oxide film is first formed on the surface of the steel strip that will serve as the cathode, and that metallic chromium is precipitated through this film. There is. In the case of continuous electrolysis, the surface is almost completely covered by the sol-like hydrated chromium oxide, so the formation of protruding chromium hardly occurs. On the other hand, in intermittent electrolysis, the sol-like chromium hydrated oxide film repeats dissolution during intermittent electrolysis and formation during electrolysis, and protrusive chromium is preferentially formed in defective areas of the film. The reason why granular precipitation is more likely to occur when using higher concentrations of chromic acid is explained by the fact that higher concentrations have a stronger ability to dissolve the sol-like chromium hydrated oxide film, making it easier to form defects in the film. . Therefore, if the electrolysis is temporarily stopped, washed with water, and then dried, the electrolysis is continued again, as the hydrated chromium oxide in the form of a sol shrinks during drying and generates many defects.
It has far more defects than the chromium hydrated oxide film that is simply subjected to intermittent electrolysis.
As a result, more protruding chromium is produced than in intermittent electrolysis. The degree of drying is sufficient to partially gel the sol-like chromium hydrated oxide film, and in the case of normal hot air drying, it is sufficient to maintain the board temperature at 70° or higher for a few seconds in a drying atmosphere. . If heating is desired in a shorter time, it is also effective to use resistance heating or induction heating in combination. In this way, it is thought that the protruding chromium is stably precipitated regardless of the crystal plane. As is well known, there are two types of manufacturing methods for TFS-CT: a one-liquid method and a two-liquid method. In both manufacturing methods, intermittent electrolysis is carried out by arranging several electrolytic tanks vertically.
Generally, washing and drying are not performed between plating tanks. In the one-component method, a relatively low concentration chromic acid bath is used to simultaneously precipitate metallic chromium and hydrated chromium oxide. In the case of the one-component method, in the present invention, approximately 3 to 15 mg/m 2 (hereinafter expressed in terms of chromium equivalent value) of chromium hydrated oxide is generated in the tank at the front stage, and then washed with water and dried. The hydrated chromium oxide on the surface is gelled, and then electrolytic chromic acid treatment is performed using the same solution in a subsequent tank to produce metallic chromium and hydrated chromium oxide. On the other hand, in the two-component method, it is common to first precipitate mainly metallic chromium in a high concentration chromic acid bath, and then mainly produce chromium hydrated oxide in a low concentration chromic acid bath. In the case of the two-component method of the present invention, in the chrome plating process, metallic chromium and approximately 3 to 8 mg/ m2 of hydrated chromium oxide are generated in the tank at the front stage, and then the surface is washed and dried. The hydrated chromium oxide is gelled, and the same solution is then used for chromium plating in the subsequent tank.
Forms metallic chromium and small amounts of hydrated chromium oxide. In the case of the two-component method, if necessary, this is followed by electrolysis in a bath that mainly produces hydrated chromium oxide.
Precipitate the desired amount of chromium hydrate. When a plurality of plating tanks are used in both the one-liquid method and the two-liquid method, washing and drying may be performed in front of each plating tank, or may be performed only once. If you only need to wash and dry once, it is best to wash and dry after the plating tank in the previous stage. The uniformity of the thickness of the upper layer chromium hydrated oxide film
This is important to ensure the corrosion resistance of TFS-CT.
By making the metallic chromium layer have a precipitation form in which protruding chromium is mixed, corrosion resistance does not deteriorate. The smaller the amount of chromium hydrated oxide, the better the weldability, but if it is less than 5 mg/m 2 , the corrosion resistance will deteriorate significantly. On the other hand, the higher the amount of chromium hydrated oxide, the better the corrosion resistance, but if the amount exceeds 20 mg/m 2 , weldability deteriorates significantly. Therefore, the amount of hydrated chromium oxide in the present invention is defined as 5 to 20 mg/m 2 . [Function] The method of making the metal chromium layer porous or creating cracks in the metal chromium layer by temper rolling in order to improve the weldability of TFS-CT may deteriorate the corrosion resistance of TFS-CT. Although the present invention has a continuous metallic chromium layer, by precipitating a large number of protruding chromium on the surface, the insulating chromium hydrated oxide film on the outermost layer is easily destroyed when pressure is applied during welding. Made it easier for current to flow. A drying process was added in the middle of the metal chrome plating process to ensure stable formation of protruding chrome. By doing so, the weldability of TFS-CT can be significantly improved without impairing corrosion resistance. [Example] Next, Examples of the present invention will be described together with Comparative Examples. [Example 1] Degreasing in the usual way (NaOH 70g/, temperature 80
℃, current density 5A/dm 2 , time 2 seconds) and pickling (N 2 SO 4 70g/, temperature 30℃, immersion for 3 seconds).
Cathodic treatment was performed for 1.5 seconds at a current density of 30 A/dm 2 in a chromic acid bath containing 200 g of CrO 3 and 3 g of H 2 SO 4 .
About 50 mg/m 2 of metallic chromium and about 6 mg/m 2 of chromium hydrated oxide were deposited. After electrolysis, immediately take it out of the bath, wash it with water, and dry it (using a dryer at about 100℃).
Dry thoroughly with hot air) and then continue in the same bath.
Cathodic treatment was performed at 30 A/dm 2 for 1.5 seconds to precipitate approximately 50 mg/m 2 of metallic chromium and hydrated chromium oxide. [Comparative Example 1] 0.22mm pre-treated with degreasing and pickling using the usual method
A thick cold-rolled steel plate is treated with 200g of CrO 3 at 55℃,
In a chromic acid bath with 3 g of H 2 SO 4 / current density
Cathodic treatment was performed at 30 A/dm 2 for 1.5 seconds to precipitate about 50 mg/m 2 of metallic chromium and about 6 mg/m 2 of hydrated chromium oxide. After electrolysis, the sample was immersed in the same bath for 2 seconds, followed by cathodic treatment at 30 A/dm 2 for 1.5 seconds,
Approximately 50 mg/m 2 of metallic chromium and chromium hydrated oxide were deposited. [Example 2] The cold-rolled steel sheet of Example 1 was treated with 100 g of CrO 3 /
, in a chromic acid bath of MaF6g/current density
Cathodic treatment was performed at 40 A/dm 2 for 1.0 seconds to precipitate about 50 mg/m 2 of metallic chromium and about 5 mg/m 2 of hydrated chromium oxide. Immediately after electrolysis, take it out of the bath, wash it with water, dry it, and continue to put it in the same bath at 20A/ dm2 .
Cathode treatment was performed for 2.0 seconds, and about 50 mg/m 2 of metallic chromium and chromium hydrated oxide were deposited. [Example 3] After washing the TFS-CT of Example 2 with water, it was stored at 30°C.
In a chromic acid bath containing 50 g of CrO 3 /, 2 g of MaF,
A hydrated chromium oxide was deposited thereon by cathodic treatment at a current density of 10 A/dm 2 for 2 seconds. [Comparative Example 2] The cold rolled steel sheet of Example 1 was treated with 100 g of CrO 3 at 55°C.
, in a chromic acid bath of MaF6g/current density
Cathodic treatment was performed at 40 A/dm 2 for 1.0 seconds to precipitate about 50 mg/m 2 of metallic chromium and about 5 mg/m 2 of hydrated chromium oxide. After electrolysis, immerse in the bath for 2 seconds, then cathode treatment at 20 A/dm 2 for 2.0 seconds,
mg/m 2 of metallic chromium and chromium hydrated oxide were deposited. After washing with water, add 50g of CrO3 /NaF2 at 30℃.
g/2 at a current density of 10 A/ dm2 in a chromic acid bath.
A cathodic treatment was applied for a second to precipitate chromium hydrated oxide thereon. Table 1 shows the characteristics evaluation results.

〔発明の効果〕〔Effect of the invention〕

本発明の溶接用テインフリースチールの製造方
法により製造したTFS−CTは塗装後耐食性、塗
料密着性、対硫化黒変性などの従来のTFS−CT
が有してる特性を損なうことなしに溶接性を著し
く改良できる。従つて、SnやNiをメツキした溶
接材料の代替とすることができ、飲料缶用ばかり
でなく魚肉、食肉などを内容物とする一般食缶に
至るまで広く使用可能であり、極めて有用性の高
い材料である。
TFS-CT manufactured by the method of manufacturing stain-free steel for welding of the present invention has better corrosion resistance after painting, paint adhesion, and resistance to sulfide blackening than conventional TFS-CT.
It is possible to significantly improve weldability without impairing the properties possessed by Therefore, it can be used as a substitute for welding materials plated with Sn or Ni, and can be widely used not only for beverage cans but also for general food cans containing fish, meat, etc., and is extremely useful. It is an expensive material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、TFS−CTの電気接触抵抗値と、ク
ロム水和酸化物溶解後測定した金属クロムメツキ
前後の鏡面光沢度の差の関係を見た図面である。
第2図は、透過電子顕微鏡写真で見た金属クロム
上の突起状クロム生成密度と、クロム水和酸化物
溶解後測定した金属クロムメツキ前後の鏡面光沢
度の差の関係を見た図面である。第3図は、通常
のTFS−CTの金属クロム層の透過電子顕微鏡写
真であり、第4図は、突起状クロムの多い金属ク
ロム層の透過電子顕微鏡写真である。 図中の{ }は金属クロムの結晶面を示す。
FIG. 1 is a diagram showing the relationship between the electrical contact resistance value of TFS-CT and the difference in specular gloss before and after metal chrome plating, which was measured after dissolving chromium hydrated oxide.
FIG. 2 is a diagram showing the relationship between the density of protruding chromium formed on metallic chromium as seen in a transmission electron micrograph, and the difference in specular gloss before and after metallic chromium plating, measured after dissolving chromium hydrated oxide. FIG. 3 is a transmission electron micrograph of the metallic chromium layer of a normal TFS-CT, and FIG. 4 is a transmission electron micrograph of the metallic chromium layer with many protruding chromium. { } in the figure indicates the crystal plane of metallic chromium.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板の表面に片面当たり30〜500mg/m2の突
起状の金属クロム層と、この金属クロム層上に、
クロム換算で片面当たり5〜20mg/m2のクロム水
和酸化物を有するテインフリースチールの製造方
法において、無水クロム酸を主成分とする電解ク
ロム酸浴中で鋼帯を陰極処理後、一旦、水洗、乾
燥し、再度同浴中で陰極処理することを特徴とす
るシーム溶接性に優れたテインフリースチールの
製造方法。
1. A protruding metallic chromium layer of 30 to 500 mg/m 2 per side on the surface of a steel plate, and on this metallic chromium layer,
In a method for producing a tain-free steel having a chromium hydrated oxide content of 5 to 20 mg/ m2 per side in terms of chromium, once a steel strip is cathodically treated in an electrolytic chromic acid bath containing chromic anhydride as the main component, A method for manufacturing stain-free steel with excellent seam weldability, which is characterized by washing with water, drying, and cathodic treatment again in the same bath.
JP60201650A 1985-09-13 1985-09-13 Tin-free steel having superior seam weldability and its manufacture Granted JPS6263678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201650A JPS6263678A (en) 1985-09-13 1985-09-13 Tin-free steel having superior seam weldability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201650A JPS6263678A (en) 1985-09-13 1985-09-13 Tin-free steel having superior seam weldability and its manufacture

Publications (2)

Publication Number Publication Date
JPS6263678A JPS6263678A (en) 1987-03-20
JPH0427296B2 true JPH0427296B2 (en) 1992-05-11

Family

ID=16444602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201650A Granted JPS6263678A (en) 1985-09-13 1985-09-13 Tin-free steel having superior seam weldability and its manufacture

Country Status (1)

Country Link
JP (1) JPS6263678A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194559A (en) * 2004-01-06 2005-07-21 Nippon Steel Corp Chromium-plated steel sheet for welded can

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065926A2 (en) * 2008-12-04 2010-06-10 Health Discovery Corporation Methods for screening, predicting and monitoring prostate cancer
US20140141986A1 (en) * 2011-02-22 2014-05-22 David Spetzler Circulating biomarkers
US20140066325A1 (en) * 2011-03-17 2014-03-06 The Brigham And Women's Hospital, Inc. Protein Biomarkers for the Diagnosis of Prostate Cancer

Also Published As

Publication number Publication date
JPS6263678A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
US4511631A (en) Metallic chromium-nickel-hydrated chromium oxide-coated tin free steel and process for the production thereof
JPH0216397B2 (en)
JPS63186894A (en) Chrome plated steel sheet for welded can and its production
JPH04247897A (en) Production of surface treated steel sheet excellent in weldability and adhesion property with coating material
GB2158842A (en) Surface-treated steel sheets
JPS6046199B2 (en) Manufacturing method of surface-treated steel plate for welded cans with high rust resistance
JPH0154437B2 (en)
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
JPH0427296B2 (en)
JPS5932556B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPS6250554B2 (en)
JPH0369999B2 (en)
JPH0140118B2 (en)
US5168015A (en) Composition and method for weldable tin-free steel having a chromium bilayer
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JPH0431039B2 (en)
JPS6335718B2 (en)
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPS5941495A (en) Surface treated steel plate for welded can
JP3093917B2 (en) Laminated steel sheet and its original sheet
JPS5946320B2 (en) Chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
KR890002987B1 (en) Surface treated steel plates with a weldability and method therefor
JPS62139898A (en) Surface treated steel sheet for can making having excellent seam weldability
JPS5932557B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees