JPH0427290B2 - - Google Patents

Info

Publication number
JPH0427290B2
JPH0427290B2 JP14804486A JP14804486A JPH0427290B2 JP H0427290 B2 JPH0427290 B2 JP H0427290B2 JP 14804486 A JP14804486 A JP 14804486A JP 14804486 A JP14804486 A JP 14804486A JP H0427290 B2 JPH0427290 B2 JP H0427290B2
Authority
JP
Japan
Prior art keywords
water plasma
sprayed
slag
molten metal
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14804486A
Other languages
Japanese (ja)
Other versions
JPS637358A (en
Inventor
Yasuo Imaida
Ryoji Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14804486A priority Critical patent/JPS637358A/en
Publication of JPS637358A publication Critical patent/JPS637358A/en
Publication of JPH0427290B2 publication Critical patent/JPH0427290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 水プラズマ溶射装置による溶射層が本来有して
いる優れた耐火断熱性に、スラグおよび溶鋼に対
する優れた耐侵食性を加味することにより水プラ
ズマ溶射装置による溶射層の有用性の改善を図
り、耐侵食性に秀れた、水プラズマ溶射被覆層の
形成方法を提案しようとするものである。 (従来の技術) プラズマ溶射はその溶射層が耐火性および断熱
性に優れ、また、高強度を示すことから耐摩耗性
にも優れる特徴を有しているため、金属の保護膜
として、また耐火れんがの局部補修などにも使用
されている。プラズマ溶射法のうちでは、水プラ
ズマ溶射法が高溶射能力、高溶射能率、安価とい
つた点から主に使用されている。 (発明が解決しようとする問題点) 水プラズマ溶射装置による溶射層は、先に述べ
たように優れた耐火断熱性,耐摩耗性を示す特徴
を有する反面、溶射層自体、一般に気孔率が5〜
20%と高い酸化物で構成されているため溶湯やス
ラグに対する侵食抵抗性に劣る。このため溶射被
覆層が溶湯またはスラグと接すると、溶湯または
スラグは容易に溶射層内へ浸潤し、両者間で化学
反応が生じて溶射体の溶出が起こる。または、浸
潤により変質した部分は本来の溶射層との物性値
に差が生じそのため熱変化などにより容易にはく
離損傷するうれいもある。 これに対し、一般に溶湯やスラグに対して濡れ
性が悪い非酸化物(例えば炭化物,窒化物)の溶
射を行うことも考えられたが、水プラズマ溶射法
では溶射時に非酸化物が遊離した酸素によつて酸
化されてしまい効力を持たない。 さればと云つてガスプラズマ溶射法では、先に
述べたように溶射能力、溶射能率、経済性の点か
ら得策でないのに加え、得られた溶射体はやはり
高気孔率を示すため、依然として溶湯またはスラ
グの侵潤によりはく離損傷が起きる。 そこで、水プラズマ溶射装置によつて得られた
酸化物の溶射層が本来有している耐火断熱性とい
う特徴に耐侵食性の特徴を適切に加味し、溶湯ま
たはスラグと接した場合にその侵潤を防止するこ
とができる、耐侵食性に秀れた、水プラズマ溶射
被覆層の形成方法を与えることがこの発明の目的
である。 (問題点を解決するための手段) この発明は、金属または耐火物面へ水プラズマ
溶射装置によつて形成した酸化物系溶射被覆層の
表面に、炭化物又は窒化物系の非酸化物粉末を塗
布することを特徴とする耐侵食性に秀れた水プラ
ズマ溶射被覆層の形成方法である。 水プラズマ溶射による溶射層の溶湯やスラグに
対する侵食抵抗を向上する手法としては、侵食抵
抗性の高い溶射粉末の採用や粒度構成を最適化す
ることで低気孔率化を図ることが試みられたけれ
どもいずれも溶湯やスラグの侵潤が起こり満足の
いく結果は得られなかつたのに対し、この発明は
溶射層表面に非酸化物の懸濁液を塗布することで
溶湯やスラグの侵潤を完全に防止することを特徴
とするものである。 第1図にこの発明の構成を模式図で示す。ここ
で1は母材となる金属または耐火物、2は水プラ
ズマ溶射装置によつて形成した酸化物系溶射被覆
層、3はこの発明に従う非酸化物の表面保護膜を
示す。 水プラズマ溶射による溶射材料としては、酸化
物系に限られ、なかでも、アルミナ質またはジル
コニア質が一般に多く用いられている。 溶射厚みとしては50mm程度まで可能であるが、
20mmを越える厚みとすると、使用時に熱応力によ
る亀列割れの発生が懸念されるため、20mm以下の
厚みが適当である。この他に母材との接着性を強
化するための手段として、母材表面に機械的に凹
凸をつける処理(例えばブラスト処理)を必要に
応じて事前に行なうのは、慣用されているところ
に従う。 溶射層の表面保護膜3の材料としては、溶湯ま
たはスラグとの濡れ性の悪さ(化学反応性が低
い)から酸化物よりも炭化物や窒化物等の非酸化
物の方が適当である。因みに表面保護膜の材料と
して一般的な事例を表1に示す。
(Industrial Application Field) The thermal spraying layer made by water plasma spraying equipment is useful by adding excellent corrosion resistance against slag and molten steel to the excellent fireproof and heat-insulating properties that the spraying layer originally has. The purpose of this paper is to propose a method for forming a water plasma sprayed coating layer that has excellent corrosion resistance. (Prior art) Plasma spraying has the characteristics that the sprayed layer has excellent fire resistance and heat insulation properties, and also has high strength and excellent wear resistance. It is also used for local repair of bricks. Among plasma spraying methods, water plasma spraying is mainly used because of its high thermal spraying ability, high thermal spraying efficiency, and low cost. (Problems to be Solved by the Invention) As mentioned above, the sprayed layer produced by a water plasma spraying device has excellent fire resistance and abrasion resistance, but on the other hand, the sprayed layer itself generally has a porosity of 5. ~
Since it is composed of a high oxide content (20%), it has poor corrosion resistance against molten metal and slag. Therefore, when the sprayed coating layer comes into contact with the molten metal or slag, the molten metal or slag easily infiltrates into the sprayed layer, a chemical reaction occurs between the two, and the sprayed material elutes. Alternatively, the parts altered by infiltration may have different physical properties from the original thermally sprayed layer, which may easily cause peeling damage due to thermal changes. To deal with this, it has been considered to spray non-oxides (e.g. carbides, nitrides) which generally have poor wettability to molten metal or slag, but in water plasma spraying, non-oxides release oxygen during spraying. It becomes oxidized and has no effect. However, as mentioned above, gas plasma spraying is not a good idea in terms of spraying ability, spraying efficiency, and economy, and the resulting sprayed material still has a high porosity, so it is still difficult to use molten metal. Or peeling damage occurs due to slag invasion. Therefore, we have appropriately added corrosion resistance to the inherent fireproof and heat insulating characteristics of the oxide sprayed layer obtained using a water plasma spraying device, and we have added corrosion resistance when it comes into contact with molten metal or slag. It is an object of the present invention to provide a method for forming a water plasma sprayed coating layer that is capable of preventing moisture and has excellent erosion resistance. (Means for Solving the Problems) The present invention applies carbide or nitride non-oxide powder to the surface of an oxide spray coating layer formed on a metal or refractory surface by a water plasma spraying device. This is a method for forming a water plasma sprayed coating layer with excellent corrosion resistance, which is characterized by coating. As a method to improve the erosion resistance of the sprayed layer by water plasma spraying against molten metal and slag, attempts have been made to lower the porosity by adopting thermal spray powder with high erosion resistance and optimizing the particle size structure. In either case, penetration of molten metal and slag occurred and satisfactory results could not be obtained, but this invention completely prevents penetration of molten metal and slag by applying a suspension of non-oxide to the surface of the sprayed layer. It is characterized by preventing. FIG. 1 schematically shows the configuration of the present invention. Here, 1 is a metal or refractory as a base material, 2 is an oxide sprayed coating layer formed by a water plasma spraying device, and 3 is a non-oxide surface protective film according to the present invention. Materials sprayed by water plasma spraying are limited to oxide materials, and among them, alumina or zirconia materials are commonly used. Thermal spraying thickness can be up to about 50mm, but
If the thickness exceeds 20 mm, there is a concern that cracks may occur due to thermal stress during use, so a thickness of 20 mm or less is appropriate. In addition, as a means to strengthen the adhesion to the base material, it is customary to perform a process to mechanically roughen the surface of the base material (for example, blasting) if necessary. . As the material for the surface protective film 3 of the sprayed layer, non-oxides such as carbides and nitrides are more suitable than oxides because of their poor wettability (low chemical reactivity) with molten metal or slag. Incidentally, Table 1 shows common examples of materials for surface protective films.

【表】 表面保護膜の材料の粒子径としては、溶射層表
面の開気孔を充填し、かつ保護膜として緻密とな
る意味から、74μ以下の微粉で構成することが有
効である。また、塗布方法としては吹き付けおよ
び塗り込みの2方法があるが、充填性および使用
効率の点から塗り込みによる方法が有効である。
この他に保護膜の焼結度を高めるために、塗布
後、加熱処理を行なつても良い。 (実施例) この発明の実施例を従来の水プラズマ溶射被覆
層と比較して表2に示す。
[Table] Regarding the particle size of the material for the surface protective film, it is effective to use fine powder of 74μ or less in order to fill the open pores on the surface of the sprayed layer and to form a dense protective film. Furthermore, there are two methods of application, spraying and painting, but the painting method is effective from the viewpoint of filling properties and usage efficiency.
In addition, in order to increase the degree of sintering of the protective film, heat treatment may be performed after coating. (Example) Examples of the present invention are shown in Table 2 in comparison with a conventional water plasma spray coating layer.

【表】 母材としてはマグネシア層の耐火れんが
(MgO85重量%)のものを用いた。また、溶射材
料としては、比較的溶湯に対する侵食抵抗の高い
ジルコニア質のものを選定した。溶射に際して、
事前に母材となるマグネシア質れんが表面にサン
ドブラスト処理を行ない水プラズマ溶射装置を用
いて30Kg/hrの速度で15mmの厚みとなるように溶
射を行なつた。 表面保護材料として、炭化珪素、窒化珪素及び
窒化硼素を選び、それぞれ74μ以下の粒子径の粉
末を有機質または無機質の分散剤をもちいて懸濁
させ、溶射層表面に塗布した。表面保護材を数回
にわたり塗り込み膜厚を3mmとなるよう調整し
た。 表2に示した溶射被覆層A,B,C,D及びE
につき、高周波誘導炉で浸蝕試験を行なつた。こ
の試験条件としては試験体を用いて溶湯保持容器
を作成し、この中へ侵食剤を入れ1650℃の温度で
3時間保持した。侵食剤は塩基度(CaO/SiO2
比)を3、T,Fe=20%のスラグおよび溶鋼を
用いた。 試験結果を第2図に示す。試験体Eは溶射層が
全て侵食され母材であるレンガが露出した。同D
は侵食量はEに比べて少ないが、スラグの侵潤が
母材れんがの面まで達していた。この発明による
試験体A〜Cは、侵食量、侵潤量ともに1/3〜1/6
に減少したことが認められた。尚、この試験結果
はスラグおよび鋼の界面のデータであり、鋼のみ
の場合の侵食量はこのデータの約1/3であつた。
又、母材をステンレス鋼又は軟鋼材とした場合も
上記と同様の効果が得られた。 この発明の用途例は、 (1) ベースを金属とした例 ・ 連鋳鋳型の内面被覆 ・ 加熱炉の搬送ローラ (2) ベースを耐火物とした例 ・ 溶湯保持容器のスライデイングプレート 溶湯通過部表面被覆 などで適合する。 (発明の効果) この発明によれば、水プラズマ、溶射処理によ
る溶射層が本来有している優れた耐火断熱性に加
えて、スラグや溶鋼に対する侵食抵抗性が著しく
改善された。
[Table] Magnesia layer refractory bricks (MgO 85% by weight) were used as the base material. In addition, as the thermal spray material, we selected a zirconia material that has relatively high corrosion resistance against molten metal. When spraying,
The surface of the base material, magnesia brick, was sandblasted in advance, and then thermal sprayed to a thickness of 15 mm at a rate of 30 kg/hr using a water plasma spraying device. Silicon carbide, silicon nitride, and boron nitride were selected as surface protection materials, and powders of each having a particle size of 74 μm or less were suspended using an organic or inorganic dispersant and applied to the surface of the sprayed layer. The surface protection material was applied several times to adjust the film thickness to 3 mm. Thermal spray coating layers A, B, C, D and E shown in Table 2
Therefore, an erosion test was conducted in a high-frequency induction furnace. As for the test conditions, a molten metal holding container was prepared using the test specimen, and an erosive agent was placed in the container and held at a temperature of 1650° C. for 3 hours. Erosion agent is basicity (CaO/SiO 2
Slag and molten steel with a ratio of 3 and T and Fe of 20% were used. The test results are shown in Figure 2. In specimen E, the sprayed layer was completely eroded and the base material, brick, was exposed. Same D
Although the amount of erosion was smaller than that of E, the slag penetration had reached the surface of the base brick. Test specimens A to C according to the present invention have an erosion amount and an infiltration amount of 1/3 to 1/6.
It was observed that the Note that this test result is data on the interface between slag and steel, and the amount of erosion in the case of only steel was about 1/3 of this data.
Furthermore, the same effects as above were obtained when the base material was stainless steel or mild steel. Application examples of this invention include: (1) Examples where the base is made of metal; Inner surface coating of continuous casting molds; Conveyance rollers of heating furnaces (2) Examples where the base is made of refractory; Sliding plate of molten metal holding container; Molten metal passing section Compatible with surface coatings, etc. (Effects of the Invention) According to the present invention, in addition to the excellent fireproof and heat-insulating properties inherently possessed by the sprayed layer formed by water plasma and thermal spraying, the erosion resistance against slag and molten steel has been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成を示す模式図、第2図
は侵食テストの結果を比較して示すグラフであ
る。 1…母材、2…水プラズマ溶射による溶射層、
3…非酸化物の保護膜。
FIG. 1 is a schematic diagram showing the structure of the present invention, and FIG. 2 is a graph showing a comparison of the results of an erosion test. 1... Base material, 2... Sprayed layer by water plasma spraying,
3...Non-oxide protective film.

Claims (1)

【特許請求の範囲】[Claims] 1 金属または耐火物面へ水プラズマ溶射装置に
よつて形成した酸化物系溶射被覆層の表面に、炭
化物又は窒化物系の非酸化物粉末を塗布すること
を特徴とする耐侵食性に秀れた水プラズマ溶射被
覆層の形成方法。
1. Excellent corrosion resistance characterized by applying carbide or nitride non-oxide powder to the surface of an oxide spray coating layer formed on a metal or refractory surface using a water plasma spraying device. A method for forming a water plasma sprayed coating layer.
JP14804486A 1986-06-26 1986-06-26 Formation of coating layer by water plasma thermal spraying having excellent erosion resistance Granted JPS637358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14804486A JPS637358A (en) 1986-06-26 1986-06-26 Formation of coating layer by water plasma thermal spraying having excellent erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14804486A JPS637358A (en) 1986-06-26 1986-06-26 Formation of coating layer by water plasma thermal spraying having excellent erosion resistance

Publications (2)

Publication Number Publication Date
JPS637358A JPS637358A (en) 1988-01-13
JPH0427290B2 true JPH0427290B2 (en) 1992-05-11

Family

ID=15443876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14804486A Granted JPS637358A (en) 1986-06-26 1986-06-26 Formation of coating layer by water plasma thermal spraying having excellent erosion resistance

Country Status (1)

Country Link
JP (1) JPS637358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224793A1 (en) 2021-04-23 2022-10-27 信越化学工業株式会社 Uv-curable silicone composition for stereolithography, cured product thereof, and method for producing cured product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467218B1 (en) * 1997-03-15 2005-09-02 삼성중공업 주식회사 Corrosion resistant coating method to prevent erosion due to cavitation
KR100516457B1 (en) * 2000-06-15 2005-09-23 주식회사 포스코 Refractories for continuous casting of free cutting steel
KR101153354B1 (en) 2009-12-24 2012-06-05 재단법인 포항산업과학연구원 Coating structure of rudder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224793A1 (en) 2021-04-23 2022-10-27 信越化学工業株式会社 Uv-curable silicone composition for stereolithography, cured product thereof, and method for producing cured product

Also Published As

Publication number Publication date
JPS637358A (en) 1988-01-13

Similar Documents

Publication Publication Date Title
AU780443B2 (en) Thermally insulating material having excellent durability and method for production thereof, and use thereof and method for execution thereof
EP1216749A1 (en) Centrifugally rolling granulating device and method of treating powder and granular material using the device
JP3212600B2 (en) Refractory material bound by sialon substrate and method of preparation
KR102051934B1 (en) Ceramic Coat Composition having High Heat Resistance
JP2019522622A (en) Roller furnace roller having at least one coating on its surface
JPH0427290B2 (en)
Marple et al. Sol infiltration and heat treatment of alumina–chromia plasma-sprayed coatings
Chandra et al. Refractories and failures
JP2004525772A (en) Fire resistant article with resin bonded liner
CA1169723A (en) Coating compound for silica bricks
EP1222982A2 (en) Lining for ladles, tundishes and similar receptacles used in the iron and steel industry
JP2827375B2 (en) Coating method for kiln interior
KR100546555B1 (en) Multi-component protective-strengthening coating and method of its receiving
JP3268303B2 (en) Non-oxide refractory raw materials and refractories with excellent oxidation resistance
EP1252115A1 (en) Carbon-containing refractory article having a protective coating
CA1177228A (en) Method of anti-corrosive protection of silicon carbide products
EP0634241B1 (en) Lining of molten metal handling vessels
JPS6343188B2 (en)
JPH07166090A (en) Heat-resistant coating material
JPS61116284A (en) Crucible for melting metal
Borovik et al. Protective coatings as a means of improving heat resistance of the refractory lining for extra-furnace steelmaking facilities
JPH037381Y2 (en)
JPH0641717A (en) Coating composition
JPH09109327A (en) Heat resistant member comprising ceramic and metal
JP2003254673A (en) METHOD OF MANUFACTURING ALUMINA CASTABLE USING COATED MgO-C BRICK