JPH04272030A - Pneumatic transportation method and device for fine powder - Google Patents

Pneumatic transportation method and device for fine powder

Info

Publication number
JPH04272030A
JPH04272030A JP3032702A JP3270291A JPH04272030A JP H04272030 A JPH04272030 A JP H04272030A JP 3032702 A JP3032702 A JP 3032702A JP 3270291 A JP3270291 A JP 3270291A JP H04272030 A JPH04272030 A JP H04272030A
Authority
JP
Japan
Prior art keywords
fine powder
container
powder
pressurized gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032702A
Other languages
Japanese (ja)
Inventor
Kanji Aizawa
完二 相沢
Nobumoto Takashiba
高柴 信元
Atsushi Matsutani
松谷 淳
Takashi Asano
浅野 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3032702A priority Critical patent/JPH04272030A/en
Publication of JPH04272030A publication Critical patent/JPH04272030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To transport fine powder pneumatically in pressurizing system without accumulating it in a container. CONSTITUTION:An aeration device includes a process for charging fine powder 1 in a container 2, a process for enclosing the powder and feeding pressurized gas 4, and a process for transporting the fine powder 1 by feeding the fine powder 1 to a transportation pipe 7 due to difference in pressure of the pressurized gas and dispersing it into the transportation gas 8. The pressurized gas 4 is fed to the container 2 from its wide bottom area of over 70% in level cross-section of the container 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、微粉体を大気圧より高
い圧力で輸送する空気輸送に関する。なお、以下本明細
書において空気輸送とは、この種の輸送の慣例的に従っ
た呼称であり、搬送気体は空気に限定されるものではな
い。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pneumatic transport for transporting fine powder at a pressure higher than atmospheric pressure. Note that, hereinafter, in this specification, pneumatic transport is a customary name for this type of transport, and the carrier gas is not limited to air.

【0002】0002

【従来の技術】輸送配管内の圧力が大気圧より高い圧送
式による粉体の空気輸送の一般的方法を図6を用いて説
明する。装入口(図示省略)より容器2内に粉体1を装
入し、装入口を閉じて容器を密閉したのち加圧ガス4を
送り、出口バルブ9を開いて内外の圧力差により輸送配
管7へ粉体1を送り出し、搬送ガス8中に分散させて大
気圧より高い管内圧にて圧送する。このとき、加圧ガス
4は容器2底部よりエアレーションプレート3と称する
多孔板またはキャンバス布を通って容器2内へ吹き上げ
、粉体1を浮遊状態にしてノズル管6から輸送配管7へ
と送り込むのである。
2. Description of the Related Art A general method of pneumatic transportation of powder by a pressure-feeding method in which the pressure inside the transportation piping is higher than atmospheric pressure will be explained with reference to FIG. Powder 1 is charged into the container 2 through the charging port (not shown), and after closing the charging port and sealing the container, the pressurized gas 4 is sent, and the outlet valve 9 is opened and the transport piping 7 is opened due to the pressure difference between the inside and outside. Powder 1 is sent out, dispersed in carrier gas 8, and pumped under pressure in the pipe higher than atmospheric pressure. At this time, the pressurized gas 4 blows up into the container 2 from the bottom of the container 2 through a perforated plate or canvas cloth called an aeration plate 3, and sends the powder 1 into a suspended state from the nozzle pipe 6 to the transportation pipe 7. be.

【0003】0003

【発明が解決しようとする課題】ところで、こうした圧
送式による粉体の空気輸送は化学工業をはじめ多くの製
造業でひろく行われているが、近年、化学工業において
粉体の反応性を高めるため微粉化して表面積を増加させ
たり、従来ハンドリングが難しいため利用出来なかった
回収ダスト等の微粉体を資源として有効活用しようとい
う動きのため、粒径が数μmないし数十μmといった微
粉体を取り扱うケースが増加している。従来の装置では
容器2が下方を60°〜40°の逆円錐状に絞った形状
をしていて、エアレーションプレートの面積は容器の上
部断面に対し 5〜30%程度しかないのが一般的であ
り、こうした微粉体を圧送しようとすると、加圧ガスが
エアレーションプレートの直上の粉体層のみを浮遊させ
、容器周辺部の粉体は流動化せず、むしろ通気の悪い状
態となる。その結果流動化しなかった粉体層内部はまわ
りから圧縮されて圧密状態となる。このような現象は一
般の粉体では殆ど発生しないが、粒径が数μmないし数
十μmといった微粉体になると顕著に現れてくる。
[Problem to be solved by the invention] By the way, this type of pneumatic transportation of powder using the pressure-feeding method is widely used in many manufacturing industries including the chemical industry. Due to the movement to increase the surface area by pulverization, or to effectively utilize fine powder such as recovered dust as a resource, which has traditionally been difficult to handle, there are cases where fine powder with a particle size of several μm to several tens of μm is handled. is increasing. In conventional equipment, the container 2 has an inverted conical shape with an angle of 60° to 40° at the bottom, and the area of the aeration plate is generally only about 5 to 30% of the top cross section of the container. However, when trying to pump such fine powder, the pressurized gas suspends only the powder layer directly above the aeration plate, and the powder around the container does not become fluidized, resulting in poor ventilation. As a result, the inside of the powder bed that has not been fluidized is compressed from its surroundings and becomes compacted. Although such a phenomenon hardly occurs with ordinary powder, it becomes noticeable when the particle size is a fine powder of several micrometers to several tens of micrometers.

【0004】この圧密を防ぐ手段としては、微粉体を事
前処理して粒径を大きくする方法や、エアレーションの
及んでいない部分を機械的に攪拌する方法等が考えられ
るが、前者においては工程増によるコストアップが大き
く、後者においては装置の複雑化によるメンテナンスコ
ストの増大をはじめとする種々の問題点がある。本発明
はこのような課題を解決した微粉体の空気輸送方法を提
供することを目的とする。
Possible means to prevent this compaction include a method of pre-treating the fine powder to increase the particle size, and a method of mechanically stirring the part that has not been aerated. In the latter case, there are various problems including an increase in maintenance costs due to the complexity of the device. An object of the present invention is to provide a method for pneumatic transportation of fine powder that solves these problems.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するため、容器断面の70%以上の広い底部領域から
加圧ガスを供給しエアレーションを行うことを特徴とす
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention is characterized in that pressurized gas is supplied from a wide bottom area of 70% or more of the cross section of the container to perform aeration.

【0006】[0006]

【作  用】以下、本発明の作用を図1により説明する
。 図1の装置はさきに示した図6の装置と基本構成は同じ
であるが、容器2の形状のみが異なり、底部のエアレー
ションプレート3が容器上部に近い寸法となっている。 エアレーションプレート3全体の水平投影面積をS1 
、容器2の最大断面の面積をS2 とし、その比をx=
S1 /S2 ×100  (%)と定義し、最大寸法
(直径)1150mm、2300mmの2とおりの容器
について底部のエアレーションプレートの寸法をいろい
ろに変えて容器から粉体を送り出す圧送実験を行った。 使用した微粉体の成分は、NaCO3:61%、CaO
: 5%、SiO2:1%、全炭素 8%、酸化鉄25
%、水分0.22%で、形状は0.5 μm 程度の微
粒子の集合体と数十μm の針状晶の混合物で、かさ比
重は0.22t/m3である。
[Function] The function of the present invention will be explained below with reference to FIG. The device in FIG. 1 has the same basic configuration as the device in FIG. 6 shown earlier, but differs only in the shape of the container 2, with the aeration plate 3 at the bottom having a size close to the top of the container. The horizontal projected area of the entire aeration plate 3 is S1
, the area of the maximum cross section of container 2 is S2, and the ratio is x=
S1 /S2 ×100 (%) was defined, and a pressure-feeding experiment was conducted in which powder was sent out from two containers with maximum dimensions (diameter) of 1150 mm and 2300 mm, with various dimensions of the aeration plate at the bottom. The components of the fine powder used were NaCO3: 61%, CaO
: 5%, SiO2: 1%, total carbon 8%, iron oxide 25
%, water content is 0.22%, the shape is a mixture of aggregates of fine particles of about 0.5 μm and needle-shaped crystals of several tens of μm, and the bulk specific gravity is 0.22 t/m3.

【0007】実験条件を表1に、実験結果を図2に示す
[0007] The experimental conditions are shown in Table 1, and the experimental results are shown in FIG.

【0008】[0008]

【表1】[Table 1]

【0009】図2からわかるように、x<70%の範囲
では装入した微粉体の80〜90%が容器内に残留して
しまった。この状況を図5の模式図によって考察する。 エアレーションプレート3から出た加圧ガス4は、領域
aで示した直上の粉体層内を上昇気泡、間隙流もしくは
流動層となって抜けていく。その際粉体を攪拌するため
、この領域内の圧力は比較的均一かつ高めである。つぎ
にこの外方近傍の領域bにおいても、領域aから横方向
に拡散するガスによって通気が保たれていて、領域aに
準じる状態にある。一方、さらに外方の領域cの部分で
は加圧ガスの通過がなく、また粉体が微細であることに
よる通気性の悪さから、加圧時に粉体内の圧力が周辺の
領域より低くなる傾向にある。このため、領域cの粉体
は周囲の圧力によって圧縮され、圧密されて塊状となる
。このような微粉体を圧送すると、領域a、領域bの粉
体は容易に出てゆくが、領域cのものはほぼ全量残って
しまうのである。
As can be seen from FIG. 2, when x<70%, 80 to 90% of the charged fine powder remained in the container. This situation will be considered using the schematic diagram of FIG. The pressurized gas 4 discharged from the aeration plate 3 passes through the powder layer directly above the region a as upward bubbles, interstitial flow, or fluidized bed. Since the powder is stirred at this time, the pressure in this area is relatively uniform and high. Next, in region b near the outside, ventilation is maintained by the gas that diffuses laterally from region a, and the state is similar to region a. On the other hand, in the further outer region c, there is no passage of pressurized gas, and because the powder is fine and has poor air permeability, the pressure inside the powder tends to be lower than the surrounding region when pressurized. be. Therefore, the powder in region c is compressed by the surrounding pressure and consolidated into a lump. When such fine powder is pumped, the powder in areas a and b easily comes out, but almost all of the powder in area c remains.

【0010】逆に、x≧70%の範囲では、容器内の粉
体の大半が領域a、領域bに入るため、塊状の残留物は
なくなり、実操業上支障のないごく柔らかい少量の残留
物を除けばほぼ全量を切り出すことが出来た。
On the other hand, in the range of x≧70%, most of the powder in the container falls into areas a and b, so there are no lumpy residues, and only a small amount of soft residue that does not pose a problem in actual operation. I was able to cut out almost the entire amount except for.

【0011】[0011]

【実施例】本発明の好ましい実施例として図1に斜視図
を示す。この図のものは、表1に掲げた寸法のうち図2
で良好な成績を示した、容器断面の70%以上の広い底
部領域から加圧ガスを供給しエアレーションを行うもの
である。図3は他の実施例として容器およびエアレーシ
ョンプレートの形状を変化させたものを示す。まず (
a)はエアレーションプレートの寸法が容器上部より大
きいもの、(b) はエアレーションプレートを上下2
段に設けて有効面積を増加させたもの、(c) は複数
のエアレーション装置を組合せて有効面積を増加させた
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a perspective view of a preferred embodiment of the present invention. The one in this figure is shown in Figure 2 of the dimensions listed in Table 1.
This method performs aeration by supplying pressurized gas from a wide bottom area that covers more than 70% of the cross section of the container, which has shown good results. FIG. 3 shows another embodiment in which the shapes of the container and the aeration plate are changed. first (
In a), the dimensions of the aeration plate are larger than the top of the container, and in (b), the dimensions of the aeration plate are 2 times above and below.
(c) is one in which a plurality of aeration devices are combined to increase the effective area.

【0012】これらについては、エアレーション装置の
材質や構造についても多孔板、キャンバス布、多孔ノズ
ル等種々のものを比較したが、容器の底部より所定の面
積にわたって加圧ガスを吹き込むことが出来れば同様の
効果が得られることがわかった。なお、従来エアレーシ
ョン装置を用いずに圧送を行っているロータリーフィー
ダーによって切り出しを行うタイプのものについても微
粉の場合同様の問題が生じていたが、図4に示すように
本発明思想に基づいて容器底前面に所定面積のエアレー
ションパイプ11を取り付けたところ、完全な排出を行
うことが出来た。14はロータリーフィーダー、15は
均圧管である。
[0012] Regarding these, we have compared various types of aeration equipment such as perforated plates, canvas cloth, and perforated nozzles regarding the materials and structures of the aeration equipment. It was found that this effect can be obtained. Incidentally, a similar problem occurred in the case of fine powder in the case of a type in which cutting is performed by a rotary feeder that performs pressure feeding without using an aeration device, but as shown in Fig. 4, based on the idea of the present invention, a container When an aeration pipe 11 of a predetermined area was attached to the front surface of the bottom, complete discharge was possible. 14 is a rotary feeder, and 15 is a pressure equalizing pipe.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
従来不可能とされていた微粉体の圧送式空気輸送が可能
となり、化学工業をはじめとする各種製造業にコスト削
減、廃棄物の有効利用等多くのメリットをもたらすこと
が出来る。
[Effects of the Invention] As explained above, according to the present invention,
It has become possible to pneumatically transport fine powder, which was previously considered impossible, and it can bring many benefits to various manufacturing industries, including the chemical industry, such as cost reduction and effective use of waste.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention.

【図2】本発明の有効範囲を示す実験結果のグラフであ
る。
FIG. 2 is a graph of experimental results showing the effective range of the present invention.

【図3】本発明の他の実施例を示す側面図である。FIG. 3 is a side view showing another embodiment of the present invention.

【図4】本発明のさらに異なる実施例を示す断面図であ
る。
FIG. 4 is a sectional view showing still another embodiment of the present invention.

【図5】従来の技術における容器の断面模式図である。FIG. 5 is a schematic cross-sectional view of a conventional container.

【図6】従来の技術を示す断面図である。FIG. 6 is a sectional view showing a conventional technique.

【符号の説明】[Explanation of symbols]

1    粉体 2    容器 3    エアレーションプレート 4    加圧ガス 6    ノズル管 7    輸送配管 8    搬送ガス 1 Powder 2 Container 3 Aeration plate 4 Pressurized gas 6 Nozzle pipe 7 Transport piping 8 Carrier gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】容器内に微粉体を装入し、容器を密閉した
のち加圧ガスを送り圧力差により輸送配管中へ該微粉体
を送り出し、搬送ガス中に分散させて大気圧より高い管
内圧にて微粉体を圧送する空気輸送法において、該容器
の水平断面に対して70%以上の面積の底部領域から加
圧ガスを供給することを特徴とする微粉体の空気輸送方
法。
[Claim 1] After charging fine powder into a container and sealing the container, pressurized gas is sent and the fine powder is sent into a transportation pipe by a pressure difference, and dispersed in the carrier gas so that the inside of the pipe is at a pressure higher than atmospheric pressure. 1. A pneumatic transportation method for fine powder, which is characterized in that a pressurized gas is supplied from a bottom region having an area of 70% or more of the horizontal cross section of the container.
【請求項2】容器内に微粉体を装入し、容器を密閉した
のち加圧ガスを送り圧力差により輸送配管中へ該微粉体
を送り出し、搬送ガス中に分散させて大気圧より高い管
内圧にて微粉体を圧送する空気輸送法に使用する装置で
あって、該容器の水平断面に対して70%以上の面積の
底部領域にわたり加圧ガスを供給するエアレーション装
置を設けたことを特徴とする微粉体の空気輸送装置。
[Claim 2] After charging fine powder into a container and sealing the container, pressurized gas is sent and the fine powder is sent into a transportation pipe due to a pressure difference, and dispersed in the carrier gas so that the inside of the pipe is at a pressure higher than atmospheric pressure. A device used for a pneumatic transportation method in which fine powder is pumped under pressure, characterized by being equipped with an aeration device that supplies pressurized gas over a bottom area that is 70% or more of the horizontal cross section of the container. A pneumatic transport device for fine powder.
JP3032702A 1991-02-27 1991-02-27 Pneumatic transportation method and device for fine powder Pending JPH04272030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032702A JPH04272030A (en) 1991-02-27 1991-02-27 Pneumatic transportation method and device for fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032702A JPH04272030A (en) 1991-02-27 1991-02-27 Pneumatic transportation method and device for fine powder

Publications (1)

Publication Number Publication Date
JPH04272030A true JPH04272030A (en) 1992-09-28

Family

ID=12366185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032702A Pending JPH04272030A (en) 1991-02-27 1991-02-27 Pneumatic transportation method and device for fine powder

Country Status (1)

Country Link
JP (1) JPH04272030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101333514B1 (en) * 2012-11-23 2013-11-28 한국기계연구원 Apparatus for continuous powder feeding
KR101384713B1 (en) * 2012-11-14 2014-04-24 대우조선해양 주식회사 Particle transfer system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384713B1 (en) * 2012-11-14 2014-04-24 대우조선해양 주식회사 Particle transfer system
KR101333514B1 (en) * 2012-11-23 2013-11-28 한국기계연구원 Apparatus for continuous powder feeding

Similar Documents

Publication Publication Date Title
RU2126357C1 (en) Method of and device for handling fine-grained material containing fine dust (versions)
GB2145643A (en) Method and apparatus for cleaning by abrasive blasting
US8353741B2 (en) System and method for removing a coating from a substrate
US4168913A (en) Process for mixing particulate material
US3393943A (en) Apparatus and methods for fluidizing granular or pulverate materials
CN215100659U (en) Pneumatic conveying device for powder wastes
JPH04272030A (en) Pneumatic transportation method and device for fine powder
JPH04343668A (en) Wet-blast slurry feeder
US5195851A (en) Apparatus and method for transferring dry bulk materials having an improved unloading adapter
US4445809A (en) Apparatus for emptying containers filled with powder
US2343163A (en) Spraying device
GB2030274A (en) Means for injecting powdered material into metallic melts
JPS61501684A (en) Method of producing free-flowing solids
CN109055634B (en) Separate the method and separation system of reactive powder and inert powder in slag micro powder
JPH03121276A (en) Dosing pump system
US2477414A (en) Pneumatic dust conveyer
CN204485983U (en) A kind of airflow milling disintegrating machine with sieving separating structure
CN107356162A (en) A kind of pneumatic vibration medicament-mixing device for the mixing of fireworks medicine
JP2742541B2 (en) Powder dispersing machine
JP2000054014A (en) Device for charging ore in smelting reduction equipment
GB2116064A (en) Improvements in or relating to particle sizing systems for fluidised beds
CN204058509U (en) Integrated equipment prepared by KR sweetening agent
CN211034437U (en) Dual-purpose feeder
JP4345884B2 (en) Apparatus and method for applying powdered resin to fasteners
CN113403439B (en) Leaked material online return utilization device and online return utilization method