JPH042718A - Production of medium strength steel plate having high yield point and high toughness - Google Patents

Production of medium strength steel plate having high yield point and high toughness

Info

Publication number
JPH042718A
JPH042718A JP10164090A JP10164090A JPH042718A JP H042718 A JPH042718 A JP H042718A JP 10164090 A JP10164090 A JP 10164090A JP 10164090 A JP10164090 A JP 10164090A JP H042718 A JPH042718 A JP H042718A
Authority
JP
Japan
Prior art keywords
less
temperature
yield point
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10164090A
Other languages
Japanese (ja)
Other versions
JPH0774381B2 (en
Inventor
Masao Iritani
入谷 正夫
Mamoru Imaishi
今石 守
Susumu Matsui
松居 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2101640A priority Critical patent/JPH0774381B2/en
Publication of JPH042718A publication Critical patent/JPH042718A/en
Publication of JPH0774381B2 publication Critical patent/JPH0774381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a medium strength steel plate having high yield point and high toughness by subjecting a slab of a steel containing specific amounts of C, Si, Mn, V, Nb, and Al to heating up to specific temp., to specific rolling, to cooling, and further to specific thermal refining. CONSTITUTION:A slab of a steel which has a composition containing, by weight, 0.10-0.17% C, 0.1-0.60% Si, 0.80-1.60% Mn, 0.005-0.050% V, 0.010-0.050% Nb, and <=0.05% Al and further containing, if necessary, one or more kinds among <=0.5% Cr, <=0.5% Ni, <=0.03% Ti, and <=0.3% Cu is heated at 1000-1200 deg.C. Subsequently, this steel slab is rolled at a temp. in the austenite unrecrystallized region or above at >=30% cumulative reduction of area and cooled down to ordinary temp. The resulting rolled plate is further subjected to thermal refining at a temp. not higher than the Ac1 point. By this method, the medium strength steel plate having high yield point and high toughness and suitable for economical structural material can be obtained.

Description

【発明の詳細な説明】 (発明の目的) この発明は、構造用鋼として、建築用材、橋梁用材、管
用材などの幅広い用途をもつ、高降伏点、高靭性を有す
る中強度鋼の経済性にも優れる製造方法に関するもので
ある。
[Detailed Description of the Invention] (Objective of the Invention) This invention aims to improve the economic efficiency of medium-strength steel with a high yield point and high toughness, which has a wide range of uses as structural steel, such as building materials, bridge materials, and pipe materials. The present invention relates to a manufacturing method that is also excellent in terms of manufacturing methods.

(従来の技術) これまで、降伏点40〜50  kgf / n+m2
級の中強度鋼は、分塊あるいは連鋳により製造されたス
ラブを、熱間圧延して所定の板厚の鋼板として常温まで
放冷し、さらに、再加熱を行なって焼ならしを施し製造
されてきた。この方法の問題点としては、焼ならしをA
 c 3点以上の温度に再加熱するために、圧延のまま
の鋼材にくらべて、靭性は向上するものの降伏強度及び
引張強さの低下を招き、さらには、A C3点以上の高
温まで加熱するためエネルギーを多く必要とするなどの
問題があった。
(Prior art) Until now, the yield point was 40 to 50 kgf/n+m2
Grade medium-strength steel is manufactured by hot rolling a slab manufactured by blooming or continuous casting, cooling it to room temperature as a steel plate of a specified thickness, and then reheating and normalizing it. It has been. The problem with this method is that the normalizing
c In order to reheat to a temperature of 3 points or more, although the toughness is improved compared to the as-rolled steel material, the yield strength and tensile strength are reduced, and furthermore, it is heated to a high temperature of 3 points or more. Therefore, there were problems such as requiring a lot of energy.

また、特開昭56−25924号公報には、低温用アル
ミキルド鋼の製造方法が開示されている。これはNbを
含まない組成のアルミキルド鋼を用いて、A C:1点
以上の未再結晶温度域の加工を含む熱間加工を行なった
後、常温まで急冷し、A c 1点以下の温度で焼戻し
する方法、或いは上記熱間加工後、大気放冷により常温
まで冷却する方法、さらには、上記大気放冷後、へ自点
以下の温度で焼戻しする方法などである。しかしながら
この方法は、fA′M!i成においてNbなどの硬化元
素の添加を抑制しているため、中強度鋼としては強度が
不足するという問題がある。
Furthermore, Japanese Patent Application Laid-Open No. 56-25924 discloses a method for manufacturing aluminum killed steel for low temperature use. This is done by using aluminum killed steel with a composition that does not contain Nb, hot working including working in the non-recrystallization temperature range of at least one A c point, and then rapidly cooling it to room temperature. or, after the above-mentioned hot working, cooling to room temperature by air cooling; furthermore, after the above-mentioned air cooling, tempering is performed at a temperature below the self-temperature point. However, this method requires that fA′M! Since the addition of hardening elements such as Nb is suppressed during the i-forming process, there is a problem that the strength is insufficient as a medium-strength steel.

(発明が解決しようとする課題) この発明は、前記した従来技術の問題点、すなわち、調
質による降伏強度、引張強度の低下をなくし、かつ、調
質時の熱エネルギーコストを低減して高降伏点、高靭性
を有する中強度鋼を製造することにある。
(Problems to be Solved by the Invention) The present invention eliminates the problems of the prior art described above, namely, the decrease in yield strength and tensile strength due to heat treatment, and reduces the thermal energy cost during heat treatment to increase the The purpose is to produce medium strength steel with high yield point and high toughness.

(課題を解決するための手段) この発明はの要旨は以下の通りである。(Means for solving problems) The gist of this invention is as follows.

1、  C: 0.10wt%以上、 0.17wt%
以下。
1. C: 0.10wt% or more, 0.17wt%
below.

S i  : 0.10iyt%以上、 0.60wt
%以下Mn  : 0.80wt%以上、 1.60w
t%以下。
Si: 0.10iyt% or more, 0.60wt
% or less Mn: 0.80wt% or more, 1.60w
t% or less.

V  : 0.005 wt%以上、 0.050 w
t%以下Nb  :0.010 iwt%以上、 0.
050 wt%以下、及び A 12 : 0.05wt%以下。
V: 0.005 wt% or more, 0.050 w
t% or less Nb: 0.010 iwt% or more, 0.
050 wt% or less, and A 12 : 0.05 wt% or less.

を含有する綱スラブを、1000℃以上1200℃以下
の温度範囲で加熱し、オーステナイト未再結晶域以上の
温度で、累積圧下率30%以上の圧延を行なった後、常
温まで冷却し、さらにAc、意思下の温度で加熱調質す
ることを特徴とする高降伏点、高靭性を有する中強度鋼
板の製造方法。
A steel slab containing Ac A method for producing a medium strength steel plate having a high yield point and high toughness, which is characterized by heating and tempering at a desired temperature.

2、  C: 0.10ivt%以上、 0.17wt
%以下。
2. C: 0.10ivt% or more, 0.17wt
%below.

S i  : 0.10wt%以上、 0.60ivt
%以下。
Si: 0.10wt% or more, 0.60ivt
%below.

Mn  : 0.80wt%以上、 1.60wt%以
下。
Mn: 0.80wt% or more and 1.60wt% or less.

V  : 0.005 wt%以上、 0.050 w
t%以下Nb  :0.010 wt%以上、 0.0
50 ivt%以下及び A 1 : 0.05wt%以下。
V: 0.005 wt% or more, 0.050 w
t% or less Nb: 0.010 wt% or more, 0.0
50 ivt% or less and A1: 0.05wt% or less.

を含み、かつ、 Cr  :0.5 wt%以下 Ni  :0.5wt%以下 Ti  :0.03袈t%以下及び Cu:0.3wt%以下 のうちから選んだ1種または2種以上を含有する鋼スラ
ブを、1000℃以上1200℃以下の温度範囲で加熱
し、オーステナイト未再結晶域以上の温度で、累積圧下
率30%以上の圧延を行なった後、常温まで冷却し、さ
らにA C1点以下の温度で加熱調質することを特徴と
する高降伏点、高靭性を有する中強度鋼板の製造方法。
and contains one or more selected from Cr: 0.5 wt% or less, Ni: 0.5 wt% or less, Ti: 0.03 wt% or less, and Cu: 0.3 wt% or less. A steel slab is heated in a temperature range of 1000°C or higher and 1200°C or lower, rolled at a cumulative reduction rate of 30% or higher at a temperature higher than the austenite non-recrystallized region, then cooled to room temperature, and further rolled at the A C1 point. A method for producing a medium-strength steel plate having a high yield point and high toughness, the method comprising heating and tempering at the following temperatures.

ここに、A c 1点以下の温度とは400℃から60
0℃の温度範囲を意味する。
Here, the temperature below A c 1 point is from 400℃ to 60℃.
Means a temperature range of 0°C.

また、不純物成分のP及びSはそれぞれ0.020wt
%以下、0.015 wt%以下とすることが好ましい
In addition, the impurity components P and S are each 0.020wt.
% or less, preferably 0.015 wt% or less.

(作 用) この発明は、制御圧延により結晶粒度を細かくするとと
もに、析出物を分散固溶させ、しかる後、A c 1点
以下の400℃から600℃の温度範囲で加熱調質する
ことにより、炭窒化物の微細析出物を析出させフェライ
トを強化することにより高降伏点、高靭性を有する中強
度鋼板が得られることを見出したものである。
(Function) This invention refines the grain size by controlled rolling, disperses the precipitates into a solid solution, and then heats and tempers the material in a temperature range of 400°C to 600°C below A c 1 point. It was discovered that a medium-strength steel plate having a high yield point and high toughness can be obtained by precipitating fine carbonitride precipitates to strengthen ferrite.

以下にこの発明の鋼組成における化学成分範囲、及び製
造条件の限定理由について順に述べる。
Below, the range of chemical components in the steel composition of the present invention and the reasons for limiting the manufacturing conditions will be described in order.

C: 強度及び靭性の付与を目的とするが、0.10製
t%未満でそれらの効果が得られないため下限を0.1
0wt%以下とする。一方0.17wt%を超えると溶
接性及び靭性が劣化するという問題がある。したがって
、上限を0.17wt%とする。
C: The purpose is to impart strength and toughness, but these effects cannot be obtained at less than 0.10% t%, so the lower limit is set to 0.1.
The content shall be 0wt% or less. On the other hand, if it exceeds 0.17 wt%, there is a problem that weldability and toughness deteriorate. Therefore, the upper limit is set to 0.17 wt%.

Si :脱酸剤としての役割に加えて、強度と靭性に作
用する成分であるが、0.10wt%未満ではそれらの
効果が得られず、逆に0.60wt%を超えると靭性が
劣化する。したがって、下限を0.10wt%、上限を
0.60wt%とする。
Si: In addition to acting as a deoxidizing agent, it is a component that affects strength and toughness, but if it is less than 0.10 wt%, these effects cannot be obtained, and on the other hand, if it exceeds 0.60 wt%, toughness deteriorates. . Therefore, the lower limit is set to 0.10 wt% and the upper limit is set to 0.60 wt%.

Mn :強度及び靭性の付与に不可欠な元素であり、高
靭性化のためには0.80wt%を必要とするが、1.
60wt%を超えると逆に靭性が劣化し、加えて溶接性
も劣化する。したがって、下限を0.80wt%、上限
を1.60wt%とする。
Mn: An essential element for imparting strength and toughness, 0.80 wt% is required for high toughness, but 1.
If it exceeds 60 wt%, the toughness will deteriorate, and weldability will also deteriorate. Therefore, the lower limit is set to 0.80 wt% and the upper limit is set to 1.60 wt%.

V:  @を強化し、溶接性の劣化を低減するために重
要な元素であり、0.005 wt%を必要とするが、
0.05wt%を超えると靭性が劣化するので下限を0
.005 ivt%、上限を0.05wt%とする。
V: An important element for strengthening @ and reducing deterioration of weldability, and requires 0.005 wt%,
If it exceeds 0.05wt%, the toughness deteriorates, so the lower limit is set to 0.
.. 005 ivt%, and the upper limit is 0.05wt%.

Nb : 結晶粒の微細化に有用な元素であり、このた
めには0.010 wt%を必要とするが、0.050
wt%を超えると溶接性が劣化する。したがって、下限
を0.010 wt%、上限を0.050 wt%とす
る。
Nb: An element useful for refining crystal grains. For this purpose, 0.010 wt% is required, but 0.050 wt% is required.
If it exceeds wt%, weldability deteriorates. Therefore, the lower limit is set to 0.010 wt% and the upper limit is set to 0.050 wt%.

Al= 脱酸剤として有効な元素であり、また、鋼中の
Nと結合してAINを形成することによりオーステナイ
トを微細化し、靭性を向上させるのに有効であるが、過
剰に添加すると逆に靭性が劣化する。したがって、その
うれいのない0.05wt%を上限とする。
Al = An effective element as a deoxidizer, and is effective in refining austenite and improving toughness by combining with N in steel to form AIN, but when added in excess, it has the opposite effect. Toughness deteriorates. Therefore, the upper limit is set at 0.05 wt%, which is not satisfactory.

Cr、Ni、Ti、Cu  :強度向上に有効な同効成
分であるが、靭性、溶接性などに悪影響を及ぼすうれい
のない量として、上限をそれぞれ、Crを0.5 wt
%、Ni を0.Si%、Tiを0.03wt%、Cu
を0.3 wt%とする。なお、これらのCr、Ni 
、Ti 、Cuは、それぞれ上記範囲内で複合添加する
こともよい。
Cr, Ni, Ti, Cu: These are effective components that are effective in improving strength, but the upper limit is set at 0.5 wt for each as an amount that does not have a negative effect on toughness, weldability, etc.
%, Ni 0. Si%, Ti 0.03wt%, Cu
is 0.3 wt%. In addition, these Cr, Ni
, Ti, and Cu may be added in combination within the above ranges.

なお、P、Sについては特に限定しないが靭性、溶接性
の劣化防止の観点から、Pを0.020 wt%以下、
Sを0.015 i1t%以下とすることが好ましい。
Note that P and S are not particularly limited, but from the viewpoint of preventing deterioration of toughness and weldability, P is 0.020 wt% or less,
It is preferable that S be 0.015 i1t% or less.

つぎに製造条件の限定理由について述べる。Next, the reasons for limiting the manufacturing conditions will be described.

スラブの加熱温度を1000℃以上1200″C以下と
したのは、分塊または連鋳スラブを製造した際に析出し
ている合金成分の炭窒化物を再固溶させるためで、10
00℃以下では十分に固溶させずに後々まで残存して鋼
材の靭性を害するためであり、また、1200℃以上に
なるとオーステナイト粒が粗大化して靭性の劣化を招く
ためである。
The heating temperature of the slab was set to 1000°C or more and 1200"C or less in order to re-dissolve the carbonitrides, which are alloy components, that were precipitated when the blooming or continuous casting slab was produced.
This is because if the temperature is below 00°C, the austenite grains will not become a sufficient solid solution and will remain until later, impairing the toughness of the steel material, and if the temperature is above 1200°C, the austenite grains will become coarse and the toughness will deteriorate.

つづいて、オーステナイト未再結晶域以上の温度での圧
延を累積圧下率30%以上としたことは、オーステナイ
トを微細化することにより靭性の向上をはかるためであ
る。
Next, the reason why rolling at a temperature above the austenite non-recrystallized region is performed at a cumulative reduction rate of 30% or more is to improve toughness by making the austenite finer.

すなわち、累積圧下率30%未満では、オーステナイト
再結晶域で圧延する場合は、オーステナイトの十分な微
細化が行なわれず、また、オーステナイト再結晶域から
オーステナイト未再結晶域での圧延、およびオーステナ
イト未再結晶域での圧延の場合は、オーステナイト粒内
に変形帯を導入することができず、このためオーステナ
イト粒の分割による微細化が行なわれず、したがってオ
ーステナイトの微細化による靭性の向上は得られなくな
る。
In other words, if the cumulative reduction ratio is less than 30%, sufficient refinement of austenite will not occur when rolling is carried out in the austenite recrystallization region, and rolling from the austenite recrystallization region to the austenite non-recrystallization region and the austenite non-recrystallization In the case of rolling in the crystalline region, it is not possible to introduce deformation bands into the austenite grains, and therefore, the austenite grains are not refined by splitting, and therefore the toughness cannot be improved by refining the austenite.

さらに、圧延冷却後A c 1点以下の温度、すなわち
400℃から600℃の温度範囲での調質は、これを行
なうことにより、フェライト中に数人程度の炭窒化物が
析出し、これがフェライトを強化することになり、高降
伏点が得られるということによるものである。
Furthermore, by performing heat refining at a temperature below A c 1 point after rolling cooling, that is, in the temperature range from 400°C to 600°C, several carbonitrides are precipitated in the ferrite, and this This is because it strengthens the steel and provides a high yield point.

以下に実験例をもとに説明を加える。Explanation will be added below based on experimental examples.

転炉で溶製し、連鋳て鋳造した表1に示す3種類の化学
組成を有する鋼スラブを、表2に示す圧延条件で圧延し
た後冷却し、400℃から930℃までの温度で調質し
た試験片について、引張特性、衝撃特性、ミクロ組織な
どを調査した。
Steel slabs having the three types of chemical compositions shown in Table 1 that were melted in a converter, continuously cast, and cast were rolled under the rolling conditions shown in Table 2, cooled, and then tempered at temperatures from 400°C to 930°C. The tensile properties, impact properties, microstructure, etc. of the tested specimens were investigated.

調整し、しかるm83o℃により圧延を再開して仕上温
度795℃で圧延を終了したことを示すものである。
This shows that the rolling was restarted at a temperature of 83° C. and completed at a finishing temperature of 795° C.

また、調質処理は、加熱炉をあらかじめ目的とする調質
温度に10分間保持した後試験片を操入し、試験片が調
質温度になってから5分保持後空冷したものであり、試
験片は、第1図に示すように敷板の上に乗せて調質した
ものであり、調質温度は試験片温度を測定した。
In addition, in the heat refining treatment, the test piece was operated after holding the heating furnace at the target heat refining temperature for 10 minutes, and after the test piece reached the heat refining temperature, the test piece was held for 5 minutes and then air cooled. The test piece was placed on a bed plate and tempered as shown in FIG. 1, and the tempering temperature was determined by measuring the temperature of the test piece.

調査結果を第2図および第3図に示す。The survey results are shown in Figures 2 and 3.

第2図の引張特性を見ると、この発明の適合鋼は圧延ま
まの状態にくらべ調質温度の上昇に伴って降伏点は上昇
し、500℃を最高にして、これを趨えると低下傾向を
示しているが700℃までは圧延ままより高い値を示し
ている。また、第3図の靭性を見ると、調質温度600
℃までは一60℃におけるシャルピー吸収エネルギーv
E−60、破面遷移温度vTrsともに殆んど変化が見
られず高靭性を示しているが700℃になると急激に低
下している。
Looking at the tensile properties in Figure 2, the yield point of the steel conforming to this invention increases as the tempering temperature increases compared to the as-rolled state, reaching a maximum of 500°C, and then decreasing after this point. However, up to 700°C, the value is higher than that of the as-rolled steel. Also, looking at the toughness in Figure 3, the tempering temperature is 600.
Charpy absorbed energy v at -60℃ up to ℃
Both E-60 and fracture surface transition temperature vTrs showed almost no change, indicating high toughness, but they rapidly decreased when the temperature reached 700°C.

したがって、高降伏点、高靭性を得るための調質温度は
400℃から600℃の間がよい。
Therefore, the annealing temperature for obtaining a high yield point and high toughness is preferably between 400°C and 600°C.

また、ミクロ組織の観察結果によると、フェライトとパ
ーライトから成る微細組織を呈しており、フェライト中
に数人程度の析出物が見られる。すなわち、調質処理に
より上記析出物がフェライト中に析出し、フェライトを
強化し、降伏点を上昇させることになる。
Furthermore, according to the microstructure observation results, the microstructure is composed of ferrite and pearlite, and several precipitates can be seen in the ferrite. That is, the above-mentioned precipitates precipitate in the ferrite by the heat treatment, strengthen the ferrite, and increase the yield point.

なお、圧延では低降伏点であり、調質後に高降伏点とな
る現象を有効に利用して、成形加工を加工が容易な圧延
後の低降伏点の時に行ない、加工後にA c 、意思下
の温度で調質を行なって高降伏点を得るという用途にも
適用できる。
In addition, by effectively utilizing the phenomenon that rolling has a low yield point and becomes a high yield point after tempering, the forming process is performed at a time when the yield point is low after rolling when it is easy to process, and after working, A c , as desired It can also be applied to applications where a high yield point is obtained by performing heat refining at a temperature of .

(実施例) 転炉で溶製し、連鋳て鋳造した表3に示す化学組成を有
する13種類の鋼スラブと、前記した表1に示した3種
類の鋼スラブを用い、圧延および調質を行ない、引張特
性、衝撃特性を調査した。
(Example) Using 13 types of steel slabs having the chemical compositions shown in Table 3, which were melted in a converter and continuously cast, and the three types of steel slabs shown in Table 1 described above, rolling and tempering were carried out. The tensile properties and impact properties were investigated.

圧延は表1および表2に示す全ての鋼について、オース
テナイト再結晶域から未再結晶域にかけて行ない、鋼記
号B綱についてはオーステナイト再結晶域のみの圧延、
および未再結晶域のみの圧延を行なった。これらの圧延
条件を表4に示す。
For all steels shown in Tables 1 and 2, rolling was carried out from the austenite recrystallized region to the non-recrystallized region, and for steel code B, rolling was performed only in the austenite recrystallized region.
Then, only the non-recrystallized area was rolled. Table 4 shows these rolling conditions.

また、調質は前記した方法と同じ方法で、調質温度を5
00℃2保持時間を3511Iinの同一条件で行なっ
た。引張特性、衝撃特性の調査結果を表5に示す。
In addition, the tempering was performed using the same method as described above, and the tempering temperature was set to 5.
The test was carried out under the same conditions of 00° C. 2 holding time and 3511 Iin. Table 5 shows the results of the investigation of tensile properties and impact properties.

表5から明らかなように、この発明の適合例は、圧延が
オーステナイト再結晶域の場合(試料番号17)、オー
ステナイト再結晶域から未再結晶域の場合(試料番号2
,3.7〜16)、オーステナイト末再結晶域の場合(
試料番号18)のいずれの場合も、降伏点46.8 k
gf/ mm2以上、vE −6014,2kgf−m
以上、v T rs  −59℃以下と、高降伏点、高
靭性値を示している。
As is clear from Table 5, the applicable examples of the present invention are when the rolling is in the austenite recrystallized region (sample number 17), and when the rolling is from the austenite recrystallized region to the non-recrystallized region (sample number 2).
, 3.7-16), in the case of austenite-end recrystallization region (
In both cases of sample number 18), the yield point was 46.8 k.
gf/mm2 or more, vE -6014, 2kgf-m
As described above, v T rs is −59° C. or less, which indicates a high yield point and high toughness value.

(発明の効果) この発明によれば、調質をA c 1点以下の低い温度
で行なうことにより、経済性にすぐれた高降伏点高靭性
の中強度鋼が得られ広く構造用鋼として利用させるばか
りでなく、圧延後は低降伏点であることを利用して、成
形加工が容易な圧延後に成形加工を行ない、その後A 
C1点以下の温度で調質し高降伏点を得るというような
用途にも適用できる。
(Effects of the Invention) According to the present invention, by performing heat refining at a low temperature of A c 1 point or less, a medium-strength steel with a high yield point and high toughness that is excellent in economic efficiency can be obtained and can be widely used as a structural steel. In addition to the A
It can also be applied to applications where a high yield point is obtained by tempering at a temperature below the C1 point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、調質処理を行う際の試験片の調整状況を示す
斜視図、 第2図は、 図、 第3図は、 である。 1・・・敷板 2・・・引張試験片 3・・・シャルピー試験片 4・・・熱電対 調質温度と引張特性の関係を示す線 調質温度と衝撃特性の関係を示す線図 3シヤルと− の真島 第2図 調質i度(τ)
FIG. 1 is a perspective view showing the adjustment status of a test piece during thermal refining treatment, FIG. 2 is a diagram, and FIG. 3 is a diagram. 1... Bottom plate 2... Tensile test piece 3... Charpy test piece 4... Line showing the relationship between thermocouple heat refining temperature and tensile properties Diagram 3 showing the relationship between heat refining temperature and impact properties Mashima Diagram 2 thermal quality i degree (τ) of and -

Claims (1)

【特許請求の範囲】 1、C:0.10wt%以上、0.17wt%以下、S
i:0.10wt%以上、0.60wt%以下、Mn:
0.80wt%以上、1.60wt%以下、V:0.0
05wt%以上、0.050wt%以下、Nb:0.0
10wt%以上、0.050wt%以下、及び Al:0.05wt%以下、 を含有する鋼スラブを、1000℃以上1200℃以下
の温度範囲で加熱し、オーステナイト未再結晶域以上の
温度で、累積圧下率30%以上の圧延を行なった後、常
温まで冷却し、さらにAc_1点以下の温度で加熱調質
することを特徴とする高降伏点、高靭性を有する中強度
鋼板の製造方法。 2、C:0.10wt%以上、0.17wt%以下、S
i:0.10wt%以上、0.60wt%以下、Mn:
0.80wt%以上、1.60wt%以下、V:0.0
05wt%以上、0.050wt%以下、Nb:0.0
10wt%以上、0.050wt%以下、及び Al:0.05wt%以下、 を含み、かつ、 Cr:0.5wt%以下 Ni:0.5wt%以下 Ti:0.03wt%以下及び Cu:0.3wt%以下 のうちから選んだ1種または2種以上を含有する鋼スラ
ブを、1000℃以上1200℃以下の温度範囲で加熱
し、オーステナイト未再結晶域以上の温度で、累積圧下
率30%以上の圧延を行なった後、常温まで冷却し、さ
らにAc_1点以下の温度で加熱調質することを特徴と
する高降伏点、高靭性を有する中強度鋼板の製造方法。
[Claims] 1. C: 0.10 wt% or more, 0.17 wt% or less, S
i: 0.10 wt% or more, 0.60 wt% or less, Mn:
0.80wt% or more, 1.60wt% or less, V: 0.0
05wt% or more, 0.050wt% or less, Nb: 0.0
A steel slab containing 10wt% or more, 0.050wt% or less, and Al: 0.05wt% or less is heated in a temperature range of 1000°C or more and 1200°C or less, and the cumulative A method for manufacturing a medium-strength steel plate having a high yield point and high toughness, which comprises rolling with a reduction ratio of 30% or more, cooling to room temperature, and further heat-refining at a temperature of Ac_1 point or less. 2, C: 0.10wt% or more, 0.17wt% or less, S
i: 0.10 wt% or more, 0.60 wt% or less, Mn:
0.80wt% or more, 1.60wt% or less, V: 0.0
05wt% or more, 0.050wt% or less, Nb: 0.0
10 wt% or more, 0.050 wt% or less, and Al: 0.05 wt% or less, and Cr: 0.5 wt% or less, Ni: 0.5 wt% or less, Ti: 0.03 wt% or less, and Cu: 0. A steel slab containing one or more selected from 3wt% or less is heated in a temperature range of 1000°C or more and 1200°C or less, and the cumulative reduction rate is 30% or more at a temperature above the austenite non-recrystallized region. A method for producing a medium strength steel sheet having a high yield point and high toughness, which comprises rolling the steel sheet, cooling it to room temperature, and further heat-refining it at a temperature of Ac_1 point or lower.
JP2101640A 1990-04-19 1990-04-19 Manufacturing method of medium strength steel Expired - Fee Related JPH0774381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101640A JPH0774381B2 (en) 1990-04-19 1990-04-19 Manufacturing method of medium strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101640A JPH0774381B2 (en) 1990-04-19 1990-04-19 Manufacturing method of medium strength steel

Publications (2)

Publication Number Publication Date
JPH042718A true JPH042718A (en) 1992-01-07
JPH0774381B2 JPH0774381B2 (en) 1995-08-09

Family

ID=14305984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101640A Expired - Fee Related JPH0774381B2 (en) 1990-04-19 1990-04-19 Manufacturing method of medium strength steel

Country Status (1)

Country Link
JP (1) JPH0774381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015131A1 (en) * 1997-09-19 1999-04-01 Kao Corporation Tooth coating composition
US9834176B2 (en) 2013-06-26 2017-12-05 Robert Bosch Gmbh Wiper system for motor vehicle windows, more particularly motor vehicle windscreens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120719A (en) * 1974-08-14 1976-02-19 Nippon Steel Corp KOKOFUKUTENKOJINSEIKOHANNO SEIZOHO
JPS55104427A (en) * 1979-02-02 1980-08-09 Kawasaki Steel Corp Production of steel for low temperature
JPH0361321A (en) * 1989-07-29 1991-03-18 Nippon Steel Corp Production of steel stock having superior toughness at low temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120719A (en) * 1974-08-14 1976-02-19 Nippon Steel Corp KOKOFUKUTENKOJINSEIKOHANNO SEIZOHO
JPS55104427A (en) * 1979-02-02 1980-08-09 Kawasaki Steel Corp Production of steel for low temperature
JPH0361321A (en) * 1989-07-29 1991-03-18 Nippon Steel Corp Production of steel stock having superior toughness at low temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015131A1 (en) * 1997-09-19 1999-04-01 Kao Corporation Tooth coating composition
US9834176B2 (en) 2013-06-26 2017-12-05 Robert Bosch Gmbh Wiper system for motor vehicle windows, more particularly motor vehicle windscreens

Also Published As

Publication number Publication date
JPH0774381B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2000512346A (en) High strength weathering steel with low yield / tensile ratio made using thermomechanically controlled process
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS5983719A (en) Preparation of unnormalized high strength steel
JP2000319726A (en) Manufacture of high strength steel plate excellent in weldability
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JPH042718A (en) Production of medium strength steel plate having high yield point and high toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPH0663026B2 (en) Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
JPH0215145A (en) Working and heating hardened hot rolled steel plate
JPH0617122A (en) Production of non-heattreated steel excellent in durability ratio
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPS6052527A (en) Production of non-aging cold rolled steel sheet by continuous annealing
JPH07207334A (en) Production of high tension steel having excellent weldability and plastic deformability
JPS62139816A (en) Manufacture of high tension and toughness steel plate
KR920000766B1 (en) Method of producing a high strength hot rolled steel sheet with an excellency toughness in low temperature
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS6011088B2 (en) Manufacturing method of high tensile strength steel for low temperature use
JPS6333521A (en) Production for steel plate having high ductility and high strength by direct anealing-tempering process
JPS6353208A (en) Spheroidizing annealing method for alloy steel for machine structural use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees