JPH04269637A - Photoelectric conversion apparatus - Google Patents

Photoelectric conversion apparatus

Info

Publication number
JPH04269637A
JPH04269637A JP3050173A JP5017391A JPH04269637A JP H04269637 A JPH04269637 A JP H04269637A JP 3050173 A JP3050173 A JP 3050173A JP 5017391 A JP5017391 A JP 5017391A JP H04269637 A JPH04269637 A JP H04269637A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
photomultiplier tube
voltage
incident
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050173A
Other languages
Japanese (ja)
Inventor
Seiichi Okuhara
奥原 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3050173A priority Critical patent/JPH04269637A/en
Publication of JPH04269637A publication Critical patent/JPH04269637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

PURPOSE:To improve responsiveness by using a photomultiplier tube as the output amplifier of a photoelectric converter element, utilizing the gain adjusting function in a broad range provided in the photomultiplier tube, and making bias ray incident on the photoelectric converter element. CONSTITUTION:A photomultiplier tube 1 has a cathode electrode 1k having the photoelectric surface which discharges photoelectrons, diode electrodes 1d in plural stages and one anode electrode 1a. A photoelectric conversion element 4 for converting incident light ray into the electric signal is connected between the electrode 1k of the photomultiplier tube 1 and a variable DC voltage source 2. The electrode 1a is connected to the input terminal of an operation amplifier 3 for converting current into voltage. A first light source 5 emits a specified amount of bias light rays 12 which is to become the bias on the element 4 in addition to the incident light ray 13 which is to be converted into the electric signal. A second light source 11 emits the specified amount of light ray 14 on the electrode 1k. Therefore, the incident light ray 13 whose amount is changed is converted into the electric signal so that the linearity of the electric signal with respect to the intensity is maintained, and the responsiveness is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、広範囲にわたって入
射光量が変化する入射光線を電気信号に変換する光電変
換装置に関し、特に、入射光線の強度に対する電気信号
の直線性を保持しつつ、かつ、応答性を向上させた光電
変換装置に関する。
TECHNICAL FIELD This invention relates to a photoelectric conversion device that converts an incident light beam whose amount of incident light varies over a wide range into an electrical signal. The present invention relates to a photoelectric conversion device with improved responsiveness.

【0002】0002

【従来の技術】色温度計、輝度温度計などの光学的測温
装置において、光電変換素子として太陽電池やPINフ
オト・ダイオードを用いた場合には、光電変換素子の出
力を増幅する増幅器として、多段に接続されたトランジ
スタ増幅器やIC化された増幅器を使用していた。
2. Description of the Related Art When a solar cell or a PIN photo diode is used as a photoelectric conversion element in an optical temperature measuring device such as a color thermometer or a brightness thermometer, an amplifier for amplifying the output of the photoelectric conversion element is used. Transistor amplifiers connected in multiple stages and amplifiers integrated into ICs were used.

【0003】0003

【発明が解決しようとする課題】光電変換素子となる太
陽電池やPINフオト・ダイオードに入射する光量が、
微弱な光量から数万lxにわたって大幅に変化し、光電
変換素子の出力も大幅に変化する場合があり、その出力
を通常の増幅器を使用して増幅しようとすると、その増
幅器の利得を 100db以上にわたって広範囲に調整
する必要があり、このような広範囲の利得調整は極めて
困難であるから、許容される入射光量には限度があり、
入射光量が多過ぎる場合には絞りによって制限しなけれ
ばならなかった。
[Problem to be solved by the invention] The amount of light incident on the solar cell or PIN photo diode that becomes the photoelectric conversion element is
The amount of light changes significantly over tens of thousands of lx, and the output of the photoelectric conversion element may also change significantly. If you try to amplify that output using a normal amplifier, the gain of the amplifier will increase over 100 db or more. Since it is necessary to adjust the gain over a wide range and it is extremely difficult to adjust the gain over such a wide range, there is a limit to the amount of incident light that can be tolerated.
If the amount of incident light was too large, it had to be limited by an aperture.

【0004】0004

【課題を解決するための手段】そこで、この発明は、こ
のような問題点を解決するために考えられたものであっ
て、光電変換素子の出力を増幅する増幅器として光電子
増倍管を使用し、光電子増倍管が有する広範囲な利得調
整機能を活用し、そして、光電変換素子にバイアス光線
を入射させることにより応答性を向上させたものである
[Means for Solving the Problems] Therefore, the present invention was devised to solve such problems, and uses a photomultiplier tube as an amplifier to amplify the output of a photoelectric conversion element. , the response is improved by making use of the wide range gain adjustment function of the photomultiplier tube and by making a bias beam incident on the photoelectric conversion element.

【0005】[0005]

【実施例】(この発明の前提となる技術)図3に示すよ
うに、光電子増倍管1は、光10が入射したとき光電子
を放出する光電面を有するカソード電極1kと、複数段
のダイノード電極1dと、1つのアノード電極1aを具
備するものである。
[Embodiment] (Technology on which the present invention is based) As shown in FIG. 3, a photomultiplier tube 1 includes a cathode electrode 1k having a photocathode that emits photoelectrons when light 10 is incident thereon, and a plurality of stages of dynodes. It comprises an electrode 1d and one anode electrode 1a.

【0006】通常の使用状態においては、直列に接続さ
れた複数の分圧抵抗Rを介して、カソード電極1kと全
ダイノード電極1dに対して順次に上昇する電圧を直流
可変電圧源2より印加しておく。そして、カソード電極
1kに光が入射すると、このカソード電極1kより入射
光量に比例した光電子を放出するので、その光電子は、
隣接する各段のダイノード電極1dへ衝突するごとに2
次電子の数を増加させ、最後にアノード電極1aに捕捉
されるものである。そして、このアノード電極1aに接
続された負荷抵抗RLより入射光量に比例した出力電圧
を得ている。
In normal use, a DC variable voltage source 2 applies a voltage that increases sequentially to the cathode electrode 1k and all dynode electrodes 1d through a plurality of voltage dividing resistors R connected in series. I'll keep it. When light enters the cathode electrode 1k, photoelectrons proportional to the amount of incident light are emitted from the cathode electrode 1k, so the photoelectrons are
2 for each collision with the dynode electrode 1d of each adjacent stage.
This increases the number of secondary electrons, which are finally captured by the anode electrode 1a. An output voltage proportional to the amount of incident light is obtained from a load resistor RL connected to this anode electrode 1a.

【0007】このように、光電子増倍管1は、カソード
電極1kに入射する光量が少なくて放出される光電子が
少ない場合でも、アノード電極1aに捕捉される電子の
量は多くなり、高利得の増幅機能を具備している。そし
て、直流可変電圧源2から分圧抵抗Rに印加する電圧を
調整することにより、その増倍率を 102〜1011
倍と大幅に変えることが可能である。
As described above, even when the amount of light incident on the cathode electrode 1k is small and the number of emitted photoelectrons is small, the amount of electrons captured by the anode electrode 1a is large, and the photomultiplier tube 1 has a high gain. Equipped with an amplification function. Then, by adjusting the voltage applied from the DC variable voltage source 2 to the voltage dividing resistor R, the multiplication factor can be set to 102 to 1011.
It is possible to significantly change the number of times.

【0008】(構成)図1に示すように、可変電圧源2
に対して直列接続された分圧抵抗Rを介し、全ダイノー
ド電極1dに対して順次に上昇する電圧が印加されてい
る光電子増倍管1を使用し、この光電子増倍管1のカソ
ード電極1kと直流可変電圧源2との間に入射光線を電
気信号に変換する太陽電池やPINフオト・ダイオード
のような光電変換素子4が接続され、アノード電極1a
は、電流を電圧に変換する演算増幅器3の入力端子に接
続されている。
(Configuration) As shown in FIG. 1, a variable voltage source 2
A photomultiplier tube 1 is used in which a voltage that increases sequentially is applied to all dynode electrodes 1d through a voltage dividing resistor R connected in series with the cathode electrode 1k of the photomultiplier tube 1. A photoelectric conversion element 4, such as a solar cell or a PIN photo diode, which converts incident light into an electrical signal is connected between the anode electrode 1a and the DC variable voltage source 2.
is connected to the input terminal of an operational amplifier 3 that converts current into voltage.

【0009】そして、光電変換素子4に対して、電気信
号に変換すべき入射光線13の他に、バイアスとなる一
定光量のバイアス光線12を入射させる第1の光源11
と、光電子増倍管1のカソード電極1kに対して一定光
量の光線14を常に照射する発光ダイオードのような第
2の光源11が設けられている。
In addition to the incident light beam 13 to be converted into an electric signal, a first light source 11 supplies a constant amount of bias light beam 12 to the photoelectric conversion element 4 as a bias.
A second light source 11 such as a light emitting diode is provided which always irradiates a constant amount of light 14 to the cathode electrode 1k of the photomultiplier tube 1.

【0010】演算増幅器3の出力は、信号の処理に利用
されるとともに、ピーク検知回路8に導かれ、このピー
ク検知回路8のピーク値出力は、比較回路9において基
準電圧ref と比較され、両者の偏差が直流可変電圧
源2に帰還されて発生電圧を調整する自動利得制御系を
形成している。
The output of the operational amplifier 3 is used for signal processing and is led to a peak detection circuit 8. The peak value output of the peak detection circuit 8 is compared with a reference voltage ref in a comparator circuit 9. The deviation is fed back to the DC variable voltage source 2 to form an automatic gain control system that adjusts the generated voltage.

【0011】この発明の光電子増倍管1および光電変換
素子4を含む光電変換装置を、たとえば、色温度計に適
用する場合には、光電変換素子4となる太陽電池やPI
Nフオト・ダイオードに対する入射光路の途中に、通過
波長がλa、λbと異なる2種のフィルタ6a、6bと
光線を遮断する遮光部6cとを有し、モータ7によって
回転させられる回転フィルタ6を設ける。
When a photoelectric conversion device including the photomultiplier tube 1 and photoelectric conversion element 4 of the present invention is applied to, for example, a color thermometer, a solar cell or a PI that becomes the photoelectric conversion element 4 is used.
A rotary filter 6 is provided in the middle of the incident optical path to the N photodiode, which has two types of filters 6a and 6b with different passing wavelengths, λa and λb, and a light shielding part 6c that blocks the light beam, and is rotated by a motor 7. .

【0012】(動作)光電変換素子4に対して光線が全
く入射していない状態においては、光電変換素子4より
電流を発生しないので、光源11より光電子増倍管1の
カソード電極1kに対して一定光量の光線が入射してい
ても電流を流すことができないから、カソード電極1k
より光電子を放出することはない。
(Operation) When no light beam is incident on the photoelectric conversion element 4, no current is generated from the photoelectric conversion element 4. Even if a certain amount of light is incident, current cannot flow, so the cathode electrode is 1k.
It does not emit more photoelectrons.

【0013】しかし、光電変換素子4に光線が入射する
と、その入射光量に比例した電流を発生し、その発生し
た電流と同じ量の光電子を光電子増倍管1のカソード電
極1kより放出する。そして、カソード電極1kより放
出された光電子は、各段のダイノード電極1dで増倍さ
れたのち、アノード電極1aで捕捉され、電流となって
演算増幅器3に入力される。
However, when a light beam is incident on the photoelectric conversion element 4, a current proportional to the amount of the incident light is generated, and photoelectrons of the same amount as the generated current are emitted from the cathode electrode 1k of the photomultiplier tube 1. The photoelectrons emitted from the cathode electrode 1k are multiplied by the dynode electrodes 1d of each stage, then captured by the anode electrode 1a, and input into the operational amplifier 3 as a current.

【0014】このとき、光電子増倍管1のアノード電極
1aより発生する電流は、光電変換素子4に入射した光
量に比例するとともに、光電子増倍管1の利得に比例す
る。
At this time, the current generated from the anode electrode 1a of the photomultiplier tube 1 is proportional to the amount of light incident on the photoelectric conversion element 4, and is also proportional to the gain of the photomultiplier tube 1.

【0015】光電子増倍管1の利得は、直流可変電圧源
2を調整して分圧抵抗Rに印加される電圧、すなわち、
カソード電極1kおよび各段のダイノード電極1d相互
間に印加されている電圧を調整することにより、その利
得を 102〜1011倍と大幅に変えることが可能で
あるから、光電変換素子4に入射する光線が大幅に変化
しても、直流可変電圧源2の発生電圧を調整することに
より、最適な利得で増幅することができる。
The gain of the photomultiplier tube 1 is determined by the voltage applied to the voltage dividing resistor R by adjusting the DC variable voltage source 2, that is,
By adjusting the voltage applied between the cathode electrode 1k and the dynode electrodes 1d of each stage, it is possible to significantly change the gain to 102 to 1011 times. Even if the voltage changes significantly, amplification can be achieved with an optimal gain by adjusting the voltage generated by the DC variable voltage source 2.

【0016】しかし、光電変換素子4の入射光量が零の
状態における光電子増倍管1のアノード電極1aより発
生する電流を基準値として利用なければ、正確な信号処
理をすることができないので、回転フイルタ6に遮光部
6cを設けている。
However, accurate signal processing cannot be performed unless the current generated from the anode electrode 1a of the photomultiplier tube 1 when the amount of light incident on the photoelectric conversion element 4 is zero is used as a reference value. The filter 6 is provided with a light shielding part 6c.

【0017】2つの波長λa、λbを通過させるフイル
タ6a、6bおよび遮光部6cを有する回転フイルタ6
によって、光電変換素子4に入射する光線を変化させる
と、遮光部6cにより遮光したとき、光電変換素子4は
著しく高インピーダンスになって、光電変換素子4およ
び光電子増倍管1のアノード電極1aに残留している電
子のために、図2のAに示すように入射光量が変化して
も、光電子増倍管1のアノード電極1aから出力される
信号の波形は、図2のBに示すように変化し、応答性が
著しく劣化する。
A rotary filter 6 having filters 6a and 6b that pass two wavelengths λa and λb and a light shielding part 6c.
When the light beam incident on the photoelectric conversion element 4 is changed, the impedance of the photoelectric conversion element 4 becomes extremely high when the light is blocked by the light shielding part 6c, and the impedance of the photoelectric conversion element 4 and the anode electrode 1a of the photomultiplier tube 1 are changed. Due to the remaining electrons, even if the amount of incident light changes as shown in A of FIG. 2, the waveform of the signal output from the anode electrode 1a of the photomultiplier tube 1 remains as shown in B of FIG. , and the responsiveness deteriorates significantly.

【0018】そこで、第1の光源5より、光電変換素子
4に対して微弱な一定光量のバイアス光線12を常に入
射させておくと、光電変換素子4が高インピーダンス状
態になるときがないので、入射光量の変化に追従した波
形の信号を得ることができ、応答性を向上させることが
できる。
Therefore, if the first light source 5 always makes the bias light beam 12 of a constant amount of weak light enter the photoelectric conversion element 4, the photoelectric conversion element 4 will never be in a high impedance state. A waveform signal that follows changes in the amount of incident light can be obtained, and responsiveness can be improved.

【0019】[0019]

【効果】以上で説明したように、この発明の光電変換装
置によると、入射光量が大幅に変化しても、増幅器とし
て動作する光電子増倍管の利得を大幅に変化させ得るの
で、入射光量に対する直線性を保持しつつ入射光線を忠
実に電気信号に変換することができ、また、光電変換素
子にバイアス光線を常に入射させておくことにより、急
激な入射光量の変化に対する応答性を向上することでき
る。
[Effect] As explained above, according to the photoelectric conversion device of the present invention, even if the amount of incident light changes significantly, the gain of the photomultiplier tube that operates as an amplifier can be changed significantly. It is possible to faithfully convert an incident light beam into an electrical signal while maintaining linearity, and by always allowing a bias light beam to enter the photoelectric conversion element, it improves responsiveness to sudden changes in the amount of incident light. can.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の光電変換装置の一実施例を示す回路
図である。
FIG. 1 is a circuit diagram showing an embodiment of a photoelectric conversion device of the present invention.

【図2】図1に示す光電変換装置の動作を説明するため
に用いる波形図である。
FIG. 2 is a waveform diagram used to explain the operation of the photoelectric conversion device shown in FIG. 1;

【図3】この発明の光電変換装置の前提をなす技術を説
明するために用いる回路図である。
FIG. 3 is a circuit diagram used to explain the technology underlying the photoelectric conversion device of the present invention.

【符号の説明】[Explanation of symbols]

1  光電子増倍管 2  直流可変電圧源 3  演算増幅器 4  光電変換素子 5  第1の光源 6  回転フィルタ 7  モータ 11  第2の光源 12  バイアス光線 13  入射光線 1 Photomultiplier tube 2 DC variable voltage source 3 Operational amplifier 4 Photoelectric conversion element 5 First light source 6 Rotating filter 7 Motor 11 Second light source 12 Bias ray 13 Incident ray

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  入射光量に対応した光電子を放出する
光電面を有するカソード電極、複数段のダイノード電極
、アノード電極を備えた光電子増倍管と、上記複数段の
ダイノード電極に順次増加する電圧を印加する直列接続
された分圧抵抗と、該分圧抵抗に直流電圧を印加する直
流電源と、該直流電源と上記カソード電極との間に接続
され、変換すべき光線が入射する光電変換素子と、該光
電変換素子にほぼ一定のバイアス光線を入射させる第1
の光源と、上記光電子増倍管のカソード電極にほぼ一定
の光線を入射させる第2の光源とを具備し、上記光電変
換素子から発生する電流を上記光電子増倍管のアノード
電極より増幅された電流として導き出すことを特徴とす
る光電変換装置。
1. A photomultiplier tube comprising a cathode electrode having a photocathode that emits photoelectrons corresponding to the amount of incident light, a plurality of stages of dynode electrodes, and an anode electrode; A voltage dividing resistor connected in series to apply voltage, a DC power source to apply a DC voltage to the voltage dividing resistor, and a photoelectric conversion element connected between the DC power source and the cathode electrode and into which the light beam to be converted is incident. , a first beam that makes a substantially constant bias beam incident on the photoelectric conversion element;
and a second light source that makes a substantially constant light beam incident on the cathode electrode of the photomultiplier tube, the current generated from the photoelectric conversion element is amplified by the anode electrode of the photomultiplier tube. A photoelectric conversion device characterized by deriving current as an electric current.
【請求項2】上記分圧抵抗に直流電圧を印加する直流電
源に直流可変電圧源を使用し、該直流可変電圧源の発生
電圧を変えて光電子増倍管の利得を調整することを特徴
とする請求項1に記載の光電変換装置。
2. A variable DC voltage source is used as a DC power supply that applies a DC voltage to the voltage dividing resistor, and the gain of the photomultiplier tube is adjusted by changing the voltage generated by the variable DC voltage source. The photoelectric conversion device according to claim 1.
JP3050173A 1991-02-25 1991-02-25 Photoelectric conversion apparatus Pending JPH04269637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050173A JPH04269637A (en) 1991-02-25 1991-02-25 Photoelectric conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050173A JPH04269637A (en) 1991-02-25 1991-02-25 Photoelectric conversion apparatus

Publications (1)

Publication Number Publication Date
JPH04269637A true JPH04269637A (en) 1992-09-25

Family

ID=12851813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050173A Pending JPH04269637A (en) 1991-02-25 1991-02-25 Photoelectric conversion apparatus

Country Status (1)

Country Link
JP (1) JPH04269637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185482A (en) * 2007-01-30 2008-08-14 Hamamatsu Photonics Kk Temperature measuring device
KR20160072237A (en) * 2013-10-19 2016-06-22 케이엘에이-텐코 코포레이션 Bias-variant photomultiplier tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185482A (en) * 2007-01-30 2008-08-14 Hamamatsu Photonics Kk Temperature measuring device
KR20160072237A (en) * 2013-10-19 2016-06-22 케이엘에이-텐코 코포레이션 Bias-variant photomultiplier tube

Similar Documents

Publication Publication Date Title
US6177665B1 (en) High-speed logarithmic photo-detector
JP5800264B2 (en) Photodetector and method for biasing photomultiplier tube
US6559941B1 (en) UV-VIS spectrophotometry
US7109463B2 (en) Amplifier circuit with a switching device to provide a wide dynamic output range
JP2013219001A5 (en)
US4436994A (en) Photomultiplier detector protection device and method
Fonck et al. Low‐noise photodiode detector for optical fluctuation diagnostics
JP4276119B2 (en) Low noise optical receiver
US3956645A (en) Controllable current source
US4367404A (en) Reduction of hysteresis in photomultiplier detectors
JPH04269637A (en) Photoelectric conversion apparatus
JPH04101505A (en) Amplifier
US3437817A (en) Gain control circuit for photomultiplier tubes with a semi-conductor device connected across the last resistor of the divider
US5440115A (en) Zener diode biased electron multiplier with stable gain characteristic
US6316930B1 (en) Direct current meter with passive input and galvanic insulation, particularly for high voltage
Heifets et al. Fully active voltage divider for PMT photo-detector
JPH0137909B2 (en)
JP3992338B2 (en) Proximity detector
JP2002221468A (en) Characteristics measuring device for semiconductor laser unit
JPH0528515Y2 (en)
JP3132510B2 (en) Optical sensor circuit
JPS6316233A (en) Driving device for secondary electron multiplier
US4860093A (en) Method and apparatus for driving a plurality of pick-up tubes having their cathodes supplied by a common negative potential
JP2023077762A (en) Signal detection device and analysis device
JPH07211280A (en) Position detecting type photomultipiler tube