JPH0426836B2 - - Google Patents

Info

Publication number
JPH0426836B2
JPH0426836B2 JP63245183A JP24518388A JPH0426836B2 JP H0426836 B2 JPH0426836 B2 JP H0426836B2 JP 63245183 A JP63245183 A JP 63245183A JP 24518388 A JP24518388 A JP 24518388A JP H0426836 B2 JPH0426836 B2 JP H0426836B2
Authority
JP
Japan
Prior art keywords
medium
culture
microbial flocculant
flocculant
activity value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63245183A
Other languages
Japanese (ja)
Other versions
JPH0292273A (en
Inventor
Ryuichiro Kurane
Eiichi Mikami
Tomoo Suzuki
Rei Suzuki
Ryuzo Tazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shimizu Construction Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP24518388A priority Critical patent/JPH0292273A/en
Publication of JPH0292273A publication Critical patent/JPH0292273A/en
Publication of JPH0426836B2 publication Critical patent/JPH0426836B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 この発明は、ロードコツカス・エリスロポレス
(旧名 ノカルデイア・エリスロポレス)KR−
S−1株(FERM3530号)に代表されるように、
凝集剤生産能力を有するロードコツカス属の微生
物を培養する微生物凝集剤の生産増強培地と生産
増強方法に関するものである。 本凝集剤の利用分野は、各種の排水処理分野、
各種発酵液の処理、さらには食品分野の凝集(沈
澱)工程に適用される。 「従来の技術」 従来、濁水処理剤、土木浚渫水処理剤として、
無機系凝集剤(鉄、アルミニウム等の金属塩が主
成分)、高分子系凝集剤(ポリアクリルアミド等
の合成高分子凝集剤を主成分とする)が使用され
てきた。これらの凝集剤は、凝集能力が高いため
に多く用いられているが、アルミニウム等の金属
またはアクリルアミド等の合成高分子化合物より
なつているため、生物毒性、環境汚染などの面か
ら問題が指摘されている。 また、これらの問題を改良した凝集剤として、
生物由来の高分子化合物(例えば、海草から抽出
されるポリアルギン酸、寒天等)が使用されるこ
ともあるが、コストが高いことから利用用途が限
られている。さらに、最近では、カニ、エビの殻
から抽出されるキトサンが生物分解性が良く、環
境汚染の恐れがない凝集剤として注目されてい
る、キトサンを溶かす際のPHの問題(塩酸等の酸
を使用)、さらには製造過程のアルカリ処理、分
離精製、粉末化といつた処理が必要なため、コス
ト的に高いという問題点がある。 一方、以前から、ある種の微生物が分泌する物
質が各種の懸濁物等に対して凝集活性を示すこと
が知られていたが、そのような微生物凝集剤の一
つとして、ロードコツカス・エリスロポレス(旧
名 ノカルデイア・エリスロポレス)KR−S−
1株(FERM 3530号)が分泌する凝集活性成分
が発見されている。なお、旧名ノカルデイア・エ
リスロポレスは、1980年に国際微生物命名規約委
員会より、ロードコツカス・エリスロポレスに再
整理・再分類されている。 ロードコツカス・エリスロポレスKR−S−1
株が分泌する凝集活性成分は、工業技術院微生物
工業技術研究所で発見され、特公昭56−39633号
公報(微生物凝集剤NOC−1の製造方法:特許
1096062号)にNOC−1として開示されたもので
あつて、生産性、凝集能力、生物分解性に優れ、
かつ、病原性や毒性のない凝集活性成分であるこ
とが明らかにされている。例えば、NOC−1の
凝集活性は、無機物(カオリン、活性炭、石炭灰
等)、有機汚濁排水(ヘドロ、豚尿、甘草排水
等)、微生物(大腸菌、酵母、活性汚泥等)など
の様々な物質または排水に対して効果があること
が知られており、凝集剤として優れている。 上記の微生物凝集剤NOC−1に関する特許と
しては、上記の特公昭56−39633号(微生物凝集
剤NOC−1の製造方法)がある他、NOC−1の
生産を目的とする培地に関するものとして、特開
昭62−195288号(微生物凝集剤の生産増強方法)、
特願昭61−272583号(微生物による可溶性色素の
脱色方法)などがある。 ところで、通常、微生物の培養、および微生物
による発酵生産に使用する培地は、その微生物の
栄養源として、炭素源、窒素源、無機塩類(ミネ
ラル)、ビタミン・ホルモン等の微量有機化合物
が含まれているが、これらのうちのある成分は、
同一物質により同時に供給されることがある。例
えば、酵母エキス、カゼイン、カザミノ酸、ペプ
トン、牛肉エキス等を添加することにより、上記
各成分のうち複数の成分を同時に供給することが
でき、表1に示すように、NOC−1生産用とし
て従来からよく用いられてきた各培地(培地1な
いし培地4)においても、(有機)窒素源、ビタ
ミン・ホルモン源として酵母エキスが添加されて
いる。
"Industrial Application Field" This invention is applicable to Rhodococcus erythrophores (formerly known as Nocardia erythrophores) KR-
As represented by S-1 stock (FERM No. 3530),
The present invention relates to a microbial flocculant production enhancement medium and a production enhancement method for culturing Rhodococcus microorganisms having flocculant production ability. This flocculant is used in various wastewater treatment fields,
It is applied to the treatment of various fermentation liquids and also to the flocculation (sedimentation) process in the food field. "Conventional technology" Conventionally, as a turbid water treatment agent and civil engineering dredging water treatment agent,
Inorganic flocculants (mainly composed of metal salts such as iron and aluminum) and polymeric flocculants (mainly composed of synthetic polymer flocculants such as polyacrylamide) have been used. These flocculants are widely used due to their high flocculating ability, but because they are made of metals such as aluminum or synthetic polymer compounds such as acrylamide, problems have been pointed out in terms of biological toxicity and environmental pollution. ing. In addition, as a flocculant that has improved these problems,
Biologically derived polymer compounds (for example, polyalginic acid extracted from seaweed, agar, etc.) are sometimes used, but their use is limited due to their high costs. Furthermore, chitosan extracted from crab and shrimp shells has good biodegradability and is attracting attention as a flocculant without the risk of environmental pollution. The problem is that the cost is high because it requires alkali treatment, separation and purification, and pulverization during the manufacturing process. On the other hand, it has long been known that substances secreted by certain microorganisms exhibit flocculating activity against various suspended solids, and one such microbial flocculant is Rhodococcus erythropores ( Former name: Nocardia erythropores) KR-S-
An agglutinating active component secreted by one strain (FERM No. 3530) has been discovered. The former name, Nocardia erythropores, was reorganized and reclassified as Rhodococcus erythropores by the International Committee on Nomenclature of Microorganisms in 1980. Rhodococcus erythropores KR-S-1
The flocculating active ingredient secreted by the strain was discovered at the Institute of Microbial Technology, Agency of Industrial Science and Technology, and was published in Japanese Patent Publication No. 56-39633 (Manufacturing method of microbial flocculant NOC-1: Patent
1096062) as NOC-1, and has excellent productivity, flocculation ability, and biodegradability.
Moreover, it has been revealed that it is a non-pathogenic and non-toxic aggregating active ingredient. For example, the flocculation activity of NOC-1 is effective against various substances such as inorganic substances (kaolin, activated carbon, coal ash, etc.), organic polluted wastewater (sludge, pig urine, licorice wastewater, etc.), and microorganisms (E. coli, yeast, activated sludge, etc.). It is also known to be effective for drainage, and is excellent as a flocculant. Patents related to the above-mentioned microbial flocculant NOC-1 include the above-mentioned Japanese Patent Publication No. 56-39633 (method for producing microbial flocculant NOC-1); JP-A-62-195288 (Method for enhancing production of microbial flocculant),
Patent Application No. 61-272583 (decolorization method for soluble pigments using microorganisms), etc. By the way, the medium used for culturing microorganisms and for fermentation production by microorganisms usually contains trace amounts of organic compounds such as carbon sources, nitrogen sources, inorganic salts (minerals), vitamins and hormones as nutritional sources for the microorganisms. However, some of these ingredients are
May be supplied simultaneously by the same substance. For example, by adding yeast extract, casein, casamino acids, peptone, beef extract, etc., multiple of the above components can be supplied simultaneously, and as shown in Table 1, for NOC-1 production. Yeast extract is also added to each culture medium (medium 1 to medium 4) that has been commonly used in the past as an (organic) nitrogen source and vitamin/hormone source.

【表】【table】

【表】 また、通常の培養においては、雑菌による悪影
響を除くために、培養する前に培地を滅菌する必
要があるが、その滅菌方法としては、高温加圧滅
菌(例えば121℃、15〜20分間)、過滅菌(例え
ば、ポアサイズが0.22μmのメンブレンフイルタ
による過)が多く適用される。このうち、後者
の過滅菌は、培地中に固形物が含まれる場合
に、その固形物によつてフイルタ面のポアが閉塞
してしまうことがあるため、多くの場合は、前者
の高温加圧滅菌が適用される。すなわち、従来の
NOC−1生産方法もこの例外でなく、高温加圧
滅菌が適用されていた。 このため、従来の方法でNOC−1を生産した
場合には、培地の栄養源として酵母エキス、ペプ
トン、カザミノ酸のうちの少なくとも1種類を加
える、培養に先立つて培地を滅菌する、という二
つの要件を必要としていた。 「発明が解決しようとする課題」 ところが、上記の酵母エキスを始めとする物質
は、大変高価なために培地のコスト全体に占める
割合が大きく、特に、酵母エキスはNOC−1の
生産に有効であるために培地によく添加される
が、スケールアツプを考えた場合、この酵母エキ
スに掛かるコストが培地のコスト全体に占める割
合が70〜80%に達してしまうという問題があり、
微生物凝集剤NOC−1の実用化上、コスト的に
大きなネツクとなつていた。 また、培地の滅菌は、通常、高温加圧滅菌(例
えば121℃、15〜20分間)で行なうため、これに
伴う設備のイニシヤルコスト、加熱に必要な電
力、ガス等のランニングコストが必要となり、そ
のために、NOC−1のコストが高くなつて、実
用化の大きな障害になつていた。 この発明は、上記事情に鑑みてなされたもの
で、微生物凝集剤生産機の培地として、血液成分
を含む排水または残渣等を栄養源として添加した
培地を使用することによつて、低コストで、しか
も凝集活性の高い微生物凝集剤を得ることを目的
としており、さらには、上記の培地を用いて、高
温加圧滅菌を行わないで培養することにより、設
備のイニシヤルコスト、加熱のエネルギーのラン
ニングコストを不要にするのみでなく、凝集活性
の増加、培養時間の短縮を図ることを目的として
いる。 「課題を解決するための手段」 この発明の微生物凝集剤の生産増強培地は、ロ
ードコツカス属に属する微生物凝集剤生産菌を培
養する培地であつて、栄養源として、家蓄もしく
は魚類等の血液成分を含む排水、または家蓄もし
くは魚類等の血液成分を含む加工残渣等の廃棄物
を添加したものである。 ここで言う、家蓄もしくは魚類等の血液成分を
含む排水または家蓄もしくは魚類等の血液成分を
含む残渣等の廃棄物とは、家蓄(家蓄動物及び家
蓄鳥類を含む)および魚類の血液またはその血液
を含む排水、またはこれら血液を含む食品加工残
渣、および、動物由来の有機物質(糞尿汚物は除
く)、動物の加工物、残渣、副生成物などの廃棄
物である。 また、この発明の微生物凝集剤の生産増強方法
は、ロードコツカス属に属する微生物凝集剤生産
菌を培養するに際し、上記の微生物凝集剤の生産
増強培地を用いて、滅菌処理を行わないで培養す
るものである。 「実施例」 以下、この発明の微生物凝集剤の生産増強培地
および生産増強方法に関して、実施例により詳細
に説明する。 (実施例 1) この実験では、凝集剤生産菌としてロードコツ
カス・エリスロポレスKR−S−1株を用いると
共に、その凝集剤生産菌の栄養源となる血液成分
を含む排水として魚の缶詰工場から採取した水産
加工排水を添加した培地A(その組成を表2に示
す)を用いて、この培地Aにより上記微生物凝集
剤の培養生産を行なつた。但し、この培地A中に
おける上記水産加工排水の濃度は80%である。そ
して、この水産加工排水は、魚の解体工程で生じ
る血液を含んでいる。 なお、上記水産加工排水の水質分析結果を表3
に示す。
[Table] In addition, in normal culture, it is necessary to sterilize the medium before culturing in order to eliminate the negative effects of germs. sterilization (for example, through a membrane filter with a pore size of 0.22 μm) is often applied. Of these, the latter, over-sterilization, can clog the pores on the filter surface if the medium contains solids, so in many cases, the former, high-temperature pressurization, is used. Sterilization is applied. In other words, conventional
The NOC-1 production method was no exception to this, and high temperature autoclaving was applied. For this reason, when producing NOC-1 using the conventional method, two steps are required: adding at least one of yeast extract, peptone, and casamino acid as a nutrient source to the medium, and sterilizing the medium prior to culturing. I needed the requirements. ``Problem to be solved by the invention'' However, substances such as the above-mentioned yeast extract are very expensive and account for a large proportion of the total cost of the culture medium.In particular, yeast extract is not effective in producing NOC-1. However, when considering scale-up, the cost of this yeast extract accounts for 70 to 80% of the total cost of the culture medium.
Cost has been a major hindrance in the practical application of the microbial flocculant NOC-1. In addition, the culture medium is usually sterilized by high-temperature autoclaving (for example, 121°C for 15 to 20 minutes), which requires initial costs for equipment and running costs such as electricity and gas required for heating. Therefore, the cost of NOC-1 has increased, which has become a major obstacle to its practical application. This invention was made in view of the above circumstances, and by using a medium to which wastewater or residue containing blood components as a nutrient source is used as a medium for a microbial flocculant production machine, it is possible to achieve low cost and Moreover, the aim is to obtain a microbial flocculant with high flocculating activity.Furthermore, by using the above-mentioned medium and culturing without high-temperature autoclaving, the initial cost of equipment and running energy for heating can be reduced. The aim is not only to eliminate costs, but also to increase aggregation activity and shorten culture time. "Means for Solving the Problems" The microbial flocculant production enhancement medium of the present invention is a medium for culturing microbial flocculant-producing bacteria belonging to the genus Rhodococcus, and uses blood components from household stock or fish as a nutrient source. or wastes such as household stock or processing residues containing blood components from fish, etc., are added. Here, waste water containing blood components of household stocks or fish, etc., or waste such as residues containing blood components of household stocks or fish, etc., refers to household stocks (including domestic animals and domestic birds) and fish. Wastes include blood or wastewater containing blood, food processing residue containing blood, organic substances of animal origin (excluding excrement and filth), animal processed products, residues, and by-products. Furthermore, the method for enhancing the production of a microbial flocculant of the present invention involves culturing microbial flocculant-producing bacteria belonging to the genus Rhodococcus using the above-mentioned microbial flocculant production enhancement medium without performing sterilization. It is. "Examples" Hereinafter, the microbial flocculant production enhancement medium and production enhancement method of the present invention will be described in detail with reference to Examples. (Example 1) In this experiment, Rhodococcus erythropores strain KR-S-1 was used as a flocculant-producing bacterium, and a fishery product collected from a fish canning factory was used as wastewater containing blood components that served as a nutrient source for the flocculant-producing bacterium. Using medium A (the composition of which is shown in Table 2) to which processing wastewater was added, the microbial flocculant was cultured and produced using this medium A. However, the concentration of the fishery processing wastewater in this medium A is 80%. This seafood processing wastewater contains blood produced during the fish slaughtering process. The results of water quality analysis of the above seafood processing wastewater are shown in Table 3.
Shown below.

【表】【table】

【表】【table】

【表】 そして、このような培地Aによつて所定期間培
養を行ない、この培地Aによる微生物凝集剤の生
産量を表す指標として凝集活性値を測定し、その
凝集活性値の経時変化を調べた。また、従来の酵
母エキスを用いた培地を用いて培養を行ない、上
記と同様に凝集活性値の経時変化を測定して上記
測定結果と比較した。 この場合、従来の培地は、培養前に121℃、15
分間の加圧滅菌を行なつた。また、培地Aは、
121℃、15分間の加圧滅菌をした培地(表中では、
(滅菌)と表示する)と、加圧滅菌しない培地
(表中では、(非滅菌)と表示する)との両方につ
いて同時に培養を行ない、非滅菌の効果も調べ
た。なお、各培地の初発PHは8.0に設定した。 また、上記凝集活性値の測定においては、被凝
集物質としてカオリンを選定し、活性を上澄み液
の1/濁度として表示した。すなわち、100mlメ
スシリンダーに5000ppmのカオリン懸濁液80mlと
培養液を0.5ml入れ、蒸留水で90mlにフイールア
ツプした後、10%塩化カルシウム10mlを加えて撹
拌後5分後の上澄み液の吸光度を550nmにおいて
測定する。そして、上記凝集活性値は、供試液を
用いた時の上澄みの吸光度の逆数から、対照の吸
光度の逆数を差し引いた値として算出し力価とし
た。すなわち、凝集活性値が大きいほど透明度が
大きいことを意味し、凝集能力が高いことを示し
ている。 この実験の結果を表4に示す。但し、表中の最
大凝集活性値は、実験期間中(6日間)の最大凝
集活性値を示し、培養日数は、最大凝集活性値が
得られた時の培養日数を示している。
[Table] Then, culture was carried out for a predetermined period using such medium A, and the flocculation activity value was measured as an index representing the amount of microbial flocculant produced by this medium A, and changes over time in the flocculation activity value were investigated. . In addition, culture was performed using a conventional medium containing yeast extract, and the change in aggregation activity value over time was measured in the same manner as above and compared with the above measurement results. In this case, the conventional medium is heated at 121°C and 15°C before incubation.
Autoclaving was performed for 1 minute. In addition, medium A is
Culture medium autoclaved at 121℃ for 15 minutes (in the table,
(indicated as (sterilized)) and a medium that was not autoclaved (indicated as (non-sterilized) in the table) were simultaneously cultured to examine the effect of non-sterilization. The initial pH of each medium was set to 8.0. In addition, in the measurement of the aggregation activity value, kaolin was selected as the substance to be agglomerated, and the activity was expressed as 1/turbidity of the supernatant. That is, put 80 ml of 5000 ppm kaolin suspension and 0.5 ml of culture solution in a 100 ml graduated cylinder, fill up to 90 ml with distilled water, add 10 ml of 10% calcium chloride, stir, and measure the absorbance of the supernatant liquid after 5 minutes at 550 nm. Measure at The aggregation activity value was calculated as the value obtained by subtracting the reciprocal of the absorbance of the control from the reciprocal of the absorbance of the supernatant when the test solution was used, and was used as the titer. That is, the larger the aggregation activity value, the greater the transparency, indicating the higher aggregation ability. The results of this experiment are shown in Table 4. However, the maximum aggregation activity value in the table indicates the maximum agglutination activity value during the experimental period (6 days), and the number of culture days indicates the number of culture days when the maximum agglutination activity value was obtained.

【表】 この表から、水産加工排水を含んだ培地Aおよ
び非滅菌同培地を用いた培養法には次のような利
点があることが明らかになつた。 培地成分コスト高の主要原因となつている酵
母エキスの代わりの栄養源として水産加工排水
を使用することができる。 水産加工排水を含んだ培地Aを使用して培養
を行なうことにより、その最大凝集活性値は、
従来法の3.4倍に達した。 水産加工排水を含んだ培地Aを滅菌処理して
培養した場合の最大凝集活性値と、非滅菌で同
培地を使用して培養した場合の最大凝集活性値
とを比較すると、非滅菌の方が高い凝集活性値
が得られた(滅菌した場合の約2倍)。 水産加工排水を含んだ培地Aを非滅菌系で培
養した場合、従来の方法と比較して培養時間を
大幅に短縮することができた(最大凝集活性が
得られる培養時間は従来法の1/6)。 (実施例 2) 表5に示すような水質の水産加工排水を添加し
た培地Bを用いて、上記実施例1と同様な実験を
行なつた。
[Table] From this table, it is clear that the culture method using medium A containing seafood processing wastewater and the same non-sterilized medium has the following advantages. Fishery processing wastewater can be used as a nutrient source in place of yeast extract, which is the main cause of high cost of culture medium components. By culturing using medium A containing seafood processing wastewater, the maximum flocculation activity value is
It reached 3.4 times the conventional method. Comparing the maximum flocculation activity value when cultured after sterilizing medium A containing fisheries processing wastewater and the maximum flocculation activity value when cultured using the same medium without sterilization, the non-sterilized one is better. A high agglutination activity value was obtained (approximately twice that of the sterilized case). When culture medium A containing seafood processing wastewater was cultured in a non-sterile system, the culture time could be significantly shortened compared to the conventional method (the culture time to obtain the maximum flocculation activity was 1/2 that of the conventional method). 6). (Example 2) An experiment similar to the above Example 1 was conducted using medium B to which fishery processing wastewater having the water quality shown in Table 5 was added.

【表】【table】

【表】 この実験の結果を表6に示す。但し、表中の最
大凝集活性値、培養日数は、実施例1と同様に、
実験期間中(8日間)の最大凝集活性値とその最
大凝集活性値が得られた培養日数である。
[Table] The results of this experiment are shown in Table 6. However, the maximum aggregation activity value and number of culture days in the table are the same as in Example 1.
These are the maximum aggregation activity value during the experimental period (8 days) and the number of culture days at which the maximum agglutination activity value was obtained.

【表】 この実験の結果、実施例1と水質分析結果が異
なる水産加工排水を用いた培地Bにおいても、実
施例1と同様な利点があることが再度確認され
た。 (実施例 3) この実施例では、屠殺場や蓄肉加工工場の排水
または加工残渣などの廃棄対象物質が微生物凝集
剤生産増強培地の栄養源として利用できるかどう
かを検討するため、家蓄の血液を栄養源として用
いる実験を行なつた。 屠殺場や蓄肉加工工場では、屠殺した動物の血
液、胃腸内容物等が排水に混入する。この場合、
屠殺時には、通常、血液の40〜60%が回収されて
肥料、飼料、あるいは薬品原料にまわされたり、
または、廃棄処分される。そして、残りの血液の
ほとんどは排水に混入して排水される。そして、
これらの家蓄の血液のBODは約165000mg/l(用
水廃水便覧(改定二版)丸善株式会社701頁)と
非常に高いので、排水中への血液の流入量が増え
ると、排水中のBODが高くなると共に、排水の
色が鮮血色(または赤褐色)になる。このため、
血液はこれらの排水の主な汚濁源となつており、
そのために、これらの廃水処理においてしばしば
問題が生じることもある。 この実験は、表7に示すように、牛の血液を栄
養源として用いた4種の培地(培地、培地、
培地、培地)と、比較対象として行なう従来
の培地(培地)とを用いて行なつた。
[Table] As a result of this experiment, it was again confirmed that culture medium B using fishery processing wastewater with different water quality analysis results from Example 1 had the same advantages as Example 1. (Example 3) In this example, in order to investigate whether substances to be disposed of, such as wastewater or processing residue from slaughterhouses and meat processing plants, can be used as a nutrient source for a microbial flocculant production enhancement medium, household blood was used. An experiment was carried out using this as a nutrient source. In slaughterhouses and meat processing plants, blood and gastrointestinal contents from slaughtered animals are mixed into wastewater. in this case,
At the time of slaughter, 40-60% of the blood is usually collected and used as fertilizer, feed, or raw material for medicine.
Or it will be disposed of. Most of the remaining blood then gets mixed into the wastewater and is drained away. and,
The BOD of blood stored in these households is extremely high at approximately 165,000 mg/l (Water and Wastewater Handbook (revised 2nd edition), Maruzen Co., Ltd., p. 701). As the temperature increases, the color of the wastewater becomes blood red (or reddish brown). For this reason,
Blood is the main source of pollution in these wastewaters;
Therefore, problems often arise in the treatment of these wastewaters. As shown in Table 7, this experiment consisted of four types of media (medium, medium,
The test was carried out using a conventional culture medium (medium) and a conventional culture medium (medium) for comparison.

【表】【table】

【表】 実験結果を表9に示す。但し、表中の最大凝集
活性値、培養日数は、実験期間中(12日間)の最
大凝集活性値とその最大凝集活性値が得られた培
養日数である。
[Table] Table 9 shows the experimental results. However, the maximum aggregation activity value and the number of culture days in the table are the maximum agglutination activity value during the experimental period (12 days) and the number of culture days in which the maximum agglutination activity value was obtained.

【表】 この結果、牛の血液を培地に使用した時の凝集
活性値は、濃度により滅菌した方が良い場合と、
非滅菌の場合の方が良い場合とがある。これは、
血液濃度が高い場合に非滅菌で使用すると、これ
に含まれる酵素や免疫系細胞により生産菌の増殖
が阻害されるためであると考えられた。このため
に、非滅菌で使用する場合は血液の濃度を10%以
下に設定する方が良い。 そして、培地(非滅菌)、培地(滅菌)の
培養では、従来の方法と比較して、最大凝集活性
値がそれぞれ1.3倍、1.9倍と高くなり、その最大
凝集活性値が得られた培養時間は、従来の方法と
比較してそれぞれ3/5、3/10に短縮された。
また、培地(滅菌)、培地(非滅菌)では、
最大凝集活性値は、実施例1および実施例2の従
来の培地と同程度の値が得られ、その最大凝集活
性値が得られた培養時間は、従来の方法と同程度
か、それよりは短くて済んだ。この結果から、従
来の微生物凝集剤生産の酵母エキスに代えて、牛
の血液を栄養源として使用できることが分かつ
た。さらに、血液の濃度を適切な濃度に設定する
ことにより、この培養液を滅菌処理しないで培養
に使用し、高い凝集活性が短い培養時間で得られ
ることが判明した。 「発明の効果」 表10に、上記の三つの実施例で行なつた実験結
果をまとめて示す。
[Table] As a result, the agglutination activity value when cow blood is used as a culture medium depends on the concentration, when sterilization is better, and when it is better to sterilize.
In some cases, it is better to use non-sterile products. this is,
This is thought to be because if the blood concentration is high and it is used non-sterile, the enzymes and immune system cells contained therein will inhibit the growth of the producing bacteria. For this reason, it is better to set the blood concentration to 10% or less when using non-sterile products. When culturing in medium (non-sterilized) and medium (sterilized), the maximum aggregation activity value was 1.3 times and 1.9 times higher, respectively, compared to the conventional method, and the culture time at which the maximum agglutination activity value was obtained was were reduced to 3/5 and 3/10, respectively, compared to the conventional method.
In addition, for culture medium (sterile) and culture medium (non-sterile),
The maximum aggregation activity value was similar to that of the conventional culture medium of Example 1 and Example 2, and the culture time at which the maximum agglutination activity value was obtained was about the same as that of the conventional method or longer. It was short. These results showed that cow blood can be used as a nutritional source in place of yeast extract in conventional microbial flocculant production. Furthermore, it has been found that by setting the blood concentration to an appropriate concentration, this culture solution can be used for culture without sterilization, and high agglutination activity can be obtained in a short culture time. "Effects of the Invention" Table 10 summarizes the experimental results conducted in the three examples described above.

【表】 以上説明したように、本発明により、次のよう
な効果を奏することができる。 (1) ロードコツカス属に属する微生物凝集剤生産
菌を培養する培地の栄養源として酵母エキス等
の高価な栄養源の代替として、血液成分を含む
排水または残渣等の廃棄物を添加することによ
り、培地のコストを著しく低減することができ
る。 (2) 添加する排水または廃棄物の種類に応じた適
切な添加量を設定することにより、培地の滅菌
作業を省くことができる。 (3) 酵母エキスのような高価な栄養源を添加せ
ず、しかも滅菌を行わずに、従来よりも高い凝
集活性を得ることができる。 (4) 従来と同等以上の凝集活性を得るために必要
な時間を大幅に短縮することができる。
[Table] As explained above, the following effects can be achieved by the present invention. (1) As a nutrient source for the culture medium for culturing microbial flocculant-producing bacteria belonging to the genus Rhodococcus, as an alternative to expensive nutrient sources such as yeast extract, the culture medium can be grown by adding waste such as wastewater or residue containing blood components. The cost can be significantly reduced. (2) By setting an appropriate addition amount according to the type of waste water or waste to be added, the work of sterilizing the culture medium can be omitted. (3) Higher flocculation activity than before can be obtained without adding expensive nutrients such as yeast extract and without sterilization. (4) The time required to obtain aggregation activity equivalent to or higher than conventional methods can be significantly shortened.

Claims (1)

【特許請求の範囲】 1 ロードコツカス属に属する微生物凝集剤生産
菌を培養する培地であつて、栄養源として、家蓄
もしくは魚類等の血液成分を含む排水、または家
蓄もしくは魚類等の血液成分を含む加工残渣等の
廃棄物を添加したことを特徴とする微生物凝集剤
の生産増強培地。 2 ロードコツカス属に属する微生物凝集剤生産
菌を培養するに際し、第1項記載の微生物凝集剤
の生産増強培地を用いて、滅菌処理を行わないで
培養することを特徴とする微生物凝集剤の生産増
強方法。
[Scope of Claims] 1. A medium for culturing flocculant-producing microorganisms belonging to the genus Rhodococcus, which contains wastewater containing blood components from household stock or fish as a nutrient source, or blood components from household stock or fish, etc. A culture medium for enhancing the production of a microbial flocculant, characterized in that it contains waste such as processing residue. 2. Enhancement of production of a microbial flocculant, characterized in that when culturing a microbial flocculant-producing bacterium belonging to the genus Rhodococcus, the microbial flocculant production enhancement medium described in item 1 is used to culture without sterilization. Method.
JP24518388A 1988-09-29 1988-09-29 Production enhancing medium of bacterium flocculating agent and production enhancement Granted JPH0292273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24518388A JPH0292273A (en) 1988-09-29 1988-09-29 Production enhancing medium of bacterium flocculating agent and production enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24518388A JPH0292273A (en) 1988-09-29 1988-09-29 Production enhancing medium of bacterium flocculating agent and production enhancement

Publications (2)

Publication Number Publication Date
JPH0292273A JPH0292273A (en) 1990-04-03
JPH0426836B2 true JPH0426836B2 (en) 1992-05-08

Family

ID=17129847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24518388A Granted JPH0292273A (en) 1988-09-29 1988-09-29 Production enhancing medium of bacterium flocculating agent and production enhancement

Country Status (1)

Country Link
JP (1) JPH0292273A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140509A (en) * 1998-11-16 2000-05-23 Kansai Kako Kk Novel flocculant and sludge treatment using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639633A (en) * 1979-09-06 1981-04-15 Nippon Gakki Seizo Kk Loop filter circuit in phase-locked loop circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639633A (en) * 1979-09-06 1981-04-15 Nippon Gakki Seizo Kk Loop filter circuit in phase-locked loop circuit

Also Published As

Publication number Publication date
JPH0292273A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
Morales et al. Harvesting marine microalgae species by chitosan flocculation
EP2384646A2 (en) Blood waste treatment system for slaughtered animals, and method for producing high quality amino acid solution using blood waste
Bhuyar et al. Removal of nitrogen and phosphorus from agro-industrial wastewater by using microalgae collected from coastal region of peninsular Malaysia
Fransen et al. Pathogenic micro-organisms in slaughterhouse sludge—a survey
CN105129939A (en) Water treatment agent and water treatment method
Ding et al. Enhanced flocculation of two bioflocculation-producing bacteria by secretion of Philodina erythrophthalma
Pelić et al. Antibiotics and sulfonamides in water, sediment, and fish in an integrated production system
JP5117803B2 (en) Decolorization treatment method, decolorization treatment apparatus and decolorization treatment agent for waste water containing dye
Antunes et al. Influence of bionanoparticles to treat a slaughterhouse wastewater
JP5491683B2 (en) Organic waste treatment using Bacillus microorganisms
KR100971549B1 (en) Manufacturing method of flocculant for suspended particles of waste water, and flocculant made thereby
Shtepa et al. Preventive improvement of wastewater treatment efficiency
JPH0426836B2 (en)
Madsen et al. Low technology water purification by bentonite clay flocculation as performed in Sudanese villages: bacteriological examinations
Bough et al. Utilization of chitosan for recovery of coagulated by-products from food processing wastes and treatment systems
Hong Growth of Spirulina platensis in effluents from wastewater treatment plant of pig farm
Selivanov et al. The assessment of Bioactivators effectiveness used for the Household Waste Water Treatment
CN113105022A (en) Small poultry slaughterhouse sewage treatment method
JP3030336B2 (en) Production medium and production method for microbial flocculant
JPH0611363B2 (en) Method for producing microbial flocculant and method for recovering useful substances
Popova et al. Microbiological Treatment of High-Coloring Natural Waters
Kargi et al. An evaluation of various flocculants for the recovery of biomass grown on poultry waste
RU2272792C1 (en) Method of treating waste waters originating from cattle-breeding complexes
Al-Shahwani et al. Effects of bacterial communities on floc sizes and numbers in industrial and domestic effluents
JP2000140509A (en) Novel flocculant and sludge treatment using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term