JPH04266896A - Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide - Google Patents

Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide

Info

Publication number
JPH04266896A
JPH04266896A JP2896891A JP2896891A JPH04266896A JP H04266896 A JPH04266896 A JP H04266896A JP 2896891 A JP2896891 A JP 2896891A JP 2896891 A JP2896891 A JP 2896891A JP H04266896 A JPH04266896 A JP H04266896A
Authority
JP
Japan
Prior art keywords
oligosaccharide
minutes
alginic acid
sodium chloride
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2896891A
Other languages
Japanese (ja)
Inventor
Hiromi Nagayama
永山 裕美
Tomohiro Takeda
竹田 知博
Nozomi Hiura
樋浦 望
Ryoichi Sato
良一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruha Nichiro Corp
Original Assignee
Taiyo Fishery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Fishery Co Ltd filed Critical Taiyo Fishery Co Ltd
Priority to JP2896891A priority Critical patent/JPH04266896A/en
Publication of JPH04266896A publication Critical patent/JPH04266896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To extremely readily fractionate an oligosaccharide by the once employment of a chromatography comprising a HPLC using an anion exchange resin column. CONSTITUTION:A method for purifying an oligosaccharide containing an alginic acid oligosaccharide or a sulfuric acid group-containing polysaccharide is characterized by making the alginic acid oligosaccharide prepared from alginic acid or a polysaccharide containing sulfuric acid groups in the structure of the alginic acid oligosaccharide adsorbed onto an anion exchange resin column and then applying to a high performance liquid chormatography to fractionate the oligosaccharide by a concentration gradient elution method using water and sodium chloride.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高速液体クロマトグラ
フィー(以下、HPLCと略す)によるアルギン酸オリ
ゴ糖及び硫酸基含有オリゴ糖の精製法に関する
[Field of Industrial Application] The present invention relates to a method for purifying alginate oligosaccharides and sulfate group-containing oligosaccharides by high performance liquid chromatography (hereinafter abbreviated as HPLC).

【000
2】
000
2]

【従来の技術】その構造中に硫酸基やカルボキシル基等
を有する酸性多糖類としては、ヘパリン、ヘパラン硫酸
、コンドロイチン硫酸、アルギン酸などがあり、医薬品
や食品として従来より市販され利用されている。しかし
、これらの多糖の分解物であるオリゴ糖は、市販品はな
いか稀にあっても大変高価であり、またその利用法の研
究もあまり進んでいないのが現状である。ヘパリンの場
合、これまで抗凝血剤として広く使用されてきたが、ヘ
パリンを低分子化したヘパリン断片が、抗凝血剤〔 L
inhardt et al., (1982) J.
 Biol. Chem. 257, 7310−73
13〕または抗腫瘍剤〔Folkman et al.
, (1983) Science 221,719−
725 〕としての効果を持つという報告もなされてい
る。
BACKGROUND OF THE INVENTION Examples of acidic polysaccharides having sulfate groups, carboxyl groups, etc. in their structures include heparin, heparan sulfate, chondroitin sulfate, and alginic acid, which have been commercially available and used as pharmaceuticals and foods. However, oligosaccharides, which are decomposition products of these polysaccharides, are not commercially available, or even if they are rarely available, they are very expensive, and at present, research on how to use them has not made much progress. In the case of heparin, it has been widely used as an anticoagulant until now, but heparin fragments, which are lower molecular weight heparin, are used as anticoagulants [L
inhardt et al. , (1982) J.
Biol. Chem. 257, 7310-73
13] or antitumor agents [Folkman et al.
, (1983) Science 221, 719-
725] has also been reported to have the effect of

【0003】現在これらの多糖類のオリゴ糖の精製法と
しては、陰イオン交換樹脂を用いた多元高速液体クロマ
トグラフィー法〔Vella et al.,(198
9) J. Liquid Chromatograp
hy 12(8),1333−1346 〕) 、同じ
く陰イオン交換樹脂のオープンカラムによる方法〔コハ
ク酸含有オリゴ糖の精製法 TOYOPEARL NE
WS No.45 〕、電気透析と陰イオン交換樹脂オ
ープンカラムによる方法を組み合わせたもの〔シアル酸
含有オリゴ糖の精製法  特公昭63−28428〕、
酸性条件でのゲル濾過法〔アルギン酸加水分解物の精製
法Anzai et al.,(1990) Nipp
on Suisan Gakkaisi56(1), 
73−81〕などが知られているが、これらゲル濾過法
やイオン交換法による精製法の場合、精製オリゴ糖を得
るまで二段階から数段階の精製過程を必要とし、工業的
規模での利用は困難であった。
[0003]Currently, as a method for purifying oligosaccharides of these polysaccharides, a multidimensional high performance liquid chromatography method using an anion exchange resin [Vella et al. , (198
9) J. Liquid Chromatograph
hy 12(8), 1333-1346]), also a method using an open column of anion exchange resin [Method for purifying succinic acid-containing oligosaccharides TOYOPEARL NE
WS No. 45], a combination of electrodialysis and an anion exchange resin open column method [Purification method of sialic acid-containing oligosaccharides, Japanese Patent Publication No. 63-28428],
Gel filtration method under acidic conditions [purification method of alginic acid hydrolyzate Anzai et al. , (1990) Nipp.
on Suisan Gakkaisi56(1),
73-81], but these purification methods using gel filtration and ion exchange methods require two to several purification steps to obtain purified oligosaccharides, making it difficult to use them on an industrial scale. was difficult.

【0004】0004

【発明が解決しようとする課題】そこで、本発明者らは
、純度の高いアルギン酸オリゴ糖及び硫酸基含有オリゴ
糖を簡単にしかも迅速に調製する方法を開発すべく鋭意
研究を行い、アルギン酸オリゴ糖及び硫酸基含有オリゴ
糖が負の電荷を持っていることに着目し、陰イオン交換
樹脂とHPLCを組み合わせることにより上記開発目的
が達せられることを見出し本発明を完成するに至った。
[Problems to be Solved by the Invention] Therefore, the present inventors conducted extensive research to develop a method for easily and quickly preparing highly pure alginate oligosaccharides and sulfate group-containing oligosaccharides. They focused on the fact that sulfate group-containing oligosaccharides have a negative charge, and found that the above development objective could be achieved by combining an anion exchange resin and HPLC, leading to the completion of the present invention.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明はアル
ギン酸より調製したアルギン酸オリゴ糖を、陰イオン交
換樹脂カラムに吸着させ、高速液体クロマトグラフィー
にかけて、水と塩化ナトリウムで濃度勾配溶出し、分画
することを特徴とするアルギン酸オリゴ糖の精製法であ
る。
[Means for Solving the Problems] That is, the present invention adsorbs alginic acid oligosaccharide prepared from alginic acid onto an anion exchange resin column, subjects it to high performance liquid chromatography, performs concentration gradient elution with water and sodium chloride, and fractionates it. This is a method for purifying alginate oligosaccharides.

【0006】さらに、本発明はその構造中に硫酸基を含
む多糖より調製した硫酸基含有オリゴ糖を、陰イオン交
換樹脂カラムに吸着させ、高速液体クロマトグラフィー
にかけて、水と塩化ナトリウムで濃度勾配溶出し、分画
することを特徴とする硫酸基含有オリゴ糖の精製法であ
る。上記精製法において、水と塩化ナトリウムによる濃
度勾配溶出は、塩化ナトリウムの濃度を0から0.25
M まで40分間で直線的に上昇させたのち、2Mに5
分間保ち、次に15分間水だけを流すことにより行なわ
れる。
Furthermore, the present invention involves adsorbing a sulfate group-containing oligosaccharide prepared from a polysaccharide containing a sulfate group in its structure onto an anion exchange resin column, subjecting it to high performance liquid chromatography, and eluting with a concentration gradient using water and sodium chloride. This is a method for purifying sulfate group-containing oligosaccharides, which is characterized by fractionating the oligosaccharides. In the above purification method, concentration gradient elution with water and sodium chloride increases the concentration of sodium chloride from 0 to 0.25.
After increasing linearly to M in 40 minutes, increasing to 2M by 5
This is done by holding for 15 minutes and then flushing only water for 15 minutes.

【0007】本発明で使用されるHPLC用陰イオン交
換樹脂カラムとしては市販のものが用いられるが、その
例としてはProtein Pak G−DEAE (
Waters製)、Protein Pak G−QA
 (Waters製)、COSMOGEL DEAE 
GLASS (ナカライテスク製)、COSMOGEL
 QA GLASS (ナカライテスク製)、Mono
 Q (Pharmacia 製)、TSKgel D
EAE (東ソ−製)、TSKgel QAE(東ソ−
製)などが挙げられる。
[0007] As the anion exchange resin column for HPLC used in the present invention, a commercially available one can be used, and an example thereof is Protein Pak G-DEAE (
Waters), Protein Pak G-QA
(manufactured by Waters), COSMOGEL DEAE
GLASS (manufactured by Nacalai Tesque), COSMOGEL
QA GLASS (manufactured by Nacalai Tesque), Mono
Q (manufactured by Pharmacia), TSKgel D
EAE (manufactured by Tosoh), TSKgel QAE (manufactured by Tosoh)
(manufactured by).

【0008】本発明の精製法に供されるアルギン酸オリ
ゴ糖を含む原料としては、アルギン酸ナトリウムやアル
ギン酸カリウムをアルギン酸リアーゼで分解した物、褐
藻など(例えばワカメ、コンブ、ヒジキなど)のアルギ
ン酸を細胞内に含む物をアルギン酸リアーゼで分解した
物、またはこれらアルギン酸を含む物を硫酸などの酸で
加水分解した物が用いられる。硫酸基含有オリゴ糖のを
含む原料としては、ヘパリンをヘパリナーゼで分解した
物、ヘパラン硫酸をヘパリチナーゼで分解した物、コン
ドロイチン硫酸をコンドロイチナーゼで分解した物など
が用いられる。
Raw materials containing alginate oligosaccharides to be subjected to the purification method of the present invention include sodium alginate and potassium alginate decomposed with alginate lyase, and alginic acid from brown algae (for example, wakame, kelp, hijiki, etc.) A product obtained by decomposing a substance containing alginic acid with alginic acid lyase, or a product obtained by hydrolyzing a substance containing alginic acid with an acid such as sulfuric acid is used. As raw materials containing sulfate group-containing oligosaccharides, heparin decomposed with heparinase, heparan sulfate decomposed with heparitinase, chondroitin sulfate decomposed with chondroitinase, etc. are used.

【0009】次に、本発明の精製法の操作手順について
説明する。まず、HPLCに陰イオン交換樹脂を充填し
たカラムをつなぎ、溶媒には水を用いて平衡化する。そ
のカラムに遠心分離または濾過により不溶物を除去した
アルギン酸オリゴ糖もしくは硫酸基含有オリゴ糖溶液を
注入し、樹脂に吸着させる。このとき、試料の脱色操作
は必要としない。次に塩化ナトリウムの濃度を0から0
.25Mまで40分間で直線的に上昇させたのち、2M
に5分間保ち、次に15分間水だけを流す。フラクショ
ンコレクターを用いて分画し、オリゴ糖の各画分を回収
することで、アルギン酸オリゴ糖もしくは硫酸基含有オ
リゴ糖の精製は終了する。この一連の操作は、60分を
1単位として、注入と溶出を繰り返し行うことができる
。この後、必要に応じて脱塩と濃縮を行う。
Next, the operating procedure of the purification method of the present invention will be explained. First, a column filled with an anion exchange resin is connected to HPLC, and water is used as a solvent for equilibration. An alginic acid oligosaccharide or sulfate group-containing oligosaccharide solution from which insoluble matter has been removed by centrifugation or filtration is injected into the column and adsorbed onto the resin. At this time, there is no need to decolorize the sample. Next, increase the concentration of sodium chloride from 0 to 0.
.. After ascending linearly to 25M in 40 minutes, 2M
5 minutes, then run only water for 15 minutes. Purification of the alginic acid oligosaccharide or the sulfate group-containing oligosaccharide is completed by fractionating the oligosaccharide using a fraction collector and collecting each fraction of the oligosaccharide. In this series of operations, injection and elution can be repeated in units of 60 minutes. After this, desalting and concentration are performed as necessary.

【0010】0010

【実施例】以下、本発明を実施例により具体的に説明す
る。但し、本発明の技術的範囲がこれらの実施例により
限定されるものではない。
[Examples] The present invention will be specifically explained below using examples. However, the technical scope of the present invention is not limited to these Examples.

【0011】[0011]

【実施例1】アルギン酸ナトリウム (和光純薬製) 
をAlteromonas sp. 微工研菌寄第11
685 号 (特願平2−294897号) 由来のア
ルギン酸リアーゼにより分解した分解物 (以下アルギ
ン酸オリゴ糖と言う) のDEAE分析用カラムによる
精製法 HPLC (LC−7Aシリーズ、島津製作所製) に
、ジエチルアミノエチル(DEAE)型弱陰イオン交換
樹脂の分析用カラムであるDEAE  GLASS (
ナカライテスク製、8mm×75mm、10μm ) 
とDEAE  GLASSガードカラム(ナカライテス
ク製、8mm×10mm、30μm ) とをつなぎ、
これを蒸留水で平衡化した。このカラムに10%(w/
v) アルギン酸オリゴ糖溶液を10000r.p.m
. で10分間遠心分離した上清を2μl 注入した。 次に、蒸留水と2M塩化ナトリウム水溶液を用いて、塩
化ナトリウムの濃度を40分間で0〜0.25Mまで直
線的に上昇させた後、即塩化ナトリウム濃度を2Mに上
げ5分間その濃度に保ち、その後蒸留水を15分間流し
て溶出した。この間 230nmでの吸収を測定する 
(リアーゼは脱離反応によって、分解物に二重結合を作
るため、二重結合の最大吸収波長である 230nmを
用いた。) ことによって溶出状態をモニターしたとこ
ろ、溶出時間15.465分から31.005分まで8
個のピークが観察された (図1参照) 。同時にフラ
クションコレクターでピークモードを用いてピークごと
に分画したところ、15.465分と16.942分、
19.742分、21.942分と23.275分、2
5.369分、27.977分、31.005分の6個
に分画された。これら6個の画分について、3,6−ジ
ニトロフタル酸法を用いて還元糖量を測定した結果、 
230nmでの吸収により観察されたピークは、糖のピ
ークであることがわかった (図2参照) 。流量は0
.6 ml/minで行った。
[Example 1] Sodium alginate (manufactured by Wako Pure Chemical Industries)
Alteromonas sp. Microtechnology Research Institute No. 11
No. 685 (Patent Application No. 2-294897) A purification method using a column for DEAE analysis of a decomposed product (hereinafter referred to as alginate oligosaccharide) decomposed by alginate lyase derived from DEAE GLASS is an analytical column using ethyl (DEAE) type weak anion exchange resin.
Made by Nacalai Tesque, 8mm x 75mm, 10μm)
and a DEAE GLASS guard column (manufactured by Nacalai Tesque, 8 mm x 10 mm, 30 μm).
This was equilibrated with distilled water. 10% (w/
v) Add the alginate oligosaccharide solution to 10,000 rpm. p. m
.. 2 μl of the supernatant obtained by centrifugation for 10 minutes was injected. Next, using distilled water and a 2M sodium chloride aqueous solution, the concentration of sodium chloride was linearly increased from 0 to 0.25M in 40 minutes, and then the sodium chloride concentration was immediately raised to 2M and kept at that concentration for 5 minutes. , and then eluted by running distilled water for 15 minutes. During this time, measure the absorption at 230 nm.
(Since lyase creates double bonds in decomposed products through an elimination reaction, we used 230 nm, which is the maximum absorption wavelength of double bonds.) When the elution state was monitored by this method, the elution time was 15.465 minutes. 8 until 005 minutes
Several peaks were observed (see Figure 1). At the same time, when we fractionated each peak using peak mode with a fraction collector, the results were 15.465 minutes and 16.942 minutes.
19.742 minutes, 21.942 minutes and 23.275 minutes, 2
It was fractionated into six fractions: 5.369 minutes, 27.977 minutes, and 31.005 minutes. As a result of measuring the amount of reducing sugar in these six fractions using the 3,6-dinitrophthalic acid method,
The peak observed by absorption at 230 nm was found to be a sugar peak (see Figure 2). Flow rate is 0
.. The flow rate was 6 ml/min.

【0012】0012

【実施例2】アルギン酸オリゴ糖のQA分析用カラムに
よる精製法。 第4級アンモニウム(QA)型強陰イオン交換樹脂の分
析用カラムQA GLASS (ナカライテスク製、8
mm×75mm、10μm ) とQA  GLASS
ガードカラム (ナカライテスク製、8mm×10mm
、30μm ) とを実施例1の場合と同様に平衡化し
、アルギン酸オリゴ糖上清2μl を注入して吸着させ
た。実施例1と同様に蒸留水と2M塩化ナトリウム水溶
液の濃度勾配を用いて溶出した。 230nmでの吸収
で溶出状態をモニターしたところ、溶出時間28.50
7分から43.792分まで8個の画分に分画精製でき
たが、DEAEに比べてカラム保持時間が長くなった 
(図3参照) 。
[Example 2] Purification method of alginate oligosaccharide using a QA analysis column. Quaternary ammonium (QA) type strong anion exchange resin analytical column QA GLASS (manufactured by Nacalai Tesque, 8
mm x 75mm, 10μm) and QA GLASS
Guard column (manufactured by Nacalai Tesque, 8mm x 10mm
, 30 μm) were equilibrated in the same manner as in Example 1, and 2 μl of alginate oligosaccharide supernatant was injected for adsorption. Elution was carried out in the same manner as in Example 1 using a concentration gradient of distilled water and a 2M aqueous sodium chloride solution. When the elution state was monitored by absorption at 230 nm, the elution time was 28.50.
Although it was possible to fractionate and purify 8 fractions from 7 minutes to 43.792 minutes, the column retention time was longer than that of DEAE.
(See Figure 3).

【0013】[0013]

【実施例3】アルギン酸オリゴ糖の分取用カラムによる
精製法 HPLC (ALC/GPC  609G、Water
s製) に分取用DEAE  GLASS (ナカライ
テスク製、20mm×100mm 、30μm ) と
DEAE  GLASSガードカラムとをつなぎ、蒸留
水で平衡化した。実施例1と同様にアルギン酸オリゴ糖
上清を 200μl 注入した。流量は5ml/min
で行い、実施例1と同様に溶出した。230nm の吸
収により溶出状態をモニターしたところ、分析用カラム
の場合と同様に、 20.84分、 22.39分、 
26.43分、 28.50分、 29.56分、31
.51分、 33.27分、 35.24分の8個のピ
ークが観察され、フラクションコレクターを用いて各ピ
ークごとに8個に分画して回収した (図4参照) 。 そして、フェノール・硫酸法により、D−マンノフラヌ
ロノ−6、3−ラクトンを標準として全糖量を算出した
結果、8個の画分の収量は、それぞれ0.9mg 、4
.5mg 、6.2mg 、1.8mg 、4.4mg
 、2.0mg 、1.8mg 、4.6mg であっ
た。
[Example 3] Purification method of alginate oligosaccharide using a preparative column HPLC (ALC/GPC 609G, Water
A preparative DEAE GLASS (manufactured by Nacalai Tesque, 20 mm x 100 mm, 30 μm) and a DEAE GLASS guard column were connected to a DEAE GLASS (manufactured by Nacalai Tesque) and equilibrated with distilled water. In the same manner as in Example 1, 200 μl of alginate oligosaccharide supernatant was injected. Flow rate is 5ml/min
The elution was carried out in the same manner as in Example 1. When the elution state was monitored by absorption at 230 nm, the results were as follows: 20.84 minutes, 22.39 minutes,
26.43 minutes, 28.50 minutes, 29.56 minutes, 31
.. Eight peaks at 51 minutes, 33.27 minutes, and 35.24 minutes were observed, and each peak was fractionated into 8 peaks and collected using a fraction collector (see Figure 4). Then, as a result of calculating the total sugar content using D-mannofuranurono-6,3-lactone as a standard using the phenol/sulfuric acid method, the yields of the 8 fractions were 0.9 mg and 4 mg, respectively.
.. 5mg, 6.2mg, 1.8mg, 4.4mg
, 2.0 mg, 1.8 mg, and 4.6 mg.

【0014】[0014]

【実施例4】アルギン酸を主成分に持つ代表的なもので
あるコンブの粉末(ミツイシコンブ粉末) をアルギン
酸リアーゼで分解した分解物 (以下コンブオリゴ糖と
呼ぶ) の分析用カラムによる精製法 実施例1と同様にHPLCに分析用DEAE  GLA
SSカラムとDEAE  GLASSガードカラムとを
つなぎ、蒸留水で平衡化した。10%(w/v) コン
ブオリゴ糖溶液を10000r.p.m. で10分間
遠心した上清を10μl 注入した。流量は0.6ml
/minで、実施例1と同様に溶出分画した。アルギン
酸オリゴ糖の場合と同様に、溶出時間27.522分か
ら44.544分まで8個に分画精製できた (図5参
照) 。
[Example 4] Purification method using an analytical column for a decomposition product (hereinafter referred to as kelp oligosaccharide) obtained by decomposing kelp powder (Kombu kelp powder), which is a typical product containing alginic acid as a main component, using alginate lyase. Similarly, DEAE GLA for HPLC analysis
The SS column and DEAE GLASS guard column were connected and equilibrated with distilled water. A 10% (w/v) kelp oligosaccharide solution was added at 10,000 rpm. p. m. 10 μl of the supernatant obtained by centrifugation for 10 minutes was injected. Flow rate is 0.6ml
/min, and elution and fractionation were performed in the same manner as in Example 1. As in the case of alginate oligosaccharides, fractionation and purification into eight components was possible from elution time of 27.522 minutes to 44.544 minutes (see Figure 5).

【0015】[0015]

【実施例5】硫酸基含有多糖であるコンドロイチン硫酸
C (生化学工業製) をコンドロイチナーゼABC 
(生化学工業製) で分解した分解物 (以下ChS−
Cオリゴ糖と呼ぶ) の分析用カラムによる精製法実施
例1と同様に、分析用DEAE  GLASSカラムと
DEAEGLASSガードカラムとをつなぎ、蒸留水で
平衡化した。10mg/mlChS−Cオリゴ糖液を5
0μl 注入した。流量は0.6ml/minで、実施
例1と同様に溶出した。その結果、31.114分(図
6参照) に、コンドロイチン硫酸Cのコンドロイチナ
ーゼABCによる最終分解産物である二糖の画分を得た
[Example 5] Chondroitin sulfate C (manufactured by Seikagaku Corporation), a sulfate group-containing polysaccharide, was converted into chondroitinase ABC.
(manufactured by Seikagaku Corporation) (hereinafter referred to as ChS-
Purification method using an analytical column for (referred to as C oligosaccharide) As in Example 1, an analytical DEAE GLASS column and a DEAE GLASS guard column were connected and equilibrated with distilled water. 10mg/ml ChS-C oligosaccharide solution
0 μl was injected. The flow rate was 0.6 ml/min, and elution was carried out in the same manner as in Example 1. As a result, a disaccharide fraction, which is the final degradation product of chondroitin sulfate C by chondroitinase ABC, was obtained at 31.114 minutes (see FIG. 6).

【0016】[0016]

【実施例6】硫酸基含有多糖であるコンドロイチン硫酸
A (ナカライテスク製) をコンドロイチナーゼAB
Cで分解した分解物 (以下ChS−Aオリゴ糖と呼ぶ
) の分析用カラムによる精製法 実施例1と同様に、分析用DEAE  GLASSカラ
ムとDEAEGLASSガードカラムをつなぎ、蒸留水
で平衡化した。25mg/ml ChS−Aオリゴ糖溶
液を50μl 注入した。その結果、28.718分 
(図7参照) に、コンドロイチン硫酸Aのコンドロイ
チナーゼABCによる最終分解産物である二糖の画分を
得た。
[Example 6] Chondroitin sulfate A (manufactured by Nacalai Tesque), a sulfate group-containing polysaccharide, was added to chondroitinase AB.
Purification method using an analytical column for a decomposed product (hereinafter referred to as ChS-A oligosaccharide) decomposed with C As in Example 1, an analytical DEAE GLASS column and a DEAE GLASS guard column were connected and equilibrated with distilled water. 50 μl of 25 mg/ml ChS-A oligosaccharide solution was injected. As a result, 28.718 minutes
(See Figure 7) A disaccharide fraction, which is the final degradation product of chondroitin sulfate A by chondroitinase ABC, was obtained.

【0017】[0017]

【実施例7】アルギン酸オリゴ糖の異なる濃度匂配での
クロマトグラフィーを示す。実施例1と同様にHPLC
に分析用DEAE  GLASSとDEAE  GLA
SSガードカラムをつなぎ平衡化させた。アルギン酸オ
リゴ糖上清2μlを注入して吸着させた。最初の5分間
は蒸留水だけを流し、次に20分間で塩化ナトリウムの
濃度を0から0.5Mまで上昇させた後、すぐに蒸留水
だけを流した。本発明の濃度匂配を用いた場合に比べて
、溶出にかかる時間は半分(30分)となったが、分離
が悪くなった。(図8参照)
Example 7 shows the chromatography of alginate oligosaccharides at different concentration profiles. HPLC as in Example 1
DEAE GLASS and DEAE GLA for analysis
The SS guard column was connected and equilibrated. 2 μl of alginate oligosaccharide supernatant was injected and adsorbed. Only distilled water was allowed to flow for the first 5 minutes, then the concentration of sodium chloride was increased from 0 to 0.5M over 20 minutes, and then only distilled water was allowed to flow immediately. The time required for elution was halved (30 minutes) compared to when the concentration ratio of the present invention was used, but the separation was worse. (See Figure 8)

【0018】[0018]

【実施例8】C18カラムであるNOVA PAK C
18 (4μSpherical 、3.9 ×150
 、Waters製)でクロマトグラフィーを示す。H
PLCにNOVA PAK C18をつなぎ、アセトニ
トリル:蒸留水(80:20)混合液で平衡化させ、ア
ルギン酸オリゴ糖上清5μlを注入し、同混合液で溶出
した。 流量は1ml/minを用いた。(図9参照)アセトニ
トリルと蒸留水の割合や流量をいろいろに変化させてみ
たが、上記条件でのもの(図9参照)の分離が一番良く
、これ以上改善できなかった。
[Example 8] NOVA PAK C which is a C18 column
18 (4μSpherical, 3.9 × 150
, Waters). H
NOVA PAK C18 was connected to a PLC, equilibrated with acetonitrile:distilled water (80:20) mixture, 5 μl of alginate oligosaccharide supernatant was injected, and elution was performed with the same mixture. A flow rate of 1 ml/min was used. (See Figure 9) We tried varying the ratio and flow rate of acetonitrile and distilled water, but the separation under the above conditions (see Figure 9) was the best and no further improvement could be made.

【0019】[0019]

【発明の効果】本発明はHPLCと陰イオン交換樹脂カ
ラムの使用により、これらのオリゴ糖を極めて容易に分
画することができた。すなわち、本発明は一回のクロマ
トグラフィーで精製でき、しかも、精製で用いる溶媒は
、蒸留水と塩化ナトリウムだけであるため、この後に脱
塩を行う場合においても極めて容易である。また、本発
明の場合、カラムの洗浄も含めて、60分を一単位とし
て一回のクロマトグラフィーを組み立てているため、オ
ートインジェクターとフラクションコレクターを併用す
れば、自動化が可能である。また、陰イオン交換樹脂カ
ラムは、他のHPLC用カラム (例えば、ODSカラ
ム、ゲル濾過カラム、NH2 カラムなど) に比べて
、取扱いが簡単で、再現性が良く、耐久性も高いため、
工業的規模の大量調製への移行も容易である。
Effects of the Invention The present invention was able to very easily fractionate these oligosaccharides by using HPLC and an anion exchange resin column. That is, in the present invention, the product can be purified by a single chromatography, and since the only solvents used for the purification are distilled water and sodium chloride, it is extremely easy to desalt afterward. Furthermore, in the case of the present invention, one chromatography is assembled in 60 minutes, including column washing, so automation is possible by using an autoinjector and a fraction collector together. Additionally, anion exchange resin columns are easier to handle, have better reproducibility, and are more durable than other HPLC columns (e.g., ODS columns, gel filtration columns, NH2 columns, etc.).
It is also easy to transfer to large-scale preparation on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1の分析用DEAE  GLASSでの
アルギン酸オリゴ糖の溶出結果を示す図。
FIG. 1 is a diagram showing the elution results of alginic acid oligosaccharides using DEAE GLASS for analysis in Example 1.

【図2】実施例1の各画分の還元糖量を3,6−ジニト
ロフタル酸法で測定した結果を示す図。縦軸はグルコー
スを標準として算出した各画分中の還元糖量を示し、横
軸は各画分を溶出順に示す。
FIG. 2 is a diagram showing the results of measuring the amount of reducing sugar in each fraction of Example 1 using the 3,6-dinitrophthalic acid method. The vertical axis shows the amount of reducing sugar in each fraction calculated using glucose as a standard, and the horizontal axis shows each fraction in the order of elution.

【図3】実施例2の分析用QA  GLASSでのアル
ギン酸オリゴ糖の溶出結果を示す図。
FIG. 3 is a diagram showing the elution results of alginate oligosaccharide using analytical QA GLASS in Example 2.

【図4】実施例3の分取用DEAE  GLASSでの
アルギン酸オリゴ糖の溶出結果を示す図。
FIG. 4 is a diagram showing the elution results of alginate oligosaccharides in preparative DEAE GLASS in Example 3.

【図5】実施例4の分析用DEAE  GLASSでの
コンブオリゴ糖の溶出結果を示す図。
FIG. 5 is a diagram showing the elution results of kelp oligosaccharide in DEAE GLASS for analysis in Example 4.

【図6】実施例5の分析用DEAE  GLASSでの
ChS−Cオリゴ糖の溶出結果を示す図。
FIG. 6 is a diagram showing the elution results of ChS-C oligosaccharides in DEAE GLASS for analysis in Example 5.

【図7】実施例6の分析用DEAE  GLASSでの
ChS−Aオリゴ糖の溶出結果を示す図。
FIG. 7 is a diagram showing the elution results of ChS-A oligosaccharides in DEAE GLASS for analysis in Example 6.

【図8】実施例7の異なる濃度匂配でのアルギン酸オリ
ゴ糖の溶出曲線を示す図。
FIG. 8 is a diagram showing the elution curves of alginate oligosaccharides at different concentrations in Example 7.

【図9】実施例8のアセトニトリルと蒸留水で溶出した
結果を示す図。
FIG. 9 is a diagram showing the results of elution with acetonitrile and distilled water in Example 8.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  アルギン酸より調製したアルギン酸オ
リゴ糖を、陰イオン交換樹脂カラムに吸着させ高速液体
クロマトグラフィーにかけて、水と塩化ナトリウムで濃
度勾配溶出し分画することを特徴とするアルギン酸オリ
ゴ糖の精製法。
Claim 1: Purification of alginic acid oligosaccharides, which is characterized by adsorbing alginic acid oligosaccharides prepared from alginic acid onto an anion exchange resin column and subjecting them to high performance liquid chromatography, followed by concentration gradient elution and fractionation with water and sodium chloride. Law.
【請求項2】  水と塩化ナトリウムでの濃度勾配溶出
を、塩化ナトリウムの濃度を0から0.25M まで4
0分間で直線的に上昇させたのち、2Mに5分間保ち、
次に15分間水だけを流すことにより行うことを特徴と
する請求項1記載のアルギン酸オリゴ糖の精製法。
Claim 2: Perform concentration gradient elution with water and sodium chloride, increasing the concentration of sodium chloride from 0 to 0.25M.
After raising it linearly for 0 minutes, keep it at 2M for 5 minutes,
2. The method for purifying alginate oligosaccharide according to claim 1, which is then carried out by flowing only water for 15 minutes.
【請求項3】  その構造中に硫酸基を含む多糖より調
製した硫酸基含有オリゴ糖を、陰イオン交換樹脂カラム
に吸着させ高速液体クロマトグラフィーにかけて、水と
塩化ナトリウムで濃度勾配溶出し分画することを特徴と
する硫酸基含有オリゴ糖の精製法。
Claim 3: A sulfate group-containing oligosaccharide prepared from a polysaccharide containing a sulfate group in its structure is adsorbed onto an anion exchange resin column, subjected to high performance liquid chromatography, and fractionated by concentration gradient elution with water and sodium chloride. A method for purifying sulfate group-containing oligosaccharides.
【請求項4】  水と塩化ナトリウムでの濃度勾配溶出
を、塩化ナトリウムの濃度を0から0.25M まで4
0分間で直線的に上昇させたのち、2Mに5分間保ち、
次に15分間水だけを流すことにより行うことを特徴と
する請求項3記載の硫酸基含有オリゴ糖の精製法。
Claim 4: Concentration gradient elution with water and sodium chloride is performed with the concentration of sodium chloride ranging from 0 to 0.25M.
After raising it linearly for 0 minutes, keep it at 2M for 5 minutes,
4. The method for purifying a sulfate group-containing oligosaccharide according to claim 3, which is then carried out by flowing only water for 15 minutes.
JP2896891A 1991-02-22 1991-02-22 Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide Pending JPH04266896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2896891A JPH04266896A (en) 1991-02-22 1991-02-22 Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2896891A JPH04266896A (en) 1991-02-22 1991-02-22 Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide

Publications (1)

Publication Number Publication Date
JPH04266896A true JPH04266896A (en) 1992-09-22

Family

ID=12263216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2896891A Pending JPH04266896A (en) 1991-02-22 1991-02-22 Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide

Country Status (1)

Country Link
JP (1) JPH04266896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059679C (en) * 1993-06-18 2000-12-20 青岛海洋大学 Sodium alginate diester and preparation method
JP2012082436A (en) * 2004-08-12 2012-04-26 Lipoxen Technologies Ltd Fractionation of charged polysaccharide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059679C (en) * 1993-06-18 2000-12-20 青岛海洋大学 Sodium alginate diester and preparation method
JP2012082436A (en) * 2004-08-12 2012-04-26 Lipoxen Technologies Ltd Fractionation of charged polysaccharide
JP2014169451A (en) * 2004-08-12 2014-09-18 Lipoxen Technologies Ltd Fractionation of charged polysaccharide
US9200052B2 (en) 2004-08-12 2015-12-01 Lipoxen Technologies Limited Fractionation of charged polysaccharide
US9790288B2 (en) 2004-08-12 2017-10-17 Lipoxen Technologies Limited Fractionation of charged polysaccharide

Similar Documents

Publication Publication Date Title
Hook et al. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin
EP0027089B1 (en) Oligosaccharide fractions and oligosaccharides with biological properties, process for their preparation and their uses as medicines
EP0046581B1 (en) Process for separation of mucopolysaccharides
Ringertz et al. Chromatography on ECTEOLA of sulfate containing mucopolysaccharides
Flodin et al. Separation of acidic oligosaccharides by gel filtration
Galeotti et al. Novel reverse-phase ion pair-high performance liquid chromatography separation of heparin, heparan sulfate and low molecular weight-heparins disaccharides and oligosaccharides
CN104610467B (en) Method for separating hyaluronate tetrasaccharide from hyaluronate hexasaccharide
Damm et al. Separation of natural and synthetic heparin fragments by high-performance capillary electrophoresis
US4486420A (en) Mucopolysaccharide composition having a regulatory action on coagulation, medicament process for preparation and method of use
Volpi Disaccharide mapping of chondroitin sulfate of different origins by high-performance capillary electrophoresis and high-performance liquid chromatography
Sutton et al. Chiral capillary electrophoresis with noncyclic oligo‐and polysaccharide chiral selectors
EP2697265B1 (en) Polysaccharides comprising two antithrombin iii-binding sites, preparation thereof and use thereof as antithrombotic medicaments
Patel et al. Effective reversed-phase ion pair high-performance liquid chromatography method for the separation and characterization of intact low-molecular-weight heparins
Murata et al. Chondroitin sulfate isomers in normal human urine
JPH04266896A (en) Purification of alginic acid oligosaccharide and sulfuric acid group-containing oligosaccharide
Nagasawa et al. Chemical change involved in the oxidative-reductive depolymerization of heparin
CN110592165B (en) Extraction method and structure analysis of heparan sulfate/heparin in cubilose
Gonçalves et al. Positional isomers of sulfated oligosaccharides obtained from agarans and carrageenans: preparation and capillary electrophoresis separation
Larnkjaer et al. Isolation and charaterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H NMR
JPS59149901A (en) Heparin purification and fractionation
US3753972A (en) Fractionation of agar
Kosakai et al. Isolation and characterization of sulfated disaccharides from the deamination products of porcine heparin (α-Heparin) and whale heparin (ω-Heparin), and a comparison of the deamination products
RU2006123543A (en) METHOD FOR CLEANING BETA INTERFERON
Vijayabaskar et al. Low-molecular weight molluscan glycosaminoglycan from bivalve Katelysia opima (Gmelin)
CN105399870B (en) A kind of low-anticoagulant heparin, its oligosaccharide and preparation method thereof and the application in the medicine for preparing anti-alzheimer's disease