JPH04266632A - Air spring provided with height measuring device - Google Patents

Air spring provided with height measuring device

Info

Publication number
JPH04266632A
JPH04266632A JP4607291A JP4607291A JPH04266632A JP H04266632 A JPH04266632 A JP H04266632A JP 4607291 A JP4607291 A JP 4607291A JP 4607291 A JP4607291 A JP 4607291A JP H04266632 A JPH04266632 A JP H04266632A
Authority
JP
Japan
Prior art keywords
air spring
height
measuring
height measuring
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4607291A
Other languages
Japanese (ja)
Inventor
Osamu Torii
鳥居 修
Ryutaro Ishikawa
龍太郎 石川
Koichiro Ishihara
広一郎 石原
Tomoshi Koizumi
小泉 智志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4607291A priority Critical patent/JPH04266632A/en
Publication of JPH04266632A publication Critical patent/JPH04266632A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01933Velocity, e.g. relative velocity-displacement sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/412Pneumatic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/15Doppler effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/17Magnetic/Electromagnetic
    • B60G2401/176Radio or audio sensitive means, e.g. Ultrasonic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To prevent the influence of a bogie by providing a mechanism for measuring the distance between inner and outer cylinders in the diaphragm of an air spring, and controlling the spring height according to the measurement value, in an air spring in rolling stock. CONSTITUTION:In the center of an air spring 1, a height measuring mechanism 5 by ultrasonic waves is disposed between an outer cylinder 2 and an inner cylinder 3. The height measuring mechanism 5 is formed by disposing an operation transfer 6 on the inner cylinder 3, providing a measuring bar 8 supported by a linear bearing 7 thereon, and bringing a contactor 9 on the bar top end into contact with a measuring surface 10 on the lower surface of the outer cylinder. On the basis of the detected distance between the inner and outer cylinders, a regulating valve not shown is operated to regulate the height of the air spring 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、空気ばね内に高さ測
定機構を設け、別個に高さ測定装置の設置を必要としな
い空気ばねに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air spring that includes a height measuring mechanism within the air spring and does not require a separate height measuring device.

【0002】0002

【従来の技術】空気ばねは、内部の空気の圧縮性によっ
てばね作用が行なわれると同時に、振動の減衰作用があ
り、鉄道車両、自動車など車両の懸架装置や振動絶縁装
置として使用されている。
2. Description of the Related Art Air springs have a spring action due to the compressibility of the air inside them, and at the same time have a vibration damping action, and are used as suspension systems and vibration isolators for vehicles such as railway cars and automobiles.

【0003】空気ばねは、給気および排気による高さ制
御を行なう必要があり、一般には空気ばねを介して相対
変位を生じる2つの部材間に高さを測定する装置を取り
付けて行なわれる。しかし、空気ばねは三次元的な動き
をするため、高さだけを簡便に測定することは難しく、
複雑なリンク機構、球面継ぎ手等が使用される。
Air springs need to be controlled in height by supplying and exhausting air, and this is generally done by installing a height measuring device between two members that produce relative displacement via the air spring. However, since air springs move in three dimensions, it is difficult to easily measure only the height.
Complex link mechanisms, spherical joints, etc. are used.

【0004】例えば、鉄道車両用台車では、車体と台車
の間に回転運動(ボギー)を生じ、かつ台車の構成上回
転中心から離れた位置に高さ測定機構を設置しなければ
ならない。その一例を図5に示す。
For example, in a bogie for a railway vehicle, rotational movement (bogie) occurs between the car body and the bogie, and the height measuring mechanism must be installed at a position away from the center of rotation due to the structure of the bogie. An example is shown in FIG.

【0005】すなわち、台車の側ばり22にゴムブッシ
ュ付きヒンジまたは球面軸受により回転自在に取付けた
連結棒24とロータリエンコーダ25の間をレバー26
にて組合せ、ロータリエンコーダ25を車体23の底面
に当接する。
That is, a lever 26 is connected between a rotary encoder 25 and a connecting rod 24 rotatably attached to a side beam 22 of a truck by a hinge with a rubber bush or a spherical bearing.
and the rotary encoder 25 is brought into contact with the bottom surface of the vehicle body 23.

【0006】台車と車体の相対動きに伴うロータリエン
コーダの連結棒24の動きを図6に示す。図示するよう
に、連結棒24は上下変位とボギー角により複雑な動き
をする。また、この際の動きは広いスペースにおいて行
われる。
FIG. 6 shows the movement of the connecting rod 24 of the rotary encoder due to the relative movement between the truck and the vehicle body. As shown in the figure, the connecting rod 24 moves in a complicated manner due to vertical displacement and bogie angle. Moreover, the movement at this time is performed in a wide space.

【0007】[0007]

【発明が解決しようとする課題】上記のごとく、従来の
高さ測定装置は、空気ばねから離れた位置に別個の装置
として設けられるとともに、ゴムブッシュ付きヒンジ、
球面軸受等を使用した複雑な構造からなり、また装置と
して広いスペースが必要である。また、鉄道車両の場合
には、空気ばねから離れた位置で測定するとボギーの影
響を受けやすい。この発明は、かかる従来装置の欠点を
除くため、高さ測定機構を内部に設けた空気ばねを提供
するものである。
SUMMARY OF THE INVENTION As mentioned above, the conventional height measuring device is provided as a separate device at a location away from the air spring, and is equipped with a hinge with a rubber bush.
It has a complex structure using spherical bearings, etc., and requires a large amount of space. In addition, in the case of a railway vehicle, measurement at a location away from the air springs is likely to be affected by bogeys. The present invention provides an air spring with a height measuring mechanism installed therein in order to eliminate the drawbacks of such conventional devices.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、この発明の空気ばねは、ダイヤフラムに内筒と外筒と
の距離を計測して演算処理する測定機構を設け、演算に
より求めた測定値をばね高さ制御に使用するように構成
する。また、上記測定機構は、機械的手段による接触式
、あるいは電気的手段、超音波的手段または光学的手段
による非接触式からなる。
[Means for Solving the Problems] In order to achieve the above object, the air spring of the present invention is provided with a measuring mechanism that measures and calculates the distance between the inner cylinder and the outer cylinder on the diaphragm, and measures the distance determined by calculation. Configure the value to be used for spring height control. The measuring mechanism may be a contact type using mechanical means, or a non-contact type using electrical means, ultrasonic means, or optical means.

【0009】[0009]

【作用】空気ばねに内蔵した測定機構により常時測定さ
れる測定値に基いて、ばね高さを検知することができ、
この検知信号に基いて高さ調整弁を操作することにより
空気ばね高さが制御される。また、測定機構からの測定
値を各種の既設空気ばね電子制御装置に入力するように
構成すれば、測定機構からの検出信号が制御器に送られ
、ここで演算処理して出力される制御信号により、空気
ばねへの給気弁および排気弁の開閉操作が行われ、空気
ばね高さが制御される。
[Operation] The spring height can be detected based on the measurement value constantly measured by the measurement mechanism built into the air spring.
The height of the air spring is controlled by operating the height adjustment valve based on this detection signal. In addition, if the measurement value from the measurement mechanism is configured to be input to various existing air spring electronic control devices, the detection signal from the measurement mechanism will be sent to the controller, where it will be processed and output as a control signal. As a result, the air supply valve and exhaust valve to the air spring are opened and closed, and the height of the air spring is controlled.

【0010】0010

【実施例】この発明の実施例を図面に基いて説明する。 図1は、この発明による高さ測定機構5を内蔵したダイ
ヤフラム形空気ばねの断面を示す。高さ測定機構5は空
気ばね1の中心において、外筒2と内筒3の間に設置さ
れる。4はダイヤフラムである。高さ測定機構5は図2
に示す機械的な接触式、あるいは図3に示す超音波を利
用するか、または図4に示すレーザーを利用した非接触
式が使用される。
[Embodiment] An embodiment of the present invention will be explained based on the drawings. FIG. 1 shows a cross section of a diaphragm air spring incorporating a height measuring mechanism 5 according to the invention. The height measuring mechanism 5 is installed between the outer cylinder 2 and the inner cylinder 3 at the center of the air spring 1. 4 is a diaphragm. The height measurement mechanism 5 is shown in Figure 2.
A mechanical contact method as shown in FIG. 3, a non-contact method using ultrasonic waves as shown in FIG. 3, or a laser as shown in FIG. 4 are used.

【0011】図2の接触式の高さ測定機構5は、マグネ
スケールまたは作動トランス6を内筒3上に設置し、そ
の上にリニアベアリング7で支えられた測定棒8を設け
棒先端の接触子9を外筒2の下面に設けた測定面10に
当接してなる。この測定機構によれば、内筒3と外筒2
間の距離が変ってもマグネスケールまたは差動トランス
6内のばねの作用により測定棒8が追従して上下動し、
接触子9は常に測定面10に当接し、また外筒2が傾斜
したときも同様に当接し、常に変動する内筒3と外筒2
間の距離が正確に測定される。検出された測定値を基に
高さ調整弁を操作するか、あるいは空気ばね電子制御装
置に検出信号を出力して高さ制御が行われる。
The contact type height measuring mechanism 5 shown in FIG. 2 has a magnescale or actuating transformer 6 installed on the inner cylinder 3, and a measuring rod 8 supported by a linear bearing 7 on top of the magnescale or actuating transformer 6. The child 9 is brought into contact with a measurement surface 10 provided on the lower surface of the outer cylinder 2. According to this measurement mechanism, the inner cylinder 3 and the outer cylinder 2
Even if the distance between them changes, the measuring rod 8 follows and moves up and down due to the action of the spring in the Magnescale or the differential transformer 6.
The contactor 9 always comes into contact with the measurement surface 10, and also comes into contact with the measuring surface 10 in the same way even when the outer cylinder 2 is tilted.
The distance between them is measured accurately. Height control is performed by operating a height adjustment valve based on the detected measurement value or by outputting a detection signal to the air spring electronic control device.

【0012】図3の超音波測定子11による高さ測定機
構5は、外筒2の測定面10に対向して内筒3上に超音
波測定子11を対設する。そして、この超音波測定子1
1には、送波信号発生器12、パルス変調器13および
送波増幅器14を経て超音波が送られ、測定面10から
の反射波は増幅器15、距離演算器16を経て空気ばね
電子制御装置(図面省略)の制御器17に入力して高さ
制御が行われる。なお、距離演算器16では超音波式、
すなわち測定距離=測定時間×音速/2により距離が演
算される。
In the height measuring mechanism 5 using the ultrasonic probe 11 shown in FIG. 3, the ultrasonic probe 11 is disposed on the inner tube 3 so as to face the measurement surface 10 of the outer tube 2. And this ultrasonic probe 1
1, an ultrasonic wave is sent through a transmission signal generator 12, a pulse modulator 13, and a transmission amplifier 14, and the reflected wave from the measurement surface 10 is transmitted through an amplifier 15 and a distance calculator 16 to an air spring electronic control device. The height is controlled by inputting it to a controller 17 (not shown). Note that the distance calculator 16 uses an ultrasonic type,
That is, the distance is calculated by measuring distance=measurement time×sound speed/2.

【0013】図4のレーザーによる高さ測定機構5は、
内筒3上に設けた光源18から照射されるレーザーを外
筒2の測定面10に受け、その反射光を内筒3上に設け
たCCDカメラ19で受け、画像処理器20、演算器2
1を経て空気ばね電子制御装置(図面省略)の制御器1
7に入力して高さ制御が行われる。
The laser height measuring mechanism 5 shown in FIG.
A laser irradiated from a light source 18 provided on the inner tube 3 is received by the measurement surface 10 of the outer tube 2, and the reflected light is received by a CCD camera 19 provided on the inner tube 3.
1 to the controller 1 of the air spring electronic control device (drawing omitted)
7 to perform height control.

【0014】[0014]

【発明の効果】この発明による空気ばねは、内部に高さ
測定機構を設けているため、高さ測定装置を別個に設置
する必要がなく、空気ばねをコンパクトに設置できる。 また、高さ測定は空気ばね内で行われるから、鉄道車両
におけるボギーの影響等を受けることがなく、空気ばね
制御装置と組合せることにより、高精度でかつ正確な制
御ができる。
[Effects of the Invention] Since the air spring according to the present invention is provided with a height measuring mechanism inside, there is no need to separately install a height measuring device, and the air spring can be installed compactly. Furthermore, since the height measurement is performed within the air spring, it is not affected by bogies in the railway vehicle, and when combined with an air spring control device, highly accurate and accurate control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  この発明の実施による高さ制御機構を内蔵
したダイヤフラム形空気ばねの断面図である。
FIG. 1 is a cross-sectional view of a diaphragm air spring incorporating a height control mechanism according to an embodiment of the invention.

【図2】  この発明の実施による接触式の高さ測定機
構を示す説明図である。
FIG. 2 is an explanatory diagram showing a contact-type height measuring mechanism according to the embodiment of the present invention.

【図3】  この発明の他の実施による超音波による非
接触式の高さ測定機構を示す説明図である。
FIG. 3 is an explanatory diagram showing a non-contact height measuring mechanism using ultrasonic waves according to another embodiment of the present invention.

【図4】  この発明の第3の実施によるレーザーによ
る非接触式の高さ測定機構を示す説明図である。
FIG. 4 is an explanatory diagram showing a non-contact height measuring mechanism using a laser according to a third embodiment of the present invention.

【図5】従来のロータリエンコーダによる高さ計設置状
態を示す鉄道台車の要部の説明図である。
FIG. 5 is an explanatory diagram of main parts of a railway bogie showing a state in which a height meter using a conventional rotary encoder is installed.

【図6】  図5のロータリエンコーダにおける連結棒
の動きを示す説明図である。
6 is an explanatory diagram showing the movement of a connecting rod in the rotary encoder of FIG. 5. FIG.

【符号の説明】[Explanation of symbols]

1  空気ばね 2  外筒 3  内筒 4  ダイヤフラム 5  高さ測定装置 6  マグネスケールまたは差動トランス7  リニア
ベアリング 8  測定棒 9  接触子 10  測定面 11  超音波測定子 12  送波信号発生器 13  パルス変調器 14  送波増幅器 15  増幅器 16  距離演算器 17  制御器 18  光源 19  CCDカメラ 20  画像処理器 21  演算器 22  側ばり 23  車体 24  連結棒 25  ロータリエンコーダ 26  レバー
1 Air spring 2 Outer cylinder 3 Inner cylinder 4 Diaphragm 5 Height measuring device 6 Magnescale or differential transformer 7 Linear bearing 8 Measuring rod 9 Contactor 10 Measuring surface 11 Ultrasonic measuring element 12 Transmission signal generator 13 Pulse modulator 14 Transmission amplifier 15 Amplifier 16 Distance calculator 17 Controller 18 Light source 19 CCD camera 20 Image processor 21 Arithmetic unit 22 Side beam 23 Vehicle body 24 Connecting rod 25 Rotary encoder 26 Lever

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  空気ばねのダイヤフラム内において、
内筒と外筒間の距離を計測して演算処理する測定機構を
設け、演算により求めた測定値をばね高さ制御に使用す
るように構成した高さ測定装置を内蔵した空気ばね。
[Claim 1] Within the diaphragm of the air spring,
An air spring with a built-in height measuring device that is equipped with a measuring mechanism that measures and calculates the distance between the inner cylinder and the outer cylinder, and uses the calculated measured value for spring height control.
JP4607291A 1991-02-18 1991-02-18 Air spring provided with height measuring device Pending JPH04266632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4607291A JPH04266632A (en) 1991-02-18 1991-02-18 Air spring provided with height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4607291A JPH04266632A (en) 1991-02-18 1991-02-18 Air spring provided with height measuring device

Publications (1)

Publication Number Publication Date
JPH04266632A true JPH04266632A (en) 1992-09-22

Family

ID=12736794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4607291A Pending JPH04266632A (en) 1991-02-18 1991-02-18 Air spring provided with height measuring device

Country Status (1)

Country Link
JP (1) JPH04266632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844116A1 (en) * 1996-11-21 1998-05-27 ContiTech Luftfedersysteme GmbH Air spring system for a motor vehicle
WO2001070526A1 (en) * 2000-03-20 2001-09-27 Intech Thüringen Gmbh Pneumatic shock-absorber
JP2012192820A (en) * 2011-03-16 2012-10-11 Kawasaki Heavy Ind Ltd System for controlling railroad vehicle
JP2016159809A (en) * 2015-03-03 2016-09-05 株式会社総合車両製作所 Air spring height adjustment device of bogie for railway vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844116A1 (en) * 1996-11-21 1998-05-27 ContiTech Luftfedersysteme GmbH Air spring system for a motor vehicle
WO2001070526A1 (en) * 2000-03-20 2001-09-27 Intech Thüringen Gmbh Pneumatic shock-absorber
US6568665B2 (en) 2000-03-20 2003-05-27 Intech Thüringen Gmbh Pneumatic shock-absorber
JP2003528265A (en) * 2000-03-20 2003-09-24 インテク チューリンゲン ゲーエムベーハー Pneumatic shock absorber
JP4966467B2 (en) * 2000-03-20 2012-07-04 コンティテック ルフトフェデルシステメ ゲーエムベーハー Secondary buffer system
JP2012192820A (en) * 2011-03-16 2012-10-11 Kawasaki Heavy Ind Ltd System for controlling railroad vehicle
JP2016159809A (en) * 2015-03-03 2016-09-05 株式会社総合車両製作所 Air spring height adjustment device of bogie for railway vehicle

Similar Documents

Publication Publication Date Title
JP4966467B2 (en) Secondary buffer system
US8761973B2 (en) Suspension failure detection in a rail vehicle
GB2250587A (en) An arrangement for contactless measurement of the distance between the rails of a track
CN106184268B (en) A kind of active control anti-side roll method
JP2010188958A (en) Track vehicle
JPH04266632A (en) Air spring provided with height measuring device
KR102258396B1 (en) Acoustic roughness measurement of a rail using a multi displacement sensor
Hur et al. Steering performance evaluation of active steering system for a railway vehicle by simulating real track running
JPH10339629A (en) Measuring device
Park et al. Design and analysis of an active steering bogie for urban trains
DK0736438T3 (en) Rail car with variable trolley box
CA2225040C (en) Rail vehicle comprising a single-axle bogie
GB1347746A (en) Brake system for a railroad car
JP3388912B2 (en) Air spring and method of measuring and controlling height of air spring
JPH08216880A (en) Air spring gear for rolling stock
FR3096951B1 (en) Data communication system for railway vehicle
JP2005001520A (en) Height control device for railway vehicle
JP4293097B2 (en) Diagnosis method for body vibration control device of railway vehicle
JPH09288047A (en) Method for restricting and steering of running vehicle on test board and apparatus for execution of the method
AU2003203595B2 (en) Configuration for checking the clamping force of a coupling configuration for a transport assembly in a cableway system
JP2003118571A (en) Vibration suppressing device for rolling stock
RU2236971C2 (en) Device for measuring wear of rail head side surface
JPS61159105A (en) Noncontact type measuring instrument for profile of road surface
KR20240134975A (en) Vibration Control Components
US460521A (en) Fifth to frank b