JPH0426600A - Production of sic whisker - Google Patents

Production of sic whisker

Info

Publication number
JPH0426600A
JPH0426600A JP12828090A JP12828090A JPH0426600A JP H0426600 A JPH0426600 A JP H0426600A JP 12828090 A JP12828090 A JP 12828090A JP 12828090 A JP12828090 A JP 12828090A JP H0426600 A JPH0426600 A JP H0426600A
Authority
JP
Japan
Prior art keywords
particle size
starting material
whiskers
raw material
sic whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12828090A
Other languages
Japanese (ja)
Inventor
Takaomi Sugihara
孝臣 杉原
Itsuro Imazu
逸郎 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP12828090A priority Critical patent/JPH0426600A/en
Publication of JPH0426600A publication Critical patent/JPH0426600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce SiC whiskers having properties including a prescribed average diameter and diameter distribution under control by regulating the particle size of powdery starting material as an Si source to a specified range in production with a solid starting material system. CONSTITUTION:A starting material mixture of starting material as an Si source with carbon is heated to a reaction temp. range in a non-oxidizing atmosphere and SiC whiskers are formed. In this method, the particle size of the starting material as an Si source is regulated to a certain range of <=250mum by classification. The particle size of the starting material affects properties of formed whiskers, especially the average diameter and diameter distribution and the average diameter is reduced by reducing the particle size. In the case of >250mum particle size, unreacted starting material remains in large quantities, segregation is caused and the yield of formation is remarkably reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合強化材として有用なSiCウィスカーの
製造方法に係り、とくに平均直径のサイズを制御するこ
とができるSiCウィスカーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing SiC whiskers useful as composite reinforcing materials, and particularly to a method for producing SiC whiskers whose average diameter size can be controlled.

を従来の技術〕 SiCの針状単結晶で構成されるウィスカーは、比強度
、比弾性率、耐熱性、化学的安定性などの面で卓越した
性能特性を有することから各種のプラスチック材、金属
材あるいはセラミックス材の複合強化材としてを用され
ている。
[Conventional technology] Whiskers composed of acicular single crystals of SiC have excellent performance characteristics in terms of specific strength, specific modulus of elasticity, heat resistance, chemical stability, etc., and are therefore used in various plastic materials and metals. It is used as a composite reinforcement material for ceramic materials.

SiCウィスカーによる複合化は繊維強化を狙いとする
ものであるから、例えばプラスチック母材を対象にして
一方向性の複合強化を目的とする場合には配向性の良好
な細い直径で長い性状のものが適している。ところが、
破壊靭性に乏しいセラミックス材の複合強化においては
、組織内部に分散したウィスカーがセラミックス体に発
生するクランクの成長を停止または抑制すると共に、ク
ラック進行方向を屈曲化させて応力集中を緩和する機能
をはたし、さらにウィスカーの引き抜き作用によりクラ
ック先端でのエネルギーを吸収するの現象等による高靭
化をもたらすため、ウィスカーの性状として直径の大き
な径太タイプのものを複合させることが効果的であるこ
とが確認されている。その他、−度複合化した材料をさ
らに押出、鍛造などの二次加工を施すケースでも、二次
加工時の応力に伴うウィスカーの損傷を最小限に止める
ために径太で短長タイプのものが好適とされている。
Composite formation using SiC whiskers is aimed at reinforcing fibers, so for example, when aiming at unidirectional composite reinforcement of a plastic base material, it is necessary to use SiC whiskers with a thin diameter and long properties that have good orientation. is suitable. However,
In composite reinforcement of ceramic materials with poor fracture toughness, whiskers dispersed within the structure have the function of stopping or suppressing the growth of cranks that occur in the ceramic body, as well as bending the direction of crack propagation and relieving stress concentration. However, in order to achieve higher toughness due to the phenomenon of absorbing energy at the tip of the crack due to the pulling action of the whiskers, it is effective to combine whiskers with large diameter types. has been confirmed. In addition, even in cases where a composite material is subjected to secondary processing such as extrusion or forging, thick and short length types are used to minimize whisker damage caused by stress during secondary processing. It is considered suitable.

このようにSiCウィスカーの性状は複合化するマトリ
ックスの種類、複合目的などによって要求タイプが異な
ってきており、特に平均直径に対するグレード要求が厳
しくなっている。
As described above, the requirements for the properties of SiC whiskers are changing depending on the type of matrix to be composited, the composite purpose, etc., and in particular, the grade requirements for the average diameter are becoming stricter.

従来、SiCウィスカーの生成手段として気相原料系お
よび固相原料系によるものとが知られているが、このう
ち現状で最も工業的な量産技術とされている固相原料系
による製造方法(例えば、特公昭60−44280号公
報、特開昭61−102416号公報)によって生成S
iCウィスカーの直径を制御でき、かつバラツキを少な
くすることができれば前記のグレード要求に十分対応す
ることが可能となる。
Conventionally, methods for producing SiC whiskers using a gas phase raw material system and a solid phase raw material system are known, but among these, the manufacturing method using a solid phase raw material system, which is currently considered the most industrial mass production technology (for example, , Japanese Patent Publication No. 60-44280, Japanese Patent Application Laid-Open No. 61-102416)
If the diameter of the iC whisker can be controlled and variations can be reduced, it will be possible to fully meet the above grade requirements.

特開平2−18399号公報にはこの目的を達成するた
めに、触媒の存在下に固体状ケイ素原料と固体状炭素原
料を非酸化性雰囲気下で加熱し、昇温させ、1400〜
1600℃の温度に保持、反応させて、炭化ケイ素ウィ
スカーを製造する方法において、反応開始温度以後、昇
温工程を不活性ガス雰囲気下で行ない、その後、水素雰
囲気に切り換えることを特徴とする炭化ケイ素ウィスカ
ーの製造方法が提案されている。
In order to achieve this objective, JP-A-2-18399 discloses that a solid silicon raw material and a solid carbon raw material are heated in a non-oxidizing atmosphere in the presence of a catalyst, the temperature is raised to 1400~
A method for producing silicon carbide whiskers by maintaining and reacting at a temperature of 1600°C, characterized in that after the reaction start temperature, a temperature raising step is performed in an inert gas atmosphere, and then the silicon carbide atmosphere is switched to a hydrogen atmosphere. A method for producing whiskers has been proposed.

〔発明が解決しようとする課題) しかしながら、特開平2−18399号公報の方法によ
る場合には高温反応炉内に水素ガスを流入しなければな
らないため、損業に危険性を伴う上にコスト高となる問
題点がある。
[Problems to be Solved by the Invention] However, in the method disclosed in JP-A-2-18399, hydrogen gas must be introduced into the high-temperature reactor, which poses a risk to business and increases costs. There is a problem.

本発明は、珪素源原料粉末の粒度を分級調整することに
より生成するSiCウィスカーの平均直径を制御化する
製造技術を開発したもので、その目的は固相原料系にお
いて操業性、経済性などを損ねることなしに所定の平均
直径ならびに分布を備える性状に制御生成することがで
きるSiCウィスカーの製造方法を提供するにある。
The present invention has developed a manufacturing technology that controls the average diameter of SiC whiskers produced by classifying and adjusting the particle size of silicon source raw material powder.The purpose of this is to improve operability, economic efficiency, etc. in solid phase raw material systems. It is an object of the present invention to provide a method for manufacturing SiC whiskers that can be produced in a controlled manner to have properties with a predetermined average diameter and distribution without deterioration.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明によるSiCウィス
カーの製造方法は、珪素源原料と炭材との粉末混合原料
を非酸化雰囲気中で反応温度域に加熱処理してSiCウ
ィスカーを生成させる方法において、珪素源原料粉末を
250μm以下の微細領域で一定粒度範囲に分級調整す
ることを構成上の特徴とするものである。
A method for producing SiC whiskers according to the present invention to achieve the above object is a method of producing SiC whiskers by heating a powdered mixed raw material of a silicon source material and a carbonaceous material to a reaction temperature range in a non-oxidizing atmosphere. The structural feature is that the silicon source raw material powder is classified and adjusted to a certain particle size range in a fine region of 250 μm or less.

本発明に用いられる珪素源原料としては、シリカゲル、
珪砂、石英粉、無機珪酸塩、有機珪素化合物など珪素成
分を含有する物質を挙げることができ、中でもSiO□
を主成分とするシリカゲル、石英粉、珪砂算の使用が有
効である。
The silicon source materials used in the present invention include silica gel,
Examples include substances containing silicon components such as silica sand, quartz powder, inorganic silicates, and organic silicon compounds, among which SiO□
It is effective to use silica gel, quartz powder, and silica sand whose main ingredients are silica gel, quartz powder, and silica sand.

炭材としては、カーボンブランク、コークス粉、黒鉛粉
、粉末活性炭などが使用できるが、最も好適な炭材はカ
ーボンブランクである。カーボンブラックを適用する場
合には、ファーネスブラック、チャンネルブランク、ア
セチレンブラック等の品種は問わないが、とくにDBP
吸油量が100m/100g以上の特性を有するものが
有効に使用される。
As the carbon material, carbon blank, coke powder, graphite powder, powdered activated carbon, etc. can be used, but the most suitable carbon material is carbon blank. When applying carbon black, it does not matter whether it is furnace black, channel blank, acetylene black, etc., but especially DBP.
Those having an oil absorption of 100 m/100 g or more are effectively used.

触媒としては、Fe、Co、Ni、Caおよびそれらの
酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩から選択され
た金属系成分が用いられる。
As the catalyst, a metal component selected from Fe, Co, Ni, Ca, and their oxides, chlorides, carbonates, sulfates, and nitrates is used.

珪素源原料、炭材および触媒成分は粉末状態で均一に混
合されるが、この際の混合順序として予め珪素源原料に
触媒成分を添加混合してから炭材と混合すると3成分の
均質な混合化が円滑に進行する。原料成分の配合は、珪
素源原料に対する炭材の割合を60〜120重量%の範
囲に設定し、触媒は珪素源原料中のSi1モルに対し金
属として0゜03モル以上に相当する配合量で混合原料
に添加することが好ましい、この場合、触媒の配合量が
金属として0.03モル未満に相当する量比では直径1
゜5μm以上のSiCウィスカーを生成させることが困
難となる。しかし、配合量が0,3モルを越えると得ら
れるSiCウィスカーの形状が悪くなる傾向を与えるた
め、触媒配合量の上限は、0.3モルに設定することが
望ましい。
The silicon source material, carbonaceous material, and catalyst component are mixed uniformly in a powder state, but if the catalyst component is added and mixed to the silicon source material in advance and then mixed with the carbonaceous material, the three components will be homogeneously mixed. development will proceed smoothly. The blending of the raw material components is such that the ratio of carbonaceous material to the silicon source raw material is set in the range of 60 to 120% by weight, and the catalyst is blended in an amount equivalent to 0.03 mol or more as metal per 1 mol of Si in the silicon source raw material. It is preferable to add the catalyst to the mixed raw material. In this case, if the amount of catalyst is less than 0.03 mol as metal,
It becomes difficult to generate SiC whiskers with a diameter of 5 μm or more. However, if the amount exceeds 0.3 mol, the shape of the resulting SiC whiskers tends to deteriorate, so it is desirable to set the upper limit of the amount of catalyst to be 0.3 mol.

本発明の主要な要件は、上記の成分系において珪素源原
料粉末を250μm以下の微細領域で一定粒度範囲に分
級調整することである。珪素源原料粉末の粒度上限を2
50μ謹に設定するのは、この粒度がzso a−より
大きくなると生成後に未反応の珪素源原料成分が多量に
残留・偏析する結果を招くためである。一定粒度範囲に
分級調整するとは、250μm以下の微細領域において
、例えば150〜250 μm 、100〜150 μ
m 、50〜100 ttm、50μ■以下というよう
に一定の分布幅範囲に粒度を揃えることである。粉砕お
よび分級は、通常のミクロンセパレーターなどを用いて
おこなうことができる。
The main requirement of the present invention is to classify and adjust the silicon source raw material powder in the above-mentioned component system to a certain particle size range in a fine region of 250 μm or less. The upper limit of particle size of silicon source raw material powder is 2
The reason why the particle size is set to 50 μm is that if the particle size is larger than zso a-, a large amount of unreacted silicon source raw material components will remain and segregate after generation. Adjusting the classification to a certain particle size range means, for example, 150 to 250 μm, 100 to 150 μm in a fine region of 250 μm or less.
The particle size is to be aligned within a certain distribution width range, such as m, 50 to 100 ttm, and 50 μm or less. Grinding and classification can be performed using a normal micron separator or the like.

珪素源原料、炭材および特定量の金属系触媒を含む原料
成分は、黒鉛のような高耐熱性材料で構成された反応容
器に軽く充填して密閉し、窒素、アルゴン等の非酸化性
雰囲気に保持された加熱炉で反応温度域に加熱される。
The raw material components, including the silicon source material, carbonaceous material, and a specific amount of metal catalyst, are lightly filled into a reaction vessel made of a highly heat-resistant material such as graphite, sealed, and placed in a non-oxidizing atmosphere such as nitrogen or argon. It is heated to the reaction temperature range in a heating furnace maintained at .

この際、加熱処理の条件は昇温速度を5〜b/薯in、
 、反応温度を1600〜1900℃に設定する。より
好適な条件は、昇温速度10〜30”C/win、 、
反応温度161O〜1700℃の範囲にすることである
At this time, the conditions for the heat treatment are a temperature increase rate of 5 to 5 b/in;
, the reaction temperature is set at 1600-1900°C. More suitable conditions are a temperature increase rate of 10 to 30"C/win,
The reaction temperature is to be in the range of 1610 to 1700°C.

昇温速度が5℃/sin未満であると径大のSiCウィ
スカーを生成することが困難となり、40℃/−!nを
上潮る場合には原料組織中の温度勾配が大きくなるため
か、生成ウィスカー形状に異形化およびバラツキが増大
する傾向を招く、また、反応温度が1600℃未満では
SiCウィスカーの生成が円滑に進行しなくなる上に珪
素源原料の残留が多くなり、1900℃を越える高温域
ではウィスカー形状の異形化が増大し、同時にウィスカ
ーの粒状化が始まってショットの混在が増える。
If the temperature increase rate is less than 5°C/sin, it will be difficult to generate large-diameter SiC whiskers, and the heating rate will be 40°C/-! If n is increased, the temperature gradient in the raw material structure increases, which tends to increase the irregular shape and variation in the shape of the generated whiskers.In addition, if the reaction temperature is less than 1600 °C, the generation of SiC whiskers is smooth. In addition, more silicon source raw materials remain, and in a high temperature range exceeding 1900° C., the shape of the whiskers increases, and at the same time, the whiskers begin to become granular and the number of shots increases.

反応後、反応容器中に残留する未反応の炭材成分を焼却
処理によって除去する。
After the reaction, unreacted carbonaceous components remaining in the reaction vessel are removed by incineration.

このようにして得られるSiCウィスカーは、淡緑白色
を呈する格子欠陥のないSiCの針状単結晶で、珪素源
原料粉末の分級調整度合に応じて平均直径、アスペクト
比などが異なる所望の形状を呈する。
The SiC whiskers obtained in this way are acicular single crystals of SiC with no lattice defects and exhibit a pale greenish white color, and can have a desired shape with different average diameters, aspect ratios, etc. depending on the degree of classification adjustment of the silicon source material powder. present.

〔作 用〕[For production]

固体原料系によりSiCウィスカーを製造する場合には
、珪素源原料粉末の粒度が生成ウィスカーの性状、とく
に平均直径およびその分布に影響を与える。この関係は
、粒度が小さくなると平均直径は細くなり、粒度が大き
くなると平均直径は太くなる傾向を示すが、粒度が25
0μmを越えると未反応の珪素源原料が多量に残留・偏
析するため、生成収率を著しく減退させる。
When producing SiC whiskers using a solid raw material system, the particle size of the silicon source raw material powder influences the properties of the produced whiskers, particularly the average diameter and its distribution. This relationship shows that as the particle size decreases, the average diameter becomes thinner, and as the particle size increases, the average diameter tends to become thicker.
If it exceeds 0 μm, a large amount of unreacted silicon source material remains and segregates, which significantly reduces the production yield.

本発明は、上記の技術的因果関係を巧みに利用し、用い
る珪素源原料粉末を250μm以下の微細領域で一定粒
度範囲に分級調整することにより、生成するSiCウィ
スカーの平均直径および分布を所定のレベルに制御化す
ることを可能にしたものである。
The present invention skillfully utilizes the above-mentioned technical cause-and-effect relationship, and classifies and adjusts the silicon source raw material powder to be used within a certain particle size range in a fine region of 250 μm or less, thereby controlling the average diameter and distribution of the SiC whiskers to be produced. This makes it possible to control the level.

そのうえ、本発明のプロセスでは操業性、経済性を後退
させる要因はないから、平均直径を主体とした所望性状
の複合強化材用SiCウィスカーを個別的に量産するた
めの技術として極めて有用である。
Moreover, since the process of the present invention does not have any factors that reduce operability and economic efficiency, it is extremely useful as a technique for individually mass-producing SiC whiskers for composite reinforcing materials with desired properties mainly based on average diameter.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比しながら説明する
Examples of the present invention will be described below while comparing them with comparative examples.

実施例1〜3、比較例 珪素源原料として粒度が75μm以下、75〜150μ
m 、150〜250 μmの3種類に分級調整した石
英粉33.3gを用い、触媒として粒径8〜9μ藁のF
e粉末2g(石英粉中のSilmol に対し0.06
5moI相当量)を加えて攪拌混合した。
Examples 1 to 3, Comparative Example Particle size of silicon source material is 75 μm or less, 75 to 150 μm
Using 33.3 g of quartz powder classified into three types, 150 to 250 μm, F of straw with a particle size of 8 to 9 μm was used as a catalyst.
2g of e powder (0.06 for Silmol in quartz powder)
(equivalent to 5 moI) was added and mixed with stirring.

ついで、カーボンブラック炭材40gを配合し均一に撹
拌混合した。炭材用のカーボンブランクとしては、DB
P@油量130 m/100g 、よう素吸着量104
謹g/gの特性を有するファーネスブランク〔東海カー
ボン■製、”5EAST 5)1” )を用いた。
Next, 40 g of carbon black carbon material was added and uniformly mixed by stirring. As a carbon blank for carbonaceous materials, DB
P@oil amount 130 m/100g, iodine adsorption amount 104
A furnace blank [manufactured by Tokai Carbon ■, "5EAST 5) 1"] having a characteristic of 1.5 g/g was used.

この粉末混合原料を高純度黒鉛製の反応容器に軽く充填
し、上部に黒鉛蒼を付して窒素ガス雰囲気に保持された
電気抵抗加熱炉に入れた。炉を10”(/sin、の昇
温速度で1640℃まで上昇させ、2時間保持して反応
生成させた。
This powder mixed raw material was lightly filled into a reaction vessel made of high-purity graphite, the top of which was coated with graphite blue, and placed in an electric resistance heating furnace maintained in a nitrogen gas atmosphere. The temperature of the furnace was raised to 1640° C. at a temperature increase rate of 10”/sin, and the temperature was maintained for 2 hours to generate a reaction.

加熱反応後、反応容器から内容物を回収し、大荒中で6
00℃の温度に熱処理して残留する炭材成分を焼却除去
した。
After the heating reaction, the contents were collected from the reaction vessel and placed in a large tank for 6 minutes.
The remaining carbonaceous components were removed by heat treatment at a temperature of 00° C. by incineration.

得られた生成物につきX線回折をおこなったところ、β
−5iCの原子開路82.15人、154人の波長位置
に明確なピークが現出したが、SiO□やCに相当する
回折線は確認されなかった。
When the obtained product was subjected to X-ray diffraction, β
Clear peaks appeared at the wavelength positions of -5iC atomic open circuits 82.15 and 154, but no diffraction lines corresponding to SiO□ or C were confirmed.

表1に、生成した各SiCウィスカーの平均直径および
その標準偏差値を用いた珪素源原料の粒度範囲と対比さ
せて示した。
Table 1 shows the average diameter of each SiC whisker produced and its standard deviation value in comparison with the particle size range of the silicon source material.

比較例 実施例と同一の石英粉を珪素源原料とし、粒度を細分級
せずに250μm以下の粒分布粉末を用いた。その他は
実施例と同一条件によりSiCウィスカーを製造した。
Comparative Example The same quartz powder as in the example was used as a silicon source material, and a powder with a particle size distribution of 250 μm or less was used without finely classifying the particle size. Other than that, SiC whiskers were manufactured under the same conditions as in the example.

得られたSiCウィスカーの平均直径およびその標準偏
差を表1に併せて示した。
The average diameter and standard deviation of the obtained SiC whiskers are also shown in Table 1.

表 ■ 表1から、本発明によれば分級調整された珪素源原料の
使用に応じて平均[径の異なるバラツキの少ない分布を
もつ3段階グレード性状のSiCウィスカーを製造する
ことができたが、原料粒度の分級調整をしない比較例で
はバラツキ分布の広い1種類のSiCウィスカーしか得
られないことが判明する。
Table 1 From Table 1, according to the present invention, it was possible to produce SiC whiskers with three-grade grade properties having a distribution of average diameters with little variation depending on the use of classified and adjusted silicon source materials. It is found that in the comparative example in which the raw material particle size is not classified and adjusted, only one type of SiC whisker with a wide dispersion distribution can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば一定粒度範囲に分級調整
した珪素源原料粉末を適用することによって、特に平均
直径が整った所望性状を備える高品質のSiCウィスカ
ーを操業性よく、経済的に量産することができる。
As described above, according to the present invention, high-quality SiC whiskers having desired properties with a particularly uniform average diameter can be economically mass-produced with good operability by applying silicon source raw material powder classified to a certain particle size range. can do.

したがって、要求形状に沿う多様の複合強化材を供給す
る生産体制を整えることが可能となる。
Therefore, it is possible to set up a production system that supplies a variety of composite reinforcing materials that meet the required shapes.

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也 平成2年7月10日Applicant: Tokai Carbon Co., Ltd. Agent: Patent Attorney Masaya Takahata July 10, 1990

Claims (1)

【特許請求の範囲】 1、珪素源原料と炭材との粉末混合原料を非酸化雰囲気
中で反応温度域に加熱処理してSiCウィスカーを生成
させる方法において、珪素源原料粉末を250μm以下
の微細領域で一定粒度範囲に分級調整するすることを特
徴とするSiCウィスカーの製造方法。 2、反応温度域を1600〜1900℃の範囲に設定す
る請求項1記載のSiCウィスカーの製造方法。
[Claims] 1. In a method of generating SiC whiskers by heating a powder mixture of a silicon source raw material and a carbonaceous material to a reaction temperature range in a non-oxidizing atmosphere, the silicon source raw material powder is finely divided into particles of 250 μm or less. 1. A method for producing SiC whiskers, which comprises classifying and adjusting the particle size within a certain range. 2. The method for producing SiC whiskers according to claim 1, wherein the reaction temperature range is set in the range of 1600 to 1900°C.
JP12828090A 1990-05-17 1990-05-17 Production of sic whisker Pending JPH0426600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12828090A JPH0426600A (en) 1990-05-17 1990-05-17 Production of sic whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12828090A JPH0426600A (en) 1990-05-17 1990-05-17 Production of sic whisker

Publications (1)

Publication Number Publication Date
JPH0426600A true JPH0426600A (en) 1992-01-29

Family

ID=14980922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12828090A Pending JPH0426600A (en) 1990-05-17 1990-05-17 Production of sic whisker

Country Status (1)

Country Link
JP (1) JPH0426600A (en)

Similar Documents

Publication Publication Date Title
US4500504A (en) Process for preparing silicon carbide whiskers
CN1159260C (en) Metallic carbide-group VIII metal powder and its preparation
US4283375A (en) Production of SiC whiskers
KR20070050983A (en) Metal carbides and process for producing same
JP2009538990A (en) Grain refiner for steel, production method and use thereof
Simonenko et al. Preparation of HfB 2/SiC composite powders by sol–gel technology
US4690811A (en) Process for preparing silicon carbide whiskers
US5221526A (en) Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
CN1289391C (en) Method for producing tungsten carbide
JPH0426600A (en) Production of sic whisker
CN115231911B (en) In situ reaction Polymer conversion Sc 2 Si 2 O 7 -SiOC complex phase ceramic and preparation method thereof
JPS58213617A (en) Production of titanium carbonitride powder
JPH04182400A (en) Production of sic whiskers
CN104313678B (en) Whisker-like SiC/Si3N4/Si2N2O composite powder and preparation method thereof
US20030173693A1 (en) Method for producing agglomerated boron carbide
JPH0383900A (en) Single-crystal silicon-carbide fiber and its manufacture
JPH04160012A (en) Production of fine born carbide powder
JPH0649639B2 (en) Method for manufacturing SiC whiskers
JPH0431399A (en) Production of sic whisker
JPH05132307A (en) Method for producing finely granulated silicon carbide
JPH01172205A (en) Raw material composition for producing metal carbide
JPH04154700A (en) Production of sic whisker
CN117620190A (en) Preparation method of high-purity superfine rhenium powder
JPH0517198B2 (en)
JPH07237915A (en) Fine particulate chromium carbide and method for producing the same