JPH04265157A - Hydrogenation refining catalyst and its production - Google Patents

Hydrogenation refining catalyst and its production

Info

Publication number
JPH04265157A
JPH04265157A JP41654090A JP41654090A JPH04265157A JP H04265157 A JPH04265157 A JP H04265157A JP 41654090 A JP41654090 A JP 41654090A JP 41654090 A JP41654090 A JP 41654090A JP H04265157 A JPH04265157 A JP H04265157A
Authority
JP
Japan
Prior art keywords
catalyst
compound
hydrorefining
silica
carrier material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41654090A
Other languages
Japanese (ja)
Inventor
Toshiki Hamaya
浜谷 敏樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP41654090A priority Critical patent/JPH04265157A/en
Publication of JPH04265157A publication Critical patent/JPH04265157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a hydrogenation refining catalyst enabling efficient desulfurization, denitrification and hydrogenation of petroleum fraction by hydrogenation refining. CONSTITUTION:A silica-alumina carrier contg. 2-35wt.% silica is prepd. and 0.1-1.1wt.% PdO, 2.0-6.0wt.% CoO and 10-20wt.% MoO3 are supported on the carrier to obtain a hydrogenation refining catalyst. This catalyst has high catalytic performance to desulfurization, denitrification and hydrogenation and attains >=115 relative desulfurization activity and >=115 relative denitrification activity to light oil.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化水素を水素化精製
処理する際に使用する水素化精製触媒に関し、特に石油
留分等の炭化水素の脱硫、脱窒素及び水添を効率よく行
なうことを可能とした水素化精製触媒及びその製造方法
に関する。
[Industrial Application Field] The present invention relates to a hydrorefining catalyst used in hydrorefining hydrocarbons, particularly for efficiently desulfurizing, denitrifying, and hydrogenating hydrocarbons such as petroleum fractions. The present invention relates to a hydrorefining catalyst and a method for producing the same.

【0002】0002

【従来の技術】例えば石油留分のナフサから減圧軽油に
至るまでの留分は、原油に由来する硫黄、窒素等の不純
物を含んでいるので、これらの不純物を水素化精製処理
によって除去することを行なっている。
[Prior Art] For example, petroleum fractions ranging from naphtha to vacuum gas oil contain impurities such as sulfur and nitrogen derived from crude oil, so these impurities must be removed by hydrorefining treatment. is being carried out.

【0003】水素化精製処理は、担体に触媒金属を担持
した水素化精製触媒の触媒層が設けられた反応容器内に
例えばナフサを水素と共に流してナフサ中の炭化水素へ
水素を添加し、これにより硫黄をH2 S、窒素をNH
3として除去し、同時に芳香族やオレフィンなどの不飽
和炭化水素を飽和炭化水素へと転換するものである。
[0003] In hydrorefining treatment, for example, naphtha is poured together with hydrogen into a reaction vessel provided with a catalyst layer of a hydrorefining catalyst in which a catalytic metal is supported on a carrier, and hydrogen is added to the hydrocarbons in the naphtha. sulfur by H2S and nitrogen by NH
3, and at the same time converts unsaturated hydrocarbons such as aromatics and olefins into saturated hydrocarbons.

【0004】0004

【発明が解決しようとする課題】上記の水素化精製触媒
として、従来、アルミナ、シリカ−アルミナを担体とし
て、これに触媒金属としてFe、Co、Ni等のVII
I族金属、Mo、W等のVIB族金属を担持したものが
知られているが、脱硫、脱窒素及び水添の全てに対する
高い触媒活性を有するものはなく、1種類の触媒で脱硫
、脱窒素及び水添を良好に行なうことはできなかった。
[Problems to be Solved by the Invention] Conventionally, as the above-mentioned hydrorefining catalyst, alumina, silica-alumina is used as a carrier, and VII such as Fe, Co, Ni, etc. is used as a catalytic metal.
Catalysts that support Group I metals, Group VIB metals such as Mo, and W are known, but none have high catalytic activity for all of desulfurization, denitrification, and hydrogenation. Nitrogen and hydrogenation could not be carried out well.

【0005】更にPt、Pd等のVIII族貴金属を用
いた水素化精製触媒も試みられているが、脱硫、脱窒素
及び水添の全てに高い触媒活性を示すものを得るには至
っていない。
Furthermore, attempts have been made to develop hydrorefining catalysts using group VIII noble metals such as Pt and Pd, but none have yet been produced that exhibit high catalytic activity in all of desulfurization, denitrification, and hydrogenation.

【0006】本発明者は、かかる現状に鑑み、水素化精
製処理により石油留分等の脱硫、脱窒素及び水添等を効
率良く行なうことを可能とした水素化精製触媒を開発す
べく鋭意研究を重ねたところ、触媒金属をVIII族金
属のPd、CoとVIB族金属のMoを用いたPd−C
o−Moの3元系にすればよいことが分かった。
In view of the current situation, the present inventor has conducted intensive research to develop a hydrorefining catalyst that can efficiently desulfurize, denitrify, and hydrogenate petroleum fractions through hydrorefining treatment. When the catalyst metals were Pd and Co, which are group VIII metals, and Mo, which is a group VIB metal, Pd-C was used.
It was found that a ternary system of o-Mo should be used.

【0007】本発明は上記知見に基づきなされたもので
、本発明の目的は、水素化精製処理により石油留分等の
脱硫、脱窒素及び水添等を効率良く行なうことを可能と
した水素化精製触媒を提供することである。本発明の他
の目的は、上記特性を具備した水素化精製触媒の製造方
法を提供することである。
The present invention has been made based on the above findings, and an object of the present invention is to provide a hydrogenation process that enables efficient desulfurization, denitrification, hydrogenation, etc. of petroleum fractions through hydrorefining treatment. An object of the present invention is to provide a purified catalyst. Another object of the present invention is to provide a method for producing a hydrorefining catalyst having the above characteristics.

【0008】[0008]

【課題を解決するための手段】上記諸目的は本発明に係
る水素化精製触媒及びその製造方法にて達成される。要
約すれば本発明は、シリカを2〜35wt%含有するシ
リカ−アルミナ系担体に、PdOを0.1〜1.1wt
%、CoOを2.0〜6.0wt%、MoO3 を10
〜20wt%担持させたことを特徴とする水素化精製触
媒である。又本発明は、触媒金属の担持法について限定
するものではないが、本発明の水素化精製触媒の製造方
法は、好ましくは、Pdの化合物及びCoの化合物をア
ンモニア水溶液に溶解したアンミン錯塩溶液中に、シリ
カ−アルミナ系担体材料を浸漬してこれに前記Pd及び
Coをイオン交換法により担持させ、次いで前記担体材
料を風乾及び焼成した後Moの化合物の水溶液に浸漬し
て、担体材料にMoを更に担持させ、その後再度風乾及
び焼成したことを特徴とする。本発明の他の態様によれ
ば、前記の担体材料を先にMoの化合物の水溶液に浸漬
してMoを担持させ、次いで前記担体材料を風乾及び焼
成した後、Pdの化合物及びCoの化合物をアンモニア
水溶液に溶解したアンミン錯塩溶液中に浸漬して、担体
材料にPd及びCoを担持させ、その後再び風乾、焼成
し、或いは前記の担体材料をPdの化合物、Coの化合
物及びMoの化合物をアンモニア水溶液に溶解したアン
ミン錯塩溶液中に浸漬して、担体材料にPd、Co及び
Moを一度に担持させ、その後風乾、焼成することも可
能である。
[Means for Solving the Problems] The above objects are achieved by the hydrorefining catalyst and the method for producing the same according to the present invention. In summary, the present invention provides a silica-alumina support containing 2 to 35 wt% of silica and 0.1 to 1.1 wt. of PdO.
%, CoO 2.0-6.0wt%, MoO3 10
This is a hydrorefining catalyst characterized by supporting ~20 wt%. Furthermore, although the present invention does not limit the method of supporting the catalyst metal, the method for producing the hydrorefining catalyst of the present invention is preferably carried out in an ammine complex salt solution in which a Pd compound and a Co compound are dissolved in an aqueous ammonia solution. A silica-alumina support material is immersed to support the Pd and Co by an ion exchange method, and then the support material is air-dried and calcined, and then immersed in an aqueous solution of a Mo compound to add Mo to the support material. is further supported, and then air-dried and fired again. According to another aspect of the present invention, the carrier material is first immersed in an aqueous solution of a compound of Mo to support Mo, and then the carrier material is air-dried and calcined, and then a compound of Pd and a compound of Co are added to the carrier material. The carrier material is immersed in an ammine complex salt solution dissolved in an aqueous ammonia solution to support Pd and Co, and then air-dried and fired again, or the carrier material is coated with a Pd compound, a Co compound, and a Mo compound in ammonia. It is also possible to make the carrier material support Pd, Co, and Mo at once by immersing it in an ammine complex salt solution dissolved in an aqueous solution, and then air drying and firing.

【0009】[0009]

【実施例】以下、本発明について詳細に説明する。EXAMPLES The present invention will be explained in detail below.

【0010】本発明の水素化精製触媒は、触媒金属がP
dO、CoO、MoO3 の酸化物の形のPd−Co−
Moの3元系からなり、優れた脱硫、脱窒素及び水添効
率を有し、石油留分等の炭化水素を低温度、低圧力、高
液空間速度で水素化精製処理をすることができるもので
ある。本発明の触媒を用いた水素化精製処理の対象とす
る炭化水素は、限定されるものではないが、好ましくは
石油留分、特にナフサから減圧軽油までの石油留分が好
適である。
[0010] In the hydrorefining catalyst of the present invention, the catalytic metal is P.
Pd-Co- in the form of oxides of dO, CoO, MoO3
It is composed of a ternary Mo system, has excellent desulfurization, denitrification, and hydrogenation efficiency, and can hydrorefinize hydrocarbons such as petroleum fractions at low temperature, low pressure, and high liquid space velocity. It is something. Hydrocarbons to be subjected to hydrorefining treatment using the catalyst of the present invention are not limited, but petroleum fractions, particularly petroleum fractions from naphtha to vacuum gas oil, are suitable.

【0011】本発明のPd−Co−Moの3元系触媒に
よれば、脱硫、脱窒素及び水添に対する活性が高く、水
素化精製処理の対象とする炭化水素にもよるが、常圧軽
油に対しての場合、相対脱硫活性115以上、相対脱窒
素活性115以上の触媒性能を有する。
[0011] The Pd-Co-Mo ternary catalyst of the present invention has high activity for desulfurization, denitrification, and hydrogenation, and depending on the hydrocarbon to be hydrorefined, it can be used for atmospheric gas oil In the case of catalytic performance, the relative desulfurization activity is 115 or more, and the relative denitrification activity is 115 or more.

【0012】本発明の水素化精製触媒は、担体としてシ
リカ−アルミナ系担体が使用される。それは、アルミナ
にシリカを添加すると担体の比表面積が増大し、又固体
酸性が付与され、炭素−硫黄結合開裂に伴う脱硫反応、
炭素−窒素結合開裂に伴う脱窒素反応を増加させること
ができるからである。このシリカは触媒の耐硫黄被毒性
と炭化水素分解活性に影響を与え、シリカ含有量が2w
t%未満であると触媒の耐硫黄被毒性が低下し、水素化
活性が低下する一方、35wt%を超えると、触媒に強
い分解活性を付与するため、芳香族及び不飽和炭化水素
の水素化に好ましくなく、又石油留分等の粘度が低下す
る問題が生じる。従ってシリカ−アルミナ系担体中のシ
リカ含有量は2〜35wt%、好ましくは5〜30wt
%、より好ましくは10〜25wt%である。
In the hydrorefining catalyst of the present invention, a silica-alumina carrier is used as the carrier. When silica is added to alumina, the specific surface area of the carrier increases, solid acidity is imparted, and the desulfurization reaction accompanying the carbon-sulfur bond cleavage occurs.
This is because denitrification reactions accompanying carbon-nitrogen bond cleavage can be increased. This silica affects the sulfur poisoning resistance and hydrocarbon decomposition activity of the catalyst, and the silica content is 2w.
If it is less than t%, the resistance to sulfur poisoning of the catalyst will decrease and the hydrogenation activity will decrease, while if it exceeds 35wt%, it will impart strong decomposition activity to the catalyst, making it difficult to hydrogenate aromatic and unsaturated hydrocarbons. This is not preferable and also causes the problem that the viscosity of petroleum fractions etc. decreases. Therefore, the silica content in the silica-alumina support is 2 to 35 wt%, preferably 5 to 30 wt%.
%, more preferably 10 to 25 wt%.

【0013】シリカ−アルミナ系担体中には、マグネシ
ア、ジルコニア、チタニア、ハフニア、ボリア、天然又
は結晶性ゼオライト及び珪藻土等の耐火性無機酸化物を
少量、例えば10wt%以下の範囲で添加することがで
きる。
[0013] A small amount of refractory inorganic oxide, such as magnesia, zirconia, titania, hafnia, boria, natural or crystalline zeolite, and diatomaceous earth, may be added to the silica-alumina carrier, for example, in a range of 10 wt% or less. can.

【0014】触媒中の触媒金属Pd(パラジウム)、C
o(コバルト)、Mo(モリブデン)の含有量は、酸化
物としてPdOが0.1〜1.1wt%、CoOが2.
0〜6.0wt%、MoO3 が10〜20wt%の範
囲が好ましい。触媒中のPdOの含有量が0.1wt%
未満では、触媒の水素化活性が小さく、石油留分等の炭
化水素への水素添加による硫黄や窒素等の不純物の除去
及び不飽和炭化水素の飽和炭化水素への転換を高い効率
で行なうことができない。逆にPdOの含有量が1.1
wt%を超えると、水素化分解等の好ましくない反応が
生じ易くなり、又触媒のコストが高くなる欠点もある。 CoOの場合も同様で、触媒中のCoOの含有量が2.
0wt%未満では触媒の水素化活性が小さく、6.0w
t%を超えても同様に水素化活性が小さくなる。又触媒
中のMoO3 の含有量が10wt%未満では、脱硫、
脱窒素活性が大きなMoによる高い脱硫、脱窒素効率を
期待できず、Pd、Coによる脱硫、脱窒素効果があっ
ても硫黄、窒素を高い効率で除去できない。逆にMoO
3 の含有量が20wt%を超えると、担持されたMo
が凝集して有効に作用せず、好ましくない。従って触媒
中の触媒金属の含有量は、PdOが0.1〜1.1wt
%、CoOが2.0〜6.0wt%、MoO3 が10
〜20wt%の範囲がよく、好ましくはPdOが0.2
〜0.7wt%、CoOが3.0〜5.0wt%、Mo
O3 が12〜18wt%である。
Catalytic metal Pd (palladium) in the catalyst, C
The contents of O (cobalt) and Mo (molybdenum) are 0.1 to 1.1 wt % for PdO and 2.0 wt % for CoO as oxides.
The range of MoO3 is preferably 0 to 6.0 wt% and 10 to 20 wt%. The content of PdO in the catalyst is 0.1wt%
At less than Can not. On the other hand, the content of PdO is 1.1
If it exceeds wt%, undesirable reactions such as hydrogenolysis are likely to occur, and there is also the disadvantage that the cost of the catalyst increases. The same applies to CoO, when the CoO content in the catalyst is 2.
If it is less than 0wt%, the hydrogenation activity of the catalyst is small, and 6.0w
If it exceeds t%, the hydrogenation activity will similarly decrease. Furthermore, if the content of MoO3 in the catalyst is less than 10 wt%, desulfurization and
High desulfurization and denitrification efficiency cannot be expected due to Mo, which has high denitrification activity, and sulfur and nitrogen cannot be removed with high efficiency even if Pd and Co have desulfurization and denitrification effects. On the contrary, MoO
When the content of 3 exceeds 20 wt%, the supported Mo
is not preferable because it aggregates and does not work effectively. Therefore, the content of catalytic metal in the catalyst is 0.1 to 1.1 wt PdO.
%, CoO 2.0-6.0wt%, MoO3 10
The range of ~20 wt% is good, preferably PdO is 0.2
~0.7wt%, CoO 3.0~5.0wt%, Mo
O3 is 12 to 18 wt%.

【0015】このような含有量のPd−Co−Moの3
元系の触媒によって、Pd−Mo、Co−Moの触媒か
ら予想される以上の脱硫及び脱窒素活性が得られ、水素
化精製処理により石油留分等の炭化水素中の硫黄や窒素
、ハロゲン等を高い効率で除去でき、又芳香族やオレフ
ィンなどの不飽和炭化水素を高い効率で飽和炭化水素に
転換することができる。
[0015] 3 of Pd-Co-Mo with such content
With the base catalyst, desulfurization and denitrification activities higher than expected from Pd-Mo and Co-Mo catalysts can be obtained, and the hydrorefining treatment removes sulfur, nitrogen, and halogens from hydrocarbons such as petroleum fractions. can be removed with high efficiency, and unsaturated hydrocarbons such as aromatics and olefins can be converted into saturated hydrocarbons with high efficiency.

【0016】上記の触媒金属をシリカ−アルミナ系担体
に担持させるには、シリカとアルミナを含むコロイド水
溶液からこれらを同時に沈殿させ、或いはアルミニウム
化合物を含む水溶液をシリカに含浸することにより行な
うことができるが、簡単にはシリカ−アルミナ系担体材
料を触媒金属の化合物を含む水溶液中に浸漬することで
できる。金属触媒のPdの適当な化合物としては、塩化
パラジウム、塩化パラジウム酸等を挙げることができる
。Coの適当な化合物としては硝酸第一コバルト、硫酸
第一コバルト、フッ化第一コバルト等を、又Moの適当
な化合物としてはモリブデン酸アンモニウム、パラモリ
ブデン酸アンモニウム、モリブデン酸等を挙げることが
できる。
[0016] The above catalyst metal can be supported on a silica-alumina support by simultaneously precipitating them from a colloidal aqueous solution containing silica and alumina, or by impregnating silica with an aqueous solution containing an aluminum compound. However, this can be easily accomplished by immersing a silica-alumina support material in an aqueous solution containing a catalytic metal compound. Suitable compounds for the metal catalyst Pd include palladium chloride, palladium chloride, and the like. Suitable compounds for Co include cobaltous nitrate, cobaltous sulfate, cobaltous fluoride, etc., and suitable compounds for Mo include ammonium molybdate, ammonium paramolybdate, molybdic acid, etc. .

【0017】これらの触媒金属の化合物は、そのうちの
VIII金属Pd、Coの化合物をアンモニア水溶液に
溶解してPd及びCoのアンミン錯塩として、シリカ−
アルミナ担体材料に担持させ、次いでVIB族金属のM
oの化合物を担体材料に担持させることが、Pd、Co
、Moの高分散性の担持や触媒性能、作り易さの点から
好ましく、最も高い触媒活性が得られる。しかしながら
、上記担体材料に先にMoを担持させ、次にPd及びC
oを担持させることも、或いは担体材料にPd、Co及
びMoを一度に担持させることも可能である。
Compounds of these catalytic metals are prepared by dissolving a compound of the VIII metals Pd and Co in an ammonia aqueous solution to form an ammine complex salt of Pd and Co, and then preparing a silica
M of group VIB metal is supported on an alumina support material and then
Supporting the compound of Pd, Co, on the carrier material
, preferred from the viewpoints of highly dispersed Mo support, catalytic performance, and ease of production, and provides the highest catalytic activity. However, Mo is first supported on the carrier material, and then Pd and C are supported.
It is also possible to support Pd, Co and Mo on the carrier material at once.

【0018】従って本発明の好ましい水素化精製触媒の
製造方法は、Pdの化合物及びCoの化合物をアンモニ
ア水溶液に溶解してPd及びCoのそれぞれのアンミン
錯塩を生成し、そのアンミン錯塩溶液中にシリカ−アル
ミナ系担体材料を浸漬してこれにPd及びCoをイオン
交換法により担持させ、次いで担体材料を風乾及び焼成
した後Moの化合物の溶液に浸漬して、担体材料にMo
を更に担持させ、その後再度風乾及び焼成することから
なるものである。Pd及びCoを担持したシリカ−アル
ミナ系担体材料の焼成によりPdO及びCoOが形成さ
れ、次にMo担持した担体材料の焼成によりMoO3 
が形成され、シリカ−アルミナ系担体にPdO、CoO
及びMoO3 を担持したPd−Co−Mo3元系の水
素化精製触媒が得られる。
Therefore, in the preferred method for producing a hydrorefining catalyst of the present invention, ammine complex salts of Pd and Co are produced by dissolving a Pd compound and a Co compound in an ammonia aqueous solution, and silica is added to the ammine complex salt solution. - An alumina-based carrier material is immersed to support Pd and Co by ion exchange method, and then the carrier material is air-dried and calcined, and then immersed in a solution of a Mo compound to support Mo on the carrier material.
is further supported, and then air-dried and fired again. PdO and CoO are formed by firing the silica-alumina support material supporting Pd and Co, and then MoO3 is formed by firing the support material supporting Mo.
is formed, and PdO and CoO are formed on the silica-alumina support.
A Pd-Co-Mo ternary hydrotreating catalyst supporting MoO3 is obtained.

【0019】本発明の製造方法の他の態様によれば、前
記担体材料を先にMoの化合物の水溶液に浸漬してMo
を担持させ、次いで前記担体材料を風乾及び焼成した後
、Pdの化合物及びCoの化合物をアンモニア水溶液に
溶解したアンミン錯塩溶液中に浸漬して、担体材料にP
d及びCoを担持させ、その後再び風乾、焼成し、或い
は前記担体材料をPdの化合物、Coの化合物及びMo
の化合物をアンモニア水溶液に溶解したアンミン錯塩溶
液中に浸漬して、担体材料にPd、Co及びMoを一度
に担持させ、風乾、焼成する。
According to another aspect of the production method of the present invention, the carrier material is first immersed in an aqueous solution of a Mo compound.
Then, the carrier material is air-dried and calcined, and then immersed in an ammine complex salt solution in which a Pd compound and a Co compound are dissolved in an aqueous ammonia solution to coat the carrier material with P.
d and Co, and then air-dried and fired again, or the support material is coated with a compound of Pd, a compound of Co, and a compound of Mo.
Pd, Co, and Mo are supported on the carrier material at once by immersing the compound in an ammine complex salt solution dissolved in an ammonia aqueous solution, followed by air drying and firing.

【0020】以上のような本発明のPd−Co−Mo3
元系の水素化精製触媒によれば、石油留分等の炭化水素
の水素化精製処理に用いて、炭化水素中の硫黄や窒素等
の不純物の除去及び芳香族やオレフィン等の不飽和炭化
水素の飽和炭化水素への転換を高い効率で行なうことが
でき、その水素化精製処理の条件も低温度、低圧力、高
液空間速度とすることができる。
[0020] The Pd-Co-Mo3 of the present invention as described above
According to the original hydrorefining catalyst, it can be used in the hydrorefining treatment of hydrocarbons such as petroleum fractions to remove impurities such as sulfur and nitrogen from hydrocarbons and to remove unsaturated hydrocarbons such as aromatics and olefins. can be converted into saturated hydrocarbons with high efficiency, and the conditions for the hydrorefining treatment can be low temperature, low pressure, and high liquid hourly space velocity.

【0021】次に、本発明を具体的実施例に基づいて更
に説明する。
Next, the present invention will be further explained based on specific examples.

【0022】実施例1 シリカ−アルミナ系担体材料をPd、Coのアンミン錯
塩溶液中に浸漬してPd、Coを担持させ、風乾、焼成
後、Moの水溶液中に担体材料を浸漬してMoを担持さ
せ、風乾、焼成することにより製造した、シリカ含有量
10wt%のシリカ−アルミナ系担体に触媒金属として
PdO1.0wt%、CoO3.5wt%、MoO3 
14.0wt%を担持させた水素化精製触媒を用い、ナ
フサを原料油として、反応温度330℃、反応圧力32
kg/cm2 G、液空間速度0.97V/H/V及び
水素対原料油流量比600SCF/Bの反応条件で水素
化精製処理を行ない、そのときの相対脱硫活性及び相対
脱窒素活性を調べた。
Example 1 A silica-alumina support material was immersed in an ammine complex salt solution of Pd and Co to support Pd and Co. After air drying and firing, the support material was immersed in an aqueous solution of Mo to support Mo. 1.0 wt% of PdO, 3.5 wt% of CoO, and MoO3 as catalytic metals on a silica-alumina support with a silica content of 10 wt%, which was produced by supporting, air-drying, and firing.
Using a hydrorefining catalyst supported with 14.0 wt%, naphtha was used as the feedstock, the reaction temperature was 330°C, and the reaction pressure was 32.
The hydrorefining treatment was carried out under the reaction conditions of kg/cm2 G, liquid hourly space velocity of 0.97 V/H/V, and hydrogen to feedstock flow rate ratio of 600 SCF/B, and the relative desulfurization activity and relative denitrification activity at that time were investigated. .

【0023】用いた原料油のナフサの性状は、次の通り
である。 比重        :0.8531 硫黄含有量:1.0wt% 窒素含有量:170ppm 触媒の相対脱硫活性は、次式に基づき脱硫反応の反応速
度係数K1.7 を求めることにより評価した。 K1.7 =(S−0.7−S0−0.7 )×LHS
V但し、S:原料油の水素化精製処理後の硫黄量(wt
%)、S0 :原料油の水素化精製処理前の硫黄量(w
t%)相対脱窒素活性は、次式に基づき脱窒素反応の反
応速度係数K1.0 を求めることにより評価した。
The properties of the raw material naphtha used are as follows. Specific gravity: 0.8531 Sulfur content: 1.0 wt% Nitrogen content: 170 ppm The relative desulfurization activity of the catalyst was evaluated by determining the reaction rate coefficient K1.7 of the desulfurization reaction based on the following equation. K1.7 = (S-0.7-S0-0.7) x LHS
V However, S: Sulfur amount (wt) after hydrorefining treatment of feedstock oil
%), S0: Sulfur content (w) of feedstock oil before hydrorefining treatment
t%) Relative denitrification activity was evaluated by determining the reaction rate coefficient K1.0 of the denitrification reaction based on the following equation.

【0024】K1.0 =lnN0 /N×LHSV但
し、N:原料油の水素化精製処理後の窒素量(ppm)
、N0 :原料油の水素化精製処理前の窒素量(ppm
)。
[0024] K1.0 = lnN0 /N×LHSV However, N: Nitrogen amount after hydrorefining treatment of feedstock oil (ppm)
, N0: Nitrogen content (ppm) of raw oil before hydrorefining treatment
).

【0025】実施例2 実施例1において、水素化精製触媒の触媒金属の含有量
をPdO1.0wt%、CoO2.0wt%、MoO3
 14.0wt%とした以外は、触媒の製造方法及び水
素化精製処理条件を実施例1と同様にした。そして同様
に水素化精製処理に対する触媒の相対脱硫活性及び相対
脱窒素活性を調べた。
Example 2 In Example 1, the catalytic metal content of the hydrorefining catalyst was changed to 1.0 wt% of PdO, 2.0 wt% of CoO, and 2.0 wt% of MoO3.
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that the amount was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0026】実施例3 実施例1において、水素化精製触媒の触媒金属の含有量
をPdO1.0wt%、CoO6.0wt%、MoO3
 14.0wt%とした以外は、触媒の製造方法及び水
素化精製処理条件を実施例1と同様にした。そして同様
に水素化精製処理に対する触媒の相対脱硫活性及び相対
脱窒素活性を調べた。
Example 3 In Example 1, the catalytic metal content of the hydrorefining catalyst was changed to 1.0 wt% of PdO, 6.0 wt% of CoO, and 6.0 wt% of MoO3.
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that the amount was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0027】実施例4 触媒金属の担持させる順序を実施例1のときと異ならせ
、担体材料を先ずMoの水溶液中へ浸漬してMoを担持
させ、風乾、焼成後、次にPd、Coのアンミン錯塩溶
液中に担体材料を浸漬してPdO、CoOを担持させ、
風乾、焼成して製造した、PdO1.0wt%、CoO
3.5wt%、MoO3 14.0wt%を担持させた
水素化精製触媒を用いた以外は、実施例1と同様にして
水素化処理を行ない、そのときの相対脱硫活性及び相対
脱窒素活性を調べた。
Example 4 The order in which the catalyst metals were supported was different from that in Example 1, and the support material was first immersed in an aqueous solution of Mo to support Mo, air-dried and fired, and then Pd and Co were supported. A carrier material is immersed in an ammine complex salt solution to support PdO and CoO,
PdO1.0wt%, CoO produced by air drying and firing
Hydrotreating was carried out in the same manner as in Example 1, except that a hydrorefining catalyst supporting 3.5 wt% and 14.0 wt% of MoO3 was used, and the relative desulfurization activity and relative denitrification activity at that time were investigated. Ta.

【0028】実施例5 Pd、Co、Moのアンミン錯塩溶液を調製して、その
溶液中にシリカ−アルミナ担体材料を浸漬して、Pd、
Co、Moを一度に担持させ、風乾、焼成して製造した
、PdO1.0wt%、CoO3.5wt%、MoO3
 14.0wt%を担持させた水素化精製触媒を用いた
以外は、実施例1と同様にして水素化処理を行ない、そ
のときの相対脱硫活性及び相対脱窒素活性を調べた。
Example 5 An ammine complex salt solution of Pd, Co, and Mo was prepared, and a silica-alumina support material was immersed in the solution to prepare Pd, Co, and Mo.
PdO1.0wt%, CoO3.5wt%, MoO3 produced by supporting Co and Mo at once, air drying, and firing.
Hydrotreating was carried out in the same manner as in Example 1, except that a hydrotreating catalyst supported at 14.0 wt% was used, and the relative desulfurization activity and relative denitrification activity at that time were examined.

【0029】比較例1 実施例1において、水素化精製触媒の触媒金属の含有量
をPdO0.05wt%、CoO0.03wt%、Mo
O3 14.0wt%とした以外は、触媒の製造方法及
び水素化精製処理の条件を実施例1と同様にした。そし
て同様に水素化精製処理に対する触媒の相対脱硫活性及
び相対脱窒素活性を調べた。
Comparative Example 1 In Example 1, the catalytic metal content of the hydrorefining catalyst was changed to 0.05 wt% of PdO, 0.03 wt% of CoO, and 0.03 wt% of Mo.
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that O3 was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0030】比較例2 実施例1において、水素化精製触媒の触媒金属の含有量
をPdO1.0wt%、CoO8.0wt%、MoO3
 14.0wt%とした以外は、触媒の製造方法及び水
素化精製処理の条件を実施例1と同様にした。そして同
様に水素化精製処理に対する触媒の相対脱硫活性及び相
対脱窒素活性を調べた。
Comparative Example 2 In Example 1, the catalytic metal content of the hydrorefining catalyst was changed to 1.0 wt% of PdO, 8.0 wt% of CoO, and 8.0 wt% of MoO3.
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that the amount was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0031】比較例3 実施例1において、触媒金属のCoを使用せず、水素化
触媒の触媒金属の含有量をPdO1.0wt%、MoO
3 14.0wt%とした以外は、触媒の製造方法及び
水素化精製処理条件を実施例1同様にした。そして同様
に水素化精製処理に対する触媒の相対脱硫活性及び相対
脱窒素活性を調べた。
Comparative Example 3 In Example 1, the catalytic metal content of the hydrogenation catalyst was changed to 1.0 wt% PdO, MoO
3 The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that the amount was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0032】比較例4 実施例1において、触媒金属のPdを使用せず、水素化
精製触媒の触媒金属の含有量をCoO3.5wt%、M
oO3 14.0wt%とした以外は、触媒の製造方法
及び水素化精製処理条件を実施例1同様にした。そして
同様に水素化精製処理に対する触媒の相対脱硫活性及び
相対脱窒素活性を調べた。
Comparative Example 4 In Example 1, the catalytic metal content of the hydrorefining catalyst was changed to 3.5 wt% CoO, M
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that oO3 was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0033】比較例5 実施例1において、触媒金属のPd、Coの代わりにP
tを使用し、水素化精製触媒の触媒金属の含有量をPt
O1.0wt%、MoO3 14.0wt%とした以外
は、触媒の製造方法及び水素化精製処理条件を実施例1
同様にした。そして同様に水素化精製処理に対する触媒
の相対脱硫活性及び相対脱窒素活性を調べた。
Comparative Example 5 In Example 1, Pd and Co as catalyst metals were replaced with Pd and Co.
t, and the content of the catalytic metal of the hydrorefining catalyst is Pt.
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1, except that O1.0 wt% and MoO3 14.0 wt%.
I did the same. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0034】比較例6 実施例1において、触媒金属のPd、Coの代わりにF
eを使用し、水素化精製触媒の触媒金属の含有量をFe
2 O3 1.0wt%、MoO3 14.0wt%と
した以外は、触媒の製造方法及び水素化精製処理条件を
実施例1同様にした。そして同様に水素化精製処理に対
する触媒の相対脱硫活性及び相対脱窒素活性を調べた。
Comparative Example 6 In Example 1, F was used instead of Pd and Co as catalyst metals.
Fe
The catalyst manufacturing method and hydrorefining treatment conditions were the same as in Example 1 except that 2 O3 was 1.0 wt% and MoO3 was 14.0 wt%. Similarly, the relative desulfurization activity and relative denitrification activity of the catalyst for hydrorefining treatment were investigated.

【0035】比較例7 実施例1において、触媒金属のCoの代わりにNiを使
用し、水素化精製触媒の触媒金属の含有量をPdO1.
0wt%、NiO3.5wt%、MoO314.0wt
%とした以外は、実施例1と同様にして触媒を製造し、
水素化精製処理を行なって、そのときの相対脱硫活性及
び相対脱窒素活性を調べた。
Comparative Example 7 In Example 1, Ni was used instead of Co as the catalyst metal, and the content of the catalyst metal in the hydrorefining catalyst was changed to PdO1.
0wt%, NiO3.5wt%, MoO314.0wt
A catalyst was produced in the same manner as in Example 1, except that the
A hydrorefining treatment was performed, and the relative desulfurization activity and relative denitrification activity at that time were investigated.

【0036】以上の実施例1〜5及び比較例1〜7の結
果を表1に示す。
Table 1 shows the results of Examples 1 to 5 and Comparative Examples 1 to 7.

【0037】[0037]

【表1】[Table 1]

【0038】表1に示すように、実施例1〜5では、シ
リカ−アルミナ系担体に触媒金属として0.1〜1.1
wt%の範囲内のPdO、2.0〜6.0wt%のCo
O、10〜20wt%のMoO3 を担持させた水素化
精製触媒を用いているので、原料油の常圧軽油に対する
触媒の脱硫及び脱窒素の相対活性が高く、常圧軽油中の
炭化水素を良好に脱硫、脱窒素し又不飽和炭化水素を飽
和炭化水素へ転換することができている。
As shown in Table 1, in Examples 1 to 5, 0.1 to 1.1% of the catalytic metal was added to the silica-alumina support.
PdO in the range of wt%, 2.0-6.0 wt% Co
Since a hydrorefining catalyst supported with O, 10 to 20 wt% MoO3 is used, the relative activity of desulfurization and denitrification of the catalyst against atmospheric gas oil as feedstock is high, and the hydrocarbons in atmospheric gas oil are effectively removed. It is possible to desulfurize, denitrify, and convert unsaturated hydrocarbons to saturated hydrocarbons.

【0039】これに対し、比較例1〜3では、触媒金属
としてPdO、CoO及びMoO3 を担持させている
が、その触媒金属の含有量のいずれかが本発明の範囲外
であるため、触媒の脱硫及び脱窒素の相対活性が高いも
のはなく、いずれかの項目で触媒活性が劣っている。又
比較例4〜7では、本発明で使用した触媒金属の一部を
欠くか或いは他の金属を代わりに用いているために、同
様に、脱硫及び脱窒素のいずれかの項目で触媒性能が劣
っている。
On the other hand, in Comparative Examples 1 to 3, PdO, CoO, and MoO3 are supported as catalyst metals, but the content of any of the catalyst metals is outside the scope of the present invention. None of them had high relative activities for desulfurization and denitrification, and the catalytic activity was poor in any of the items. Also, in Comparative Examples 4 to 7, some of the catalyst metals used in the present invention were missing or other metals were used instead, so the catalyst performance was similarly poor in either desulfurization or denitrification. Inferior.

【0040】[0040]

【発明の効果】以上説明したように、本発明の水素化精
製触媒は、シリカを2〜35wt%含有するシリカ−ア
ルミナ系担体に、PdOを0.1〜1.1wt%、Co
Oを2.0〜6.0wt%、MoO3 を10〜20w
t%担持させたので、これを水素化精製処理に用いるこ
とにより、石油留分等の脱硫、脱窒素及び水添等を効率
良く行なうことができる。又本発明の製造方法によれば
、Pdの化合物及びCoの化合物からPd及びCoのそ
れぞれのアンミン錯塩を生成し、そのアンミン錯塩溶液
中にシリカ−アルミナ系担体材料を浸漬してこれにPd
及びCoをイオン交換法により担持させ、次いで担体材
料を風乾及び焼成した後Moの化合物の水溶液に浸漬し
て、担体材料にMoを更に担持させ、その後再度風乾及
び焼成して、上記の水素化精製触媒を得るので、触媒の
製造が簡単であり、且つその触媒性能を良好に発揮させ
ることができる。
Effects of the Invention As explained above, the hydrorefining catalyst of the present invention comprises a silica-alumina support containing 2 to 35 wt% of silica, 0.1 to 1.1 wt% of PdO, and Co.
2.0-6.0wt% O, 10-20w MoO3
Since it is supported at t%, by using it in hydrorefining treatment, desulfurization, denitrification, hydrogenation, etc. of petroleum fractions etc. can be carried out efficiently. Further, according to the production method of the present invention, ammine complex salts of Pd and Co are produced from a Pd compound and a Co compound, and a silica-alumina carrier material is immersed in the ammine complex solution, and then Pd is added to the ammine complex salt.
and Co are supported by an ion exchange method, and then the carrier material is air-dried and calcined, and then immersed in an aqueous solution of Mo compound to further support Mo on the carrier material, and then air-dried and calcined again to perform the above hydrogenation. Since a purified catalyst is obtained, the catalyst can be manufactured easily and its catalytic performance can be exhibited well.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  シリカを2〜35wt%含有するシリ
カ−アルミナ系担体に、PdOを0.1〜1.1wt%
、CoOを2.0〜6.0wt%、MoO3を10〜2
0wt%担持させたことを特徴とする水素化精製触媒。
Claim 1: 0.1 to 1.1 wt% of PdO is added to a silica-alumina support containing 2 to 35 wt% of silica.
, CoO 2.0-6.0wt%, MoO3 10-2
A hydrorefining catalyst characterized in that it is supported at 0 wt%.
【請求項2】  Pdの化合物及びCoの化合物をアン
モニア水溶液に溶解したアンミン錯塩溶液中に、シリカ
−アルミナ系担体材料を浸漬してこれに前記Pd及びC
oをイオン交換法により担持させ、次いで前記担体材料
を風乾及び焼成した後Moの化合物の水溶液に浸漬して
、担体材料にMoを更に担持させ、その後再度風乾及び
焼成したことを特徴とする水素化精製触媒の製造方法。
2. A silica-alumina support material is immersed in an ammine complex salt solution in which a Pd compound and a Co compound are dissolved in an ammonia aqueous solution.
o is supported by an ion exchange method, and then the carrier material is air-dried and calcined, and then immersed in an aqueous solution of a compound of Mo to further support Mo on the carrier material, and then air-dried and calcined again. A method for producing a chemical refining catalyst.
【請求項3】  請求項2の担体材料を先にMoの化合
物の水溶液に浸漬してMoを担持させ、次いで前記担体
材料を風乾及び焼成した後、Pdの化合物及びCoの化
合物をアンモニア水溶液に溶解したアンミン錯塩溶液中
に浸漬して、担体材料にPd及びCoを担持させ、その
後再び風乾、焼成したことを特徴とする水素化精製触媒
の製造方法。
3. The carrier material of claim 2 is first immersed in an aqueous solution of a Mo compound to support Mo, and then the carrier material is air-dried and fired, and then a Pd compound and a Co compound are added to an ammonia aqueous solution. A method for producing a hydrorefining catalyst, which comprises immersing it in a solution of a dissolved ammine complex salt to support Pd and Co on a carrier material, and then air-drying and calcining it again.
【請求項4】  請求項2の担体材料をPdの化合物、
Coの化合物及びMoの化合物をアンモニア水溶液に溶
解したアンミン錯塩溶液中に浸漬して、担体材料にPd
、Co及びMoを一度に担持させ、その後風乾、焼成し
たことを特徴とする水素化精製触媒の製造方法。
4. The carrier material of claim 2 is a compound of Pd,
Pd was added to the carrier material by immersing a Co compound and a Mo compound in an ammine complex salt solution in which a Co compound and a Mo compound were dissolved in an aqueous ammonia solution.
, Co and Mo are supported at once, and then air-dried and calcined.
JP41654090A 1990-12-28 1990-12-28 Hydrogenation refining catalyst and its production Pending JPH04265157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41654090A JPH04265157A (en) 1990-12-28 1990-12-28 Hydrogenation refining catalyst and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41654090A JPH04265157A (en) 1990-12-28 1990-12-28 Hydrogenation refining catalyst and its production

Publications (1)

Publication Number Publication Date
JPH04265157A true JPH04265157A (en) 1992-09-21

Family

ID=18524761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41654090A Pending JPH04265157A (en) 1990-12-28 1990-12-28 Hydrogenation refining catalyst and its production

Country Status (1)

Country Link
JP (1) JPH04265157A (en)

Similar Documents

Publication Publication Date Title
US5246569A (en) Process for the hydrodesulfurization of light hydrocarbon feeds
CA2429944C (en) Alumina having novel pore structure, method of making and catalysts made therefrom
US5770047A (en) Process for producing reformulated gasoline by reducing sulfur, nitrogen and olefin
US3876523A (en) Catalyst for residua demetalation and desulfurization
US20070173674A1 (en) Selective hydrogenation process employing a sulphurized catalyst
CA2071649A1 (en) Hydrogenation catalyst and process
JP2001017860A (en) Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
GB1577821A (en) Process for the selective desulphurization of cracked naphthas
JPH07185353A (en) Catalyst and method for use and production thereof
CN109772368B (en) High-activity hydrodesulfurization catalyst and preparation method thereof
KR20070059044A (en) Hydrogenation of aromatics and olefins using a mesoporous catalyst
EP1651347A2 (en) A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst
US4457836A (en) Supported, non (metal-promoted) carbon-containing molybdenum sulfide catalysts for selective nitrogen removal
CN101376835A (en) Gasoline hydrofinishing startup method and gasoline hydrofinishing operation method
CN102039154B (en) Hydrogenation sweetening catalyst, preparing method and application thereof
JP3378402B2 (en) Desulfurization method of catalytic cracking gasoline
CA2100379C (en) Alumina-containing carrier and hydrofining catalyst for hydrocarbon oils
CA1304348C (en) Process for preparing hydrotreating catalysts from hydrogels
CA1068671A (en) Desulphurisation catalysts
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH04265157A (en) Hydrogenation refining catalyst and its production
CA1304347C (en) Process for the preparation of hydrotreating catalysts from hydrogels
JP4167729B2 (en) Supported hydrogen conversion catalyst and preparation method thereof
JPS5933020B2 (en) catalyst composition
EP0266011B2 (en) Process for the preparation of hydrotreating catalysts form hydrogels