JPH042645A - Inorganic fiber plate - Google Patents

Inorganic fiber plate

Info

Publication number
JPH042645A
JPH042645A JP9979990A JP9979990A JPH042645A JP H042645 A JPH042645 A JP H042645A JP 9979990 A JP9979990 A JP 9979990A JP 9979990 A JP9979990 A JP 9979990A JP H042645 A JPH042645 A JP H042645A
Authority
JP
Japan
Prior art keywords
inorganic
molded
fiberboard
inorganic fiberboard
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9979990A
Other languages
Japanese (ja)
Inventor
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKOTA KK
Original Assignee
AKOTA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKOTA KK filed Critical AKOTA KK
Priority to JP9979990A priority Critical patent/JPH042645A/en
Publication of JPH042645A publication Critical patent/JPH042645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain inorganic fiber plates having excellent fire resistance, heat insulating properties, sound absorbing qualities, by molding a material to be molded comprising inorganic fibers mixed with an adhesive into inorganic fiber plates having projected parts and dented parts, respectively on a plane part in a proper set density and laminating the inorganic fiber plates. CONSTITUTION:A material to be molded comprising inorganic fibers blended with an adhesive is molded and projected parts 2 are made on a plane part in a proper set density to form an inorganic fiber plate 1. The material to be molded comprising the inorganic fibers mixed with an adhesive is molded and dented parts 4 are made on the plane part to form the inorganic fiber plate 1. The projected parts 2 of the inorganic fiber plate 1 having the projected parts 2 are engaged with the dented parts 4 of the inorganic fiber plate 1 having the dented parts 4 and the opposing plane parts are bonded to laminate plural inorganic fiber plates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐熱、耐火、断熱性ならびに吸音性に優れ
た建築用°補助材を使用目的とする無機質繊維板に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an inorganic fiberboard that is used as an auxiliary material for construction that has excellent heat resistance, fire resistance, heat insulation properties, and sound absorption properties.

〔技術的背景〕[Technical background]

主に建築用補助材を目的とし、断熱ならびに吸音効粟)
期待する素材として、グラスウール、ロックウール等の
無機質繊維を挙げることができる。
Mainly used as an auxiliary material for construction, with insulation and sound absorption properties)
Expected materials include inorganic fibers such as glass wool and rock wool.

前記した建築用補助材として用いる上記無機質繊維の使
用法は一般的に、上記繊維の集合体をそのまま用いるの
が最多事例であるが密度の低いものでは剛性が小さく、
全体として密度を高くしたものは重量の割には剛性が不
十分で、実際は密度の低いものを剛性のある他の構造部
材で支持して使用している状態である。
Generally speaking, the above-mentioned inorganic fiber used as an auxiliary material for construction is generally used as an aggregate of the above-mentioned fibers as is, but those with low density have low rigidity.
Overall, products with high density have insufficient rigidity for their weight, and in reality, products with low density are supported by other structural members with rigidity.

従って、これを用いる施工技術者においてもこれらを充
分に使用することは施工難度が高くなることが多く、敬
遠される要素を多分に含んでいるといえる。
Therefore, it is often difficult for construction engineers to fully use these materials, and it can be said that they contain many elements that are avoided.

〔従来の技術〕[Conventional technology]

従前の無機質繊維を素材とする板状体において、剛性に
おける不足強度を補うために完成された無機質繊維板の
表面にアルミニウム箔、クロス、紙などを貼り付けて最
外層の引っ張り強度を強化しようとする技術が実施され
ている。
In order to compensate for the lack of rigidity in conventional plate-shaped bodies made of inorganic fibers, attempts were made to strengthen the tensile strength of the outermost layer by pasting aluminum foil, cloth, paper, etc. on the surface of the completed inorganic fiberboard. technology is being implemented.

しかしながら、上記手段においても、その総合強度の向
上度合いは微量なもので、所望する必要強度上昇には達
し得ないのが実状である。
However, even with the above-mentioned means, the degree of improvement in the overall strength is very small, and the actual situation is that the desired increase in required strength cannot be achieved.

その素材板となる無機質繊維板の製法は、素材の無機質
繊維に接着剤を添加し、これを成型加圧、且つ、加熱成
型することが基本的製法の概略である。一般的に板状体
の製法については、被成型素材を内外面より成型型部材
で加圧し、且つ、一方の外面より他方の外面に通過でき
る熱風を圧送して硬化させる手段が採られている。
The basic manufacturing method for inorganic fiberboard, which is the material board, is to add an adhesive to the inorganic fibers of the material, pressurize the material, and heat-mold it. In general, the manufacturing method for plate-shaped bodies involves applying pressure to the material to be molded from the inside and outside using mold members, and hardening the material by force-feeding hot air that can pass from one outside surface to the other. .

そこで、本願人は、無機質繊維版状体の成型手段として
、二工程構成手段を開発し、先に表皮となる表層素材を
先工程として成型構成し、二工程目として前工程で出来
上がった表層素材を表皮、即ち、「型」の代用として用
い、中層となる部分の未硬化の被成型素材を当接して加
圧加熱工程を行う技術を平成2年4月4日特許出願して
いる。
Therefore, the applicant has developed a two-step construction method as a means for molding an inorganic fiber plate-like body, in which the surface layer material that will become the skin is molded and constructed in the previous step, and the surface layer material completed in the previous step is formed in the second step. On April 4, 1990, a patent application was filed for a technology in which the skin, or ``mold,'' is used as a substitute, and the uncured middle layer of the material to be molded is brought into contact with the pressurized and heated process.

〔従来技術の欠点〕[Disadvantages of conventional technology]

前記した前者の技術において、完成された無機質繊維板
に他物質のシート類を貼付した複合板材においては、該
貼着手段に接着剤を用いるために被接着体はきわめて粗
密な繊維板であるがために、一般的に接着強度が弱く、
且つ、ここに曲げ応力がかかれば該部分で滑り曲げ強度
が急激に低下する。また、被接着体となる無機質繊維板
における製法にふれてみても、無機質繊維に接着剤を添
加した被成型物質を表裏より圧接し、且つ、熱風を強制
挿通し、硬化させる手段を用いることは前述の通りで、
この硬化工程において、板状体の所望厚さ、所望密度の
各種のうち薄物の場合と比較的低密度の場合は、比較的
短時分の加熱作業で生産できるが、厚ものあるいは高密
度の場合は、前記薄物に比例した時分より大なる工程所
要時分を要し、作業性が著しく悪化するとともに、厚さ
方向において良好な均一硬化作用が望める度合いも低く
、全体の硬化作用を期待すると受熱効果において、受風
面の過剰作用現象が表面に認められる等の不均等生産と
なる場合も多い。
In the former technique mentioned above, in the composite board material in which sheets of other materials are pasted to the completed inorganic fiberboard, the adhered object is a very coarse and dense fiberboard because adhesive is used as the pasting means. Therefore, adhesive strength is generally weak,
In addition, if bending stress is applied to this portion, the sliding bending strength will rapidly decrease at that portion. Also, when looking at the manufacturing method for inorganic fiberboard, which is the object to be adhered, it is difficult to use a method in which a material to be molded, which is inorganic fibers with an adhesive added thereto, is pressed from the front and back, and hot air is forcefully passed through the material to harden it. As mentioned above,
In this curing process, thin or relatively low-density plates of various desired thicknesses and densities can be produced in a relatively short heating time, but thick or high-density In this case, the time required for the process is longer than the time proportional to the thinness of the product, and the workability is significantly deteriorated, and the degree to which a good uniform hardening effect can be expected in the thickness direction is low, and the overall hardening effect is not expected. As a result, the heat receiving effect often results in uneven production, such as an excessive effect on the wind receiving surface being observed on the surface.

また更に、締め型において、受風効果を促進させるため
に穿設した吸気ならびに排気孔によって未硬化の被成型
体が外部に膨出現象を呈し、吸排孔の目詰まり現象を生
じて硬化工程を阻害するため、該工程を一時中断し、吸
排孔の清掃後、再稼動を開始するなどの低能率であると
ともに、硬化した製品においてもその表面に前記吸排孔
の孔形に準じた凸状隆起部が形成されて、製品の品位を
低下させる等複数の非芳点が存在していたものである。
Furthermore, in the clamping mold, the uncured material to be molded bulges outward due to the intake and exhaust holes drilled to promote the wind blowing effect, causing clogging of the intake and exhaust holes and slowing down the curing process. This leads to low efficiency, such as temporarily stopping the process and restarting the process after cleaning the suction and exhaust holes, as well as convex ridges on the surface of the cured product that follow the shape of the suction and exhaust holes. There were a number of non-flavorful points such as the formation of cracks and deterioration of the quality of the product.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記した従前技術における非芳点を排除を目的とするこ
の発明は、特に従前技術において、困難視されていた中
厚以上の厚さの成型体の製法にその成果が著しく発揮で
きるものである。
The present invention, which aims to eliminate the disadvantages of the prior art described above, is particularly effective in the production of molded bodies of medium thickness or thicker, which was considered difficult in the prior art.

元来、無機質繊維を建築補助材として用いる目的として
、耐火、断熱、防音などを期待し、そして、その使用方
法も壁、天井、床等における間隙材として通常目視でき
る箇所に使用する例は無に等しい存在であったが、この
無機質繊維を素材として板体の製法が可能となった時点
あたりから使用範囲も間隙材から一部は表層材にも用い
られるようになり、これらの用途拡大に伴って、各用途
に適合する厚さならびに密度、即ち、剛性など消費者側
あるいは施工業界から様々な要望事項が生するようにな
る。その結果、表層材として用いるようになれば、曲げ
強度や吸音率の効果向上等、更には厚さ、剛性面、密度
など多岐にわたった多種の要求も必然的増大傾向にある
Originally, inorganic fibers were used as construction auxiliary materials, with hopes for fireproofing, heat insulation, soundproofing, etc., and there are no examples of their use as interstitial materials in walls, ceilings, floors, etc., where they are normally visible. However, from around the time when it became possible to manufacture plates using this inorganic fiber as a material, the scope of use began to expand from gap materials to some surface materials, and the use of these inorganic fibers expanded. Accordingly, various demands have arisen from consumers and the construction industry, such as thickness and density suitable for each use, that is, rigidity. As a result, when it comes to be used as a surface layer material, there is an inevitable tendency for a wide variety of demands to be made, including improvements in bending strength and sound absorption coefficient, as well as thickness, rigidity, density, etc.

これら多種にわたる品種の総てを需要に対応して常時在
庫を保有しなければならない生産者側は多大多種の在庫
と貯留場所とを確保しなければならない。
Producers who must keep all of these varieties in stock at all times to meet demand must secure a wide variety of stocks and storage locations.

また、特に、「厚物」においては、前記した生産面での
難関があり、また、「薄物」においては、透過性がある
音に対する吸音効果の低効率が挙げられる。
Further, in particular, "thick materials" have the above-mentioned production difficulties, and "thin materials" have low efficiency in sound absorption for transparent sound.

この発明は、これらのことから、最も薄い無機質繊維板
、例えば5.0”1程度の「薄物」からは吸音遮音効果
の増強を図るとともに、中厚あるいは厚物の要望に対し
ては薄物の積層板となるようにした無機質繊維板を提供
することを最大の目的とし、且つ、前記の吸音遮音効果
の増強を図る手段として、板の表面に凹・凸部を設け、
直進性のある音波を該凹・凸部によって屈折させ消音あ
るいは弱化させるとともに、厚物を形成するために積層
手段を採る際に、該凹・凸部が雌雄関係の嵌合作用を期
待し、且つ、曲げ強度に対しては外角の引っ張り作用、
内角の圧縮作用による積層材特有の剥離現象を未然に防
止する一体化の補強効果を期待することを目的としたも
のである。
Based on these facts, this invention aims to enhance the sound absorption and insulation effect from the thinnest inorganic fiberboard, for example, a "thin material" of about 5.0" The main purpose is to provide an inorganic fiberboard that is made into a laminate, and as a means to enhance the sound absorption and insulation effect, the surface of the board is provided with concave and convex portions,
In addition to refracting straight-travel sound waves by the concave and convex portions to muffle or weaken them, the concave and convex portions are expected to have a male-female mating effect when laminating means is used to form a thick material. In addition, for bending strength, the tensile action of the outer corner,
The purpose is to expect the reinforcing effect of integration to prevent the peeling phenomenon peculiar to laminated materials due to the compression action of internal corners.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は前記した目的を達成させるための手段として
、無機質繊維に接着剤を添加した被成型素材を適宜設定
密度をもって、片面に凸状部を隆出成型して成るもので
ある。
As a means for achieving the above-mentioned object, the present invention is made by molding a molded material made of inorganic fibers and an adhesive to have a convex portion on one side at an appropriately set density.

また、片面に隆出させる凸状部を独立単独形状とし、こ
れを複数個突出形成させて成型して成るものである。
Further, the convex portions protruding from one side are made into independent single shapes, and a plurality of these are formed to protrude and are molded.

更に、片面に隆出させる凸状部を条状に成型して成るも
のである。
Furthermore, it is formed by molding a protruding convex portion on one side into a strip shape.

また更に、片面に隆出させる凸状部を独立単体形状と条
状形状とを組み合わせて成型して成るものである。
Furthermore, the convex portion protruding on one side is formed by combining an independent single shape and a strip shape.

更にまた、片面に隆出させる凸状部ならびに凸状部凸出
箇所の成型密度を他部所よりも低密度として成るもので
ある。
Furthermore, the molding density of the convex portion projected on one side and the protruding portion of the convex portion is lower than that of other portions.

なお、無機質繊維に接着剤を添加した被成型素材を適宜
設定した密度をもって、平面部に凹所を凹設成型して成
るものである。
Note that the molded material is made by adding an adhesive to inorganic fibers and is molded with an appropriately set density to form recesses in a flat surface.

なおまた、表裏の平面部に凹所を凹設してなるものであ
る。
Furthermore, recesses are provided in the flat parts of the front and back sides.

なお更に、平面部に凹設する凹所が無機質繊維板に設け
た凸状部に嵌合できるようにして成るものである。
Still further, the recess provided in the plane portion can be fitted into the convex portion provided on the inorganic fiberboard.

なおまた更に、凸状部を設けた無機質繊維板と、凹所を
凹設した無機質繊維板とを、それぞれの凸状部と凹所と
を嵌合し、且つ、相対向する平面部を接合して複数の無
機質繊維板を合体層成して成るものである。
Still further, an inorganic fiber board provided with a convex portion and an inorganic fiber board provided with a concave portion are fitted in their respective convex portions and concave portions, and their opposing flat portions are joined. It is made by laminating a plurality of inorganic fiberboards together.

〔作  用〕[For production]

この発明は、無機質繊維板を構成することを目的とする
単位材に係るもので、少なくとも、単位材とは、2.0
”、I程度から100”、、程度までの厚さを有する版
体を総称したものである。
The present invention relates to a unit material for the purpose of composing an inorganic fiberboard, and the unit material has at least 2.0
This is a general term for plates having a thickness of about 100" to about 100".

上記した無機質繊維板は、無機質繊維、つまり、グラス
ウール、ロックウールあるいは金属繊維等の主素材に該
素材量に適合する量の接着剤を添加した被成型材を用い
る量、即ち、密度によって用意された被成型素材を設定
する圧力と硬化を目的とする加熱工程により所望厚さ寸
法と所望強度の剛性とを得ることができる。 薄厚材と
は、その厚さを5.0’、l程度以下のものを指し、該
厚さの範囲内であるならば、設定剛性ならびに強度とな
る必要密度の被成型素材を表裏両面から加圧加熱工程、
即ち、加熱型による圧接工法での成型を可能とするもの
であり、所望厚さと所望密度とを前記加圧加熱成型法の
可能範囲で製作するもので、この薄厚材は上記の工法に
よって得られ、使用する「型」によって成型するもので
あるから、例えば、密度の高・低とともに凸状等、形状
の任意性が自由に採択できる。
The above-mentioned inorganic fiberboard is prepared by using inorganic fibers, that is, a material to be formed by adding an amount of adhesive to the main material such as glass wool, rock wool, or metal fiber, depending on the amount, that is, the density. The desired thickness and rigidity of the desired strength can be obtained by applying a pressure to the molded material and a heating process for hardening. Thin material refers to a material whose thickness is approximately 5.0', l or less, and if it is within this thickness range, the material to be molded with the required density for the set rigidity and strength is processed from both the front and back sides. pressure heating process,
In other words, the material can be formed by the pressure welding method using a heated mold, and the desired thickness and density can be produced within the range possible with the pressure and heat forming method, and this thin material can be obtained by the above method. Since the molding is performed depending on the "mold" used, arbitrary shapes such as high or low density and convex shapes can be freely adopted.

なかでも、薄厚材の片面に、単独あるいは条状で数多の
凸状部を隆出形成し、面積の増大ならびに融和、剪断力
の強化及び吸音効果の増大等を図るために設けた成型体
とするものである。
Among these, a molded body in which numerous protrusions are formed individually or in strips on one side of a thin material in order to increase the area, harmonize it, strengthen shearing force, increase the sound absorption effect, etc. That is.

以上のように成型された薄厚材において、その外側面に
、該薄厚材を構成する無機質繊維とは異質のシート類、
例えば、金属箔、繊維織物、合成樹脂製薄板等内装材を
貼付することも任意である。
In the thin material formed as described above, on the outer surface thereof, sheets different from the inorganic fibers constituting the thin material,
For example, it is also optional to attach interior materials such as metal foil, textile fabrics, thin plates made of synthetic resin, etc.

一方、中厚材は、前記無機質繊維よりなる薄厚材と同等
素材をもって成型するものである。
On the other hand, the medium-thickness material is molded from a material equivalent to the thin-thickness material made of inorganic fibers.

この中厚材は前記の薄厚材と硬化工程に便するように前
記加熱加圧成型法以外に、加圧し、且つ、熱風透過によ
って未硬化素材を硬化させる製法手段が一般的で、この
製法の関係上、薄厚材よりも一般的に低硬度、低密度の
成型板が多い。そして、これら、中厚材において前記し
た凸状部に対応するところの凹所を凹設するもので、薄
厚材では凹所の深さ寸法よりも層厚が小となる場合は凹
所形成は不可能であるがために、形成しようとする凹所
の深さ寸法より大なる層厚を有する中厚材に凹設するも
のである。
In order to facilitate the curing process for this medium-thickness material, in addition to the above-mentioned heating and pressure molding method, the manufacturing method for this medium-thickness material is to pressurize and harden the uncured material by passing through hot air. For this reason, molded plates with lower hardness and lower density are generally used than thin materials. Then, in these medium-thick materials, recesses corresponding to the above-mentioned convex portions are formed.For thin-thick materials, if the layer thickness is smaller than the depth dimension of the recess, recess formation is not possible. Since this is not possible, the recess is formed in a medium-thick material having a layer thickness larger than the depth of the recess to be formed.

もとより、無機質繊維板の使用目的は、建築補助材とし
て、耐火、断熱、吸音等を目的として用いるものであり
、構築物素材としての力学的要素を必ずしも要求するも
のではないが、天井材および壁材なとどとして使用する
場合は剛性も必要であり、前記所望数値の使用目的が達
成するためには厚さの点においては、小寸法よりも大寸
法の方が使用上望ましいものであることから、軽量高剛
性が有利である。
Naturally, inorganic fiberboard is used as an auxiliary building material for fireproofing, heat insulation, sound absorption, etc., and does not necessarily require mechanical elements as a building material, but it is used as a ceiling material and wall material. Rigidity is also required when used as a knife, and in order to achieve the above-mentioned desired numerical value, large dimensions are more desirable than small dimensions in terms of thickness. , lightweight and high rigidity are advantageous.

前記した無機質繊維板の表面に設ける凹・凸は、上記し
た薄厚材のみに凸状部を凸段するものではなく、所望厚
さの板材に設けるものであり、また、凹所は、その深さ
において、凹設を可能とする厚さとなる板材に凹設すべ
きものである。
The concavities and convexities provided on the surface of the inorganic fiberboard described above are not only provided in the thin material described above, but are provided in the board material of the desired thickness, and the recesses are formed depending on their depth. In this case, it should be recessed in a plate material having a thickness that allows recessing.

そして、この凹・凸部は、特に音波の透過作用において
、その直進性を阻害する乱反射または屈折等との条件が
複合的作用により消音あるいは吸音法たは弱化される現
象、即ち、音波の直進性の透過現象を阻害して吸音、防
音の目的を達成する。
These concave and convex portions are a phenomenon in which, especially in the transmission action of sound waves, conditions such as diffuse reflection or refraction that impede the straightness of sound waves are combined to mute, absorb, or weaken the sound waves. It achieves the purpose of sound absorption and soundproofing by inhibiting the phenomenon of acoustic transmission.

このような作用は前記凹・凸部以外にも存在するが、こ
れら凹・凸の場合は他部所よりも顕著に高く作用し、更
に、凹・凸部において他部所の層成密度を異にすること
によってその作用は更に向上する。
Although this kind of effect exists in areas other than the above-mentioned concave and convex areas, it acts significantly higher in these concave and convex areas than in other areas, and furthermore, in the concave and convex areas, the stratification density in other areas is lowered. The effect can be further improved by making it different.

また更に、凹・凸部における作用は前記音響の消滅作用
ばかりではなく、無機質繊維板として所望する厚さ寸法
を得ようとするとき、複数の板材を前記凹・凸部を嵌め
合い接合することにより、その接合面の増大化と、積層
板として成型された板材の屈折強度、特に外角の引っ張
り作用、内角の圧縮作用による層内に生ずる屈折圧に対
抗する作用が凹凸嵌合によって強化され積層板特有の剥
離現象の防御として作用するものである。
Furthermore, the effect of the concave and convex portions is not only the sound extinction effect described above, but also the fact that when trying to obtain a desired thickness dimension of the inorganic fiberboard, a plurality of board materials are joined by fitting the concave and convex portions. As a result, the bonding surface is increased and the refractive strength of the plate material formed as a laminate, especially the action to counter the refraction pressure generated within the layer due to the tensile action of the outer corner and the compression action of the inner corner, is strengthened by the uneven fitting, and the lamination is strengthened. This acts as a defense against the peeling phenomenon peculiar to boards.

これら複数の板材を接合させる手段として、該接合面同
志を接着剤による方法ならびに未硬化の無機質繊維板素
材を介層し再度の加熱処理による接合であってもよく、
この接合手段を特に限定するものではない。
As a means of joining these plurality of board materials, the joining surfaces may be joined by using an adhesive, or by interposing an uncured inorganic fiberboard material and heating it again.
This joining means is not particularly limited.

〔実 施 例〕〔Example〕

次に、この発明の実施例を図面とともに説明すれば、第
1図ないし第2図は片面に凸状部(2)を凸出した無機
質繊維板(1)の完成品の断面を示すもので、無機質繊
維、即ち、グラスウール、ロックウールをはじめとし、
場合により金属繊維をも含む主素材に接着剤を添加して
これを板状に硬化させたものが無機質繊維板(1)で、
第2図は凸状部(2)ならびに凸状部(2)を凸出した
部分を他部所より低密度部(3)となるように成型した
ものの断面を示すもので、第3図は無機質繊維板(1)
の平面に凹所(4)の複数を凹設した断面図であり、第
4図は両面に凹所(4)を凹設した断面図、第5図は凸
状部(2)を設けた無機質繊維板(1)と凹所(4)を
設けた無機質繊維板(1)とを互いに凸状部(1)と凸
状部(1)と凹所(4)とが密に嵌合して一版となった
積層板を示す断面図、第6図は両面に凹所(4)を凹設
した無機質繊維板(1)の両外面から凸状部(2)を設
けた無機質繊維板(1)(1)で挟設したものの断面を
示すものである。前記した凸状部(2)は、その高さ寸
法を2ζ、程度とし、且つ、該底辺を82り程度とする
もので、該凸状部(2)の形状もその断面を半球状、円
錐、角錐の山形を単独独立あるいは条状、また、単独独
立形状として平面形状を角柱状、丸柱状あるいは十字形
、星形等の不特定の隆出突起、または前記条状との組み
合わせなど平坦な接合面より隆起突出させて設けるもの
で、前述のように総体的に薄板上に成型するこれら無機
質繊維板(1)は「型」による上下面より圧縮加熱によ
る成型体として構成するものである。
Next, an embodiment of the present invention will be described with reference to the drawings. Figures 1 and 2 show a cross section of a finished product of an inorganic fiberboard (1) having a convex portion (2) on one side. , inorganic fibers, including glass wool and rock wool,
Inorganic fiberboard (1) is made by adding an adhesive to the main material, which may also include metal fibers, and curing it into a plate shape.
Figure 2 shows a cross section of the convex part (2) and the part where the convex part (2) protrudes is molded so that it becomes a lower density part (3) than other parts. Inorganic fiberboard (1)
FIG. 4 is a cross-sectional view with a plurality of recesses (4) provided on both sides, and FIG. 5 is a cross-sectional view with a convex portion (2) provided on both sides. An inorganic fiberboard (1) and an inorganic fiberboard (1) provided with a recess (4) are arranged so that the convex portion (1) and the convex portion (1) and the concavity (4) are tightly fitted into each other. Figure 6 is a cross-sectional view showing a laminated board that has been made into one version, and Fig. 6 shows an inorganic fiberboard (1) with concave portions (4) on both sides and an inorganic fiberboard (1) with convex portions (2) on both outer surfaces. (1) This shows a cross section of what was sandwiched in (1). The above-mentioned convex portion (2) has a height of about 2ζ, and a base of about 82 mm, and the cross section of the convex portion (2) is hemispherical or conical. , the chevron shape of a pyramid can be made into an independent or strip-like shape, and the planar shape can be made into a prism, round column, cross, star shape, or other unspecified protrusions, or a combination with the above-mentioned strips. These inorganic fiberboards (1), which are provided so as to protrude upwardly from the bonding surface, and which are entirely molded onto a thin plate as described above, are constructed as a molded body by compressing and heating the upper and lower surfaces using a "mold".

なお、第1図示のように無機質繊維板(1)の外側面に
、該無機質繊維板(1)素材の無機質繊維とは異質の内
装材(5)を貼付することも任意である。
It is also optional to attach an interior material (5) different from the inorganic fibers of the inorganic fiberboard (1) to the outer surface of the inorganic fiberboard (1) as shown in the first figure.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように、無機質繊維板の表面に凹・凸
を設けたので、この凹・凸部を有する各無機質繊維板は
それぞれ単材として用いることができることを始め、ま
た、これらを貼接して任意な厚さを構成することを可能
にし、貼付面には前記凸状部に対応する凹所が設けられ
、これらの接合面の凹凸状の合体により、各々の接合面
積の増大によるところの接合と融和の増大を図ることを
可能にし、更に、凹・凸状部分の各々は吸音効果が大で
あり、且つまた、施工時ならびに施工後において曲げ荷
重がかかった時の剪断力に対し有効で曲げ強度の向上増
大を図る効果有るものである。
As described above, this invention provides concave and convex portions on the surface of the inorganic fiberboard, so each of the inorganic fiberboards having concave and convex portions can be used as a single material. The bonding surface is provided with a recess that corresponds to the convex portion, and the uneven joining of these bonding surfaces increases the bonding area of each. In addition, each of the concave and convex portions has a large sound absorption effect, and also resists shearing force when bending load is applied during and after construction. This is effective and has the effect of increasing bending strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は無機質繊維板の断面図で、第1図は
無機質繊維板に凸状部を設けたものの断面図、第2図は
凸状部を凸状部を含む凸出箇所を他部所よりも低密度に
したものの断面図、第3図は片面に凹所を設けた無機質
繊維板の断面図、第4図は凹所を両面に凹設した無機質
繊維板の断面図、第5図は二層式無機質繊維板の断面図
、第6図は三層式無機質繊維板の断面図である。 (1)・・・無機質繊維板、(2)・・・凸状部、(3
)・・・低密度部、(4)・・・凹所。
Figures 1 and 2 are cross-sectional views of an inorganic fiberboard, Figure 1 is a cross-sectional view of an inorganic fiberboard with convex portions, and Figure 2 is a cross-sectional view of an inorganic fiberboard with convex portions. Figure 3 is a cross-sectional view of an inorganic fiberboard with recesses on one side, and Figure 4 is a cross-sectional view of an inorganic fiberboard with recesses on both sides. , FIG. 5 is a sectional view of a two-layer inorganic fiberboard, and FIG. 6 is a sectional view of a three-layer inorganic fiberboard. (1)... Inorganic fiberboard, (2)... Convex portion, (3
)...Low density area, (4)...Concavity.

Claims (1)

【特許請求の範囲】 〔1〕.無機質繊維に接着剤を添加した被成型素材を適
宜設定密度をもって、片面に凸状部を隆出成型して成る
ことを特徴とする無機質繊維板。 〔2〕.片面に隆出させる凸状部を独立単独形状とし、
これを複数個突出形成させて成型して成ることを特徴と
する請求項1記載の無機質繊維板。 〔3〕.片面に隆出させる凸状部を条状に成型して成る
ことを特徴とする請求項1記載の無機質繊維板。 〔4〕.片面に隆出させる凸状部を独立単体形状と条状
形状とを組み合わせて成型して成ることを特徴とする請
求項1記載の無機質繊維板。 〔5〕.片面に隆出させる凸状部ならびに凸状部凸出箇
所の成型密度を他部所よりも低密度としたことを特徴と
する請求項1記載の無機質繊維板。 〔6〕.無機質繊維に接着剤を添加した被成型素材を適
宜設定した密度をもって、平面部に凹所を凹設成型して
成ることを特徴とする無機質繊維板。 〔7〕.表裏の平面部に凹所を凹設してなることを特徴
とする請求項6記載の無機質繊維板。 〔8〕.平面部に凹設する凹所が無機質繊維板に設けた
凸状部に嵌合できるようにして成ることを特徴とする請
求項6および7記載の無機質繊維板。 〔9〕.凸状部を設けた無機質繊維板と、凹所を凹設し
た無機質繊維板とを、それぞれの凸状部と凹所とを嵌合
し、且つ、相対向する平面部を接合して複数の無機質繊
維板を合体層成して成ることを特徴とする無機質繊維板
[Claims] [1]. An inorganic fiberboard characterized in that it is formed by molding a molded material made of inorganic fibers with an adhesive to an appropriately set density to have convex portions on one side. [2]. The convex part protruding on one side has an independent shape,
The inorganic fiberboard according to claim 1, characterized in that the inorganic fiberboard is formed by forming a plurality of protrusions. [3]. The inorganic fiberboard according to claim 1, characterized in that the convex portion protruding on one side is molded into a strip shape. [4]. 2. The inorganic fiberboard according to claim 1, wherein the convex portion protruding on one side is formed by combining an independent shape and a strip shape. [5]. 2. The inorganic fiberboard according to claim 1, wherein the convex portions protruding on one side and the molding density of the protruding portions of the convex portions are lower than those of other portions. [6]. An inorganic fiberboard characterized in that it is formed by molding a material to be molded, which is inorganic fibers and an adhesive, with an appropriately set density to form recesses in a flat surface. [7]. 7. The inorganic fiberboard according to claim 6, wherein the inorganic fiberboard has recesses formed in the front and back plane parts. [8]. 8. The inorganic fiberboard according to claim 6, wherein the recess provided in the plane portion is adapted to fit into a convex portion provided on the inorganic fiberboard. [9]. An inorganic fiberboard with a convex portion and an inorganic fiberboard with a concave portion are connected to each other by fitting the convex portions and the concave portions, and joining the opposing flat portions to form a plurality of inorganic fiberboards. An inorganic fiberboard characterized by being formed by combining inorganic fiberboards into layers.
JP9979990A 1990-04-16 1990-04-16 Inorganic fiber plate Pending JPH042645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9979990A JPH042645A (en) 1990-04-16 1990-04-16 Inorganic fiber plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9979990A JPH042645A (en) 1990-04-16 1990-04-16 Inorganic fiber plate

Publications (1)

Publication Number Publication Date
JPH042645A true JPH042645A (en) 1992-01-07

Family

ID=14256947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9979990A Pending JPH042645A (en) 1990-04-16 1990-04-16 Inorganic fiber plate

Country Status (1)

Country Link
JP (1) JPH042645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224484A (en) * 1999-01-23 2001-08-21 Daiwa:Kk Slip prevention structure for mat and manufacturing method thereof
JP2011197672A (en) * 2010-03-17 2011-10-06 Groz Beckert Kg Fibre compound acoustic absorbing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224484A (en) * 1999-01-23 2001-08-21 Daiwa:Kk Slip prevention structure for mat and manufacturing method thereof
JP2011197672A (en) * 2010-03-17 2011-10-06 Groz Beckert Kg Fibre compound acoustic absorbing material

Similar Documents

Publication Publication Date Title
US4522284A (en) Composite panel structure
US4641726A (en) Composite structure and method of manufacturing it
US6711872B2 (en) Lightweight panel construction
US4564554A (en) Composite sheathing
JP3693426B2 (en) Composite plate and manufacturing method thereof
EA000961B1 (en) Method of pressing of sandwich panels
US20040163571A1 (en) Fire door core assembly
US9701100B2 (en) Lightweight reinforced phenolic structural sandwich panel based on aramid honeycomb core and method
JPH042645A (en) Inorganic fiber plate
WO2017094254A1 (en) Decorative panel and panel manufacturing method
US20200171780A1 (en) Composite panel made of multiwall polycarbonate sheet covered by laminate layer
JPH02245301A (en) Reinforced veneer, plywood and laminated lumber
GB2173447A (en) Panel material
JP7436104B2 (en) non-combustible cardboard board
TWI789098B (en) Composite sandwich panel
JP3418096B2 (en) panel
JPS6118118Y2 (en)
JP7217437B2 (en) Interior panel and method for manufacturing interior panel
JP2557350Y2 (en) Board material
WO2019187890A1 (en) Interior panel and method for manufacturing interior panel
JPH0885178A (en) Honeycomb sandwich panel
JPH03230904A (en) Preparation of laminated wood
JPH08332604A (en) Laminated plywood and formation thereof
JPH08267622A (en) Artificial marble composite panel
JPH1061156A (en) Architectural plate