JPH0426442Y2 - - Google Patents
Info
- Publication number
- JPH0426442Y2 JPH0426442Y2 JP3824888U JP3824888U JPH0426442Y2 JP H0426442 Y2 JPH0426442 Y2 JP H0426442Y2 JP 3824888 U JP3824888 U JP 3824888U JP 3824888 U JP3824888 U JP 3824888U JP H0426442 Y2 JPH0426442 Y2 JP H0426442Y2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- temperature
- measuring
- measurement
- lance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 48
- 239000010959 steel Substances 0.000 claims description 48
- 239000010453 quartz Substances 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000523 sample Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 239000013307 optical fiber Substances 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 14
- 238000009529 body temperature measurement Methods 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 description 9
- 238000009991 scouring Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 206010029216 Nervousness Diseases 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- -1 refractory Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Radiation Pyrometers (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は溶鋼の炭素量及び溶鋼温度測定装置に
関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a device for measuring the carbon content of molten steel and the temperature of molten steel.
(従来の技術)
例えば転炉等の炉内において、炭素量及び溶鋼
温度を測定するには、測定用ランスを用いて温度
を測定することが一般的に知られている。これ
は、熱電対を検出端として精練中へ1〜2回消耗
式ポローブを浸漬させることにより、測定を行う
ものである。(Prior Art) In order to measure the carbon content and molten steel temperature in a furnace such as a converter, it is generally known to use a measuring lance to measure the temperature. This is a method of measuring by immersing a consumable porobe into the scouring process once or twice using a thermocouple as the detection end.
この方法では間欠的な情報となるため、予め、
最終溶鋼温度の誤差を見込んで安全側に操業せざ
るを得ず、操業上及び制御上十分とはいえなかつ
た。また、仮に吹練中の必要時間にわたつて測定
用ランス溶鋼中に浸漬没入させ続けると、炉内の
熱により測定用ランスが損傷してしまい実用上測
定は不可能であつた。 Since this method provides intermittent information,
The company had to operate on the safe side in anticipation of errors in the final molten steel temperature, which was not sufficient in terms of operation and control. Furthermore, if the measuring lance was kept immersed in the molten steel for the required time during blowing, the measuring lance would be damaged by the heat in the furnace, making measurement practically impossible.
又、実開昭57−9708号公報で石英管を介して、
鋳鉄、溶湯の炭素量及び温度を測定することが記
載されているが対物レンズの耐熱性の問題及びノ
イズが多く測定結果の精度が不十分となる問題を
有していた。 Also, in Utility Model Application Publication No. 57-9708, via a quartz tube,
Although it has been described that the amount of carbon and temperature of cast iron and molten metal can be measured, there are problems with the heat resistance of the objective lens and a problem with a large amount of noise, resulting in insufficient accuracy of the measurement results.
(考案が解決しようとする課題)
本考案は前述の課題を解決し、炉内において、
溶鋼の炭素量及び温度を連続的に測定する装置を
提供するものである。(Problems to be solved by the invention) This invention solves the above-mentioned problems, and in the furnace,
The present invention provides a device that continuously measures the carbon content and temperature of molten steel.
(課題を解決するための手段)
本考案の要旨は溶鋼の炭素量及び温度を測定す
る装置において、測定用ランスの先端に、保護管
を設け、該保護管の内部には一側に空隙部を設け
て石英プローブを配設し、放射温度計と接続する
光フアイバーを一方は炭素量の測定用とし、他方
を溶鋼の温度測定用とする2本の光フアイバーを
測定用ランス内に挿入し、溶鋼からの放射エネル
ギーを光フアイバーで受光して炭素量及び温度を
連続測定する溶鋼の炭素量及び溶鋼温度測定装置
である。(Means for Solving the Problems) The gist of the present invention is to provide a device for measuring the carbon content and temperature of molten steel, in which a protective tube is provided at the tip of a measuring lance, and a void is formed on one side inside the protective tube. A quartz probe was installed, and two optical fibers were inserted into the measurement lance, one for measuring the carbon content and the other for measuring the temperature of the molten steel, connected to the radiation thermometer. This is a molten steel carbon content and molten steel temperature measurement device that continuously measures the carbon content and temperature by receiving radiant energy from molten steel with an optical fiber.
(実施例及び作用) 以下、本考案を図面に基づき詳細に説明する。(Examples and effects) Hereinafter, the present invention will be explained in detail based on the drawings.
図中、1は転炉等の溶鋼精練体、2は精練用ラ
ンス、3は測定用ランス、4は溶鋼、5は放射温
度計、6は光フアイバー、7は石英プローブ、8
は保護管である。又図の状態は精練中かつ測定中
である。 In the figure, 1 is a molten steel refining body such as a converter, 2 is a scouring lance, 3 is a measuring lance, 4 is molten steel, 5 is a radiation thermometer, 6 is an optical fiber, 7 is a quartz probe, 8
is a protective tube. Also, the state shown in the figure is under refinement and measurement.
精練時においては、精練用ランス2より酸素が
噴射され、溶鋼4は攪拌、揺動状態にある、測定
中は測定用ランス3の先端の保護管8を溶鋼中に
浸漬没入させる。 During scouring, oxygen is injected from the scouring lance 2, and the molten steel 4 is stirred and oscillated. During measurement, the protective tube 8 at the tip of the measuring lance 3 is immersed into the molten steel.
本装置は測定用ランス3、光フアイバー6、石
英プローブ7、保護管8、放射温度計5で構成さ
れ、連続的かつ高精度な測温を可能とするもので
ある。 This device is composed of a measuring lance 3, an optical fiber 6, a quartz probe 7, a protection tube 8, and a radiation thermometer 5, and is capable of continuous and highly accurate temperature measurement.
一方、溶鋼の炭素当量は保護管8と石英プロー
ブ7との間の空隙部9に付着した溶鋼により測定
するものである。即ち、当初保護管8を溶鋼中に
浸漬没入させ、しかる後、僅かに引き上げると少
量の溶鋼が空隙部9に付着する。 On the other hand, the carbon equivalent of the molten steel is measured using the molten steel adhering to the gap 9 between the protection tube 8 and the quartz probe 7. That is, when the protective tube 8 is initially immersed in molten steel and then pulled up slightly, a small amount of molten steel adheres to the cavity 9.
この溶鋼は保護管8によつて冷却され、凝固に
至る。溶鋼表面が凝固する温度推移を石英プロー
ブ7を介して、測定用ランス3内に通した炭素量
測定用の光フアイバー6と接続する放射温度計5
により連続的に測定する。この測定により、冷却
曲線の停滞域の温度(凝固開始温度)を求め、凝
固開始温度は溶鋼中の炭素濃度によつて異なると
いう原理から溶鋼中の炭素を測定するものであ
る。 This molten steel is cooled by the protection tube 8 and solidifies. A radiation thermometer 5 connects to an optical fiber 6 for measuring the amount of carbon passed through the measuring lance 3 through a quartz probe 7 to measure the temperature change as the surface of the molten steel solidifies.
Measure continuously. Through this measurement, the temperature in the stagnation region of the cooling curve (solidification start temperature) is determined, and the carbon in the molten steel is measured based on the principle that the solidification start temperature varies depending on the carbon concentration in the molten steel.
なお、炭素量を測定している間に石英プローブ
7が溶鋼と接することにより、石英プローブ7を
介して放射エネルギーを温度測定用の光フアイバ
ー6で受光し、溶鋼の連続的かつ高精度な測温を
可能とするものである。 In addition, when the quartz probe 7 comes into contact with the molten steel while measuring the carbon content, the radiant energy is received by the optical fiber 6 for temperature measurement through the quartz probe 7, allowing continuous and highly accurate measurement of the molten steel. It allows for warmth.
該石英プローブ7の石英は耐熱性に優れ、連続
測定時間中の損傷が少ない上、黒体放射を形成し
て測温を容易にするとともに先端測温部が外気と
遮断され、酸化物が生じないため高精度な測温を
可能にせしめる。又、石英プローブ7の機械的耐
久性が不足する点は、保護管8により解決されて
おり、これにより測定時間中の石英プローブ7の
損耗を保護し、連続的な測温を可能にせしめると
ともに、炉内における溶鋼等の揺動による測定上
の外乱をも防止することができる。 The quartz of the quartz probe 7 has excellent heat resistance and is less likely to be damaged during continuous measurement time, and also forms black body radiation to facilitate temperature measurement. This makes highly accurate temperature measurement possible. In addition, the lack of mechanical durability of the quartz probe 7 is solved by the protection tube 8, which protects the quartz probe 7 from wear and tear during the measurement period and enables continuous temperature measurement. It is also possible to prevent measurement disturbances caused by the shaking of molten steel, etc. in the furnace.
一方、放射温度計5への放射光は光フアイバー
6で伝達しており、測温を高精度かつ高応答性で
実現せしめるとともに、放射温度計5が熱により
損傷することを容易に防止可能とするものであ
る。即ち、本考案は、先に述べた実開昭57−9708
号公報に記載されている構成では、対物レンズ及
び放射温度計の耐熱性の問題が生じるので、光フ
アイバーを用いて、放射温度計を熱影響の少ない
位置に設けると共に、ノイズの少ない測定精度の
良好な測定結果が得られる測定装置を提供するも
のである。 On the other hand, the radiation light to the radiation thermometer 5 is transmitted through the optical fiber 6, which makes it possible to measure temperature with high precision and high responsiveness, and to easily prevent the radiation thermometer 5 from being damaged by heat. It is something to do. That is, the present invention is based on the aforementioned Utility Model Application No. 57-9708.
With the configuration described in the publication, there is a problem with the heat resistance of the objective lens and the radiation thermometer. Therefore, an optical fiber is used to install the radiation thermometer in a position where it is less affected by heat, and to achieve measurement accuracy with less noise. The object of the present invention is to provide a measuring device that can obtain good measurement results.
又石英プローブを設けず、光フアイバーと放射
温度計のみで溶鋼温度を測定するのでは応答性が
不十分であり、本考案は応答性を考慮して、石英
プローブを構成要件の一つとしているものであ
る。 In addition, measuring the molten steel temperature only with an optical fiber and a radiation thermometer without a quartz probe does not provide sufficient responsiveness, so this invention considers responsiveness and includes a quartz probe as one of the components. It is something.
次に本考案の測定手順について述べると、精練
用ランス2から酸素を噴射して溶鋼4を精練して
いる時に、測定用ランス3を下降させ、該測定用
ランス3の先端を溶鋼4中に浸漬させる。 Next, to describe the measurement procedure of the present invention, while the molten steel 4 is being refined by injecting oxygen from the scouring lance 2, the measuring lance 3 is lowered, and the tip of the measuring lance 3 is placed in the molten steel 4. Soak.
測定用ランス3の先端部に設けてある保護管8
を先ず第2図中のA点まで浸漬させ、次いで、B
点まで引き上げる。 A protective tube 8 provided at the tip of the measuring lance 3
is first immersed up to point A in Figure 2, then immersed in point B.
raise it to the point.
B点まで保護管8を引き上げると空隙部9に溶
鋼4が付着し、その溶鋼4の凝固温度を石英プロ
ーブ7、炭素量測定用の光フアイバー6を介して
放射温度計5で測定し、炭素量を測定する。 When the protective tube 8 is pulled up to point B, the molten steel 4 adheres to the cavity 9, and the solidification temperature of the molten steel 4 is measured with the radiation thermometer 5 via the quartz probe 7 and the optical fiber 6 for measuring carbon content. measure quantity.
同時に保護管8は石英プローブ7が溶鋼4と接
するB点まで引き上げているため、石英プローブ
7は溶鋼4中に浸漬されており、石英プローブ7
を介して放射エネルギーを光フアイバー6で受光
し、溶鋼温度を連続測温するものである。 At the same time, the protection tube 8 is pulled up to point B where the quartz probe 7 contacts the molten steel 4, so the quartz probe 7 is immersed in the molten steel 4, and the quartz probe 7 is immersed in the molten steel 4.
The radiant energy is received by the optical fiber 6 through the molten steel, and the temperature of the molten steel is continuously measured.
又、測温する一回当たりの時間は通常数分間程
度であり、その間を連続測温すれば測温温度の精
度は十分なものである。 Further, the time required for each temperature measurement is usually about several minutes, and if the temperature is continuously measured during that time, the accuracy of the measured temperature is sufficient.
本考案で用いる保護管8はセラミツク、耐火
物、金属、その他複合材等を用いると有利なもの
である。なお石英プローブ7、保護管8は他の構
成品に比較して安価であり、必ずしも長時間の耐
久性を必要とされるわけではなく、最低精練一回
以上の寿命を有するものであれば、本考案の意図
は達成できる。この場合は、図示しない交換装置
により、石英プローブ7、保護管8のみを適宜交
換すれば目的を実現できるものである。 The protective tube 8 used in the present invention is advantageously made of ceramic, refractory, metal, or other composite materials. Note that the quartz probe 7 and protection tube 8 are inexpensive compared to other components, and do not necessarily require long-term durability. The intent of this invention can be achieved. In this case, the purpose can be achieved by appropriately replacing only the quartz probe 7 and the protection tube 8 using a replacement device (not shown).
(考案の効果)
本考案によれば、放射温度計と光フアイバーに
より応答性の良い連続測温が可能になり、石英プ
ローブに保護管を設けることにより機械的に耐久
性が優れ、かつ、炉内における溶鋼揺動等の外乱
防止が可能となり、保護管と石英プローブの間に
空隙部を設けて、その空隙部に付着する溶鋼の凝
固温度を測定することにより、炭素量の測定も可
能になり、溶鋼の炭素量と温度の測定が可能とな
り、その効果は極めて大きいものである。(Effects of the invention) According to the invention, continuous temperature measurement with good responsiveness is possible using a radiation thermometer and optical fiber, and mechanical durability is excellent by providing a protective tube on the quartz probe. It is now possible to prevent disturbances such as molten steel shaking inside the chamber, and by creating a gap between the protection tube and the quartz probe and measuring the solidification temperature of the molten steel adhering to the gap, it is also possible to measure the amount of carbon. This makes it possible to measure the carbon content and temperature of molten steel, and the effect is extremely large.
第1図は転炉等に用いられている測定用ランス
を示す断面図、第2図は本考案の溶鋼の炭素量及
び温度測定装置を示す断面図である。
1は転炉等の溶鋼精練体、2は精練用ランス、
3は測定用ランス、4は溶鋼、5は放射温度計、
6は光フアイバー、7は石英プローブ、8は保護
管、9は空隙部。
FIG. 1 is a sectional view showing a measuring lance used in a converter or the like, and FIG. 2 is a sectional view showing an apparatus for measuring the carbon content and temperature of molten steel according to the present invention. 1 is a molten steel refining body such as a converter, 2 is a refining lance,
3 is a measuring lance, 4 is molten steel, 5 is a radiation thermometer,
6 is an optical fiber, 7 is a quartz probe, 8 is a protection tube, and 9 is a cavity.
Claims (1)
て、測定用ランスの先端に、保護管を設け、該保
護管の内部には一側に空隙部を設けて石英プロー
ブを配設し、放射温度計と接続する光フアイバー
を一方は炭素量の測定用とし、他方を溶鋼の温度
測定用とする2本の光フアイバーを測定用ランス
内に挿入し、溶鋼からの放射エネルギーを光フア
イバーで受光して炭素量及び温度を連続測定する
溶鋼の炭素量及び溶鋼温度測定装置。 In an apparatus for measuring the carbon content and temperature of molten steel, a protection tube is provided at the tip of a measuring lance, a quartz probe is placed inside the protection tube with a cavity on one side, and a radiation thermometer and a Two optical fibers are inserted into the measurement lance, one for measuring the amount of carbon and the other for measuring the temperature of the molten steel, and the optical fibers receive the radiant energy from the molten steel and detect the carbon Molten steel carbon content and molten steel temperature measurement device that continuously measures the amount and temperature of molten steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3824888U JPH0426442Y2 (en) | 1988-03-25 | 1988-03-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3824888U JPH0426442Y2 (en) | 1988-03-25 | 1988-03-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01142440U JPH01142440U (en) | 1989-09-29 |
JPH0426442Y2 true JPH0426442Y2 (en) | 1992-06-25 |
Family
ID=31264805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3824888U Expired JPH0426442Y2 (en) | 1988-03-25 | 1988-03-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0426442Y2 (en) |
-
1988
- 1988-03-25 JP JP3824888U patent/JPH0426442Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPH01142440U (en) | 1989-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6139180A (en) | Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel | |
RU2267751C2 (en) | Method of continuous measurement of molten steel temperature and pipe used for realization of this method | |
JPH0426442Y2 (en) | ||
KR19990082256A (en) | Method and apparatus for measuring melting temperature in melting vessel | |
DE59903459D1 (en) | Method and measuring arrangement for determining changes in the operating state in containers carrying molten glass | |
JPH10176954A (en) | Apparatus for measuring temperature of molten metal | |
JPH04329323A (en) | Temperature measuring apparatus for high temperature molten body | |
WO2020022935A1 (en) | Device for measuring the temperature of molten materials | |
JPH0464419B2 (en) | ||
RU2059960C1 (en) | Heat pipe quality control method | |
EP0450090A4 (en) | Method of and device for measuring oxygen activity in slag and consumable type crucible used for said device | |
JPH01163634A (en) | Temperature measuring method | |
KR100378291B1 (en) | Expendable thermocouple | |
JPH04348236A (en) | Temperature detector for molten metal | |
CN207570670U (en) | A kind of temperature measuring equipment | |
KR100544651B1 (en) | Sample hole detecting device of probe equipped in sub-lance | |
KR20040056865A (en) | Measurement method of melting characteristics for continuous casted mold powder | |
Clymans | Applications of an immersion-type, optical fiber pyrometer | |
JPS62293128A (en) | Method and device for continuous measurement of temperature of molten metal | |
SU616290A1 (en) | Method of monitoring temperature conditions of converter smelting | |
Ren et al. | Experimental Research of Continuous Temperature Measurement for Molten Metal Bath through Bottom‐Blowing Component | |
SU846565A1 (en) | Device for control of metallurgical processes | |
Bodyaev | The choice of the scheme of using machines for monitoring the converter heat parameters | |
JPH07190749A (en) | Residual thickness detecting structure of refractory for gas blowing-in | |
Osumi et al. | Temperature measurement of molten steel by immersion-type optical fiber radiation thermometer at continuous caster |