JPH04264427A - Spacer for liquid crystal display - Google Patents

Spacer for liquid crystal display

Info

Publication number
JPH04264427A
JPH04264427A JP4539291A JP4539291A JPH04264427A JP H04264427 A JPH04264427 A JP H04264427A JP 4539291 A JP4539291 A JP 4539291A JP 4539291 A JP4539291 A JP 4539291A JP H04264427 A JPH04264427 A JP H04264427A
Authority
JP
Japan
Prior art keywords
liquid crystal
particles
spacer
average particle
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4539291A
Other languages
Japanese (ja)
Inventor
Genji Taga
玄治 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4539291A priority Critical patent/JPH04264427A/en
Publication of JPH04264427A publication Critical patent/JPH04264427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide such a spacer for a liquid crystal display that can prevent the liquid crystal near the spacer from regularily orienting near the spacer surfaces, that can widen the area for the liquid crystal to freely orient, and that can improve contrast of the liquid crystal display CONSTITUTION:The spacer for a liquid crystal display consists of composite particles comprising spherical particles of 1-10mum average particle size with <=5% variation coefficient of the particle size and other particles depositing on the particles above mentioned, having <=10% average particle size of the average particle size of the former particles. For example, the composite particles consist of polystyrene or silica particles with deposition of smaller particles which do not melt in the process of assembling the liquid crystal, for example, the same material as the spherical particles above mentioned.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、液晶表示素子を構成す
る2枚の透明板の間隙調整のために用いられ、液晶表示
のコントラストを向上させることのできる液晶表示素子
用スペーサーに関する。 【0002】 【従来の技術】液晶表示素子は、液晶とスペーサーを挾
んだ2枚の透明板で構成されている。上記のスペーサー
は、2枚の透明板の間での液晶の配向を可能にするため
に2枚の透明板の間隙調整のために用いられている。2
枚の透明板の間隙調整を良好に行うためには上記スペー
サーは粒子径のバラツキの小さい粒子でなければならな
い。現在では、上記スペーサーとしてポリスチレンやシ
リカ等の球状粒子が用いられている。 【0003】 【発明が解決しようとする課題】上記したポリスチレン
やシリカの球状粒子は、粒子径のバラツキが小さいため
にスペーサーとして好適に用いられている。しかしなが
ら、このようなスペーサーを用いると、液晶表示のコン
トラストが不十分であるという欠点がある。 【0004】本発明者らは、上記のスペーサーが液晶表
示のコントラストに悪影響を与える原因について研究し
た。その結果、スペーサーの粒子表面に液晶が規則正し
く配列し、こうして配列した液晶は電圧をかけても液晶
として機能せず、このために、スペーサーの表面近傍に
は液晶として機能しない領域が発生し、この領域が広く
なるとコントラストが不良となることを見いだした。 【0005】   【課題を解決するための手段】そこで、本発明者らは、
粒子径のバラツキの小さい粒子であって、しかも粒子表
面に形成される液晶の配向する領域の小さいスペーサー
を開発すべく鋭意研究を続けた結果、上記目的を達成す
ることに成功し、本発明を提案するに到った。 【0006】即ち、本発明は、平均粒子径が1〜10μ
mであり、粒子径の変動係数が5%以下であり、且つ液
晶組立て工程において溶融しない球状粒子の表面に、該
球状粒子の平均粒子径の10%以下の平均粒子径を有し
、且つ液晶組立て工程において溶融しない粒子が多数付
着してなる複合粒子よりなる液晶表示素子用スペーサー
である。 【0007】本発明において、球状粒子は、平均粒子径
が1〜10μmであり、粒子径の変動係数が5%以下で
ある。平均粒子径が1〜10μmの範囲外である粒子は
、2枚の透明板を液晶の配向に適した間隙に調整できな
いために液晶表示素子用スペーサーとして使用できない
。また、粒子径の変動係数が5%を越える粒子は粒子径
のバラツキが大きすぎるために液晶表示素子用スペーサ
ーとして使用できない。平均粒子径が2〜8μm、粒子
径の変動係数が3%以下である球状粒子は、特に液晶表
示素子用スペーサーとして良好であるために本発明にお
いて好適に用いられる。 【0008】上記の球状粒子の形状は真球状であること
が好ましいが、必ずしも真球状である必要はなく、真球
度が0.9以上であれば、液晶表示素子用スペーサーと
して十分に使用することができる。尚、本発明における
真球度は、電子顕微鏡により観察した球状粒子の短径と
長径の比率で表される。 【0009】上記の球状粒子の材質は、液晶組立ての封
止工程における加熱、一般には150〜200℃の温度
で溶融しないものでなければならない。このような材質
としては、ポリスチレン、スチレン−ジビニルベンゼン
共重合体、ベンゾグアナミン樹脂、ポリテトラフルオロ
エチレン等の合成樹脂;アルミナ、シリカ、チタニア、
ジルコニア等の無機酸化物を挙げることができる。 【0010】該球状粒子の表面には、該球状粒子の平均
粒子径の10%以下の平均粒子径を有し、且つ液晶組立
て工程において溶融しない粒子が多数付着している。球
状粒子の表面に付着した粒子の平均粒子径は、前記の球
状粒子の平均粒子径の10%以下でなければならない。 平均粒子径が10%を越えるときは、本発明のスペーサ
ー表面に形成される液晶の配向する領域を小さくするこ
とができない。球状粒子の表面に付着する粒子の平均粒
子径は、球状粒子の平均粒子径の10%以下であればよ
いが、スペーサー表面に形成される液晶の配向する領域
をより小さくする場合には、1〜5%の範囲であること
が好ましい。 【0011】このような粒子としては、通常、0.01
〜0.5μmの平均粒子径を有するものが採用される。 【0012】球状粒子の表面に付着する粒子の材質は、
球状粒子と同様に液晶組立ての封止工程において溶融し
ない材質である必要がある。したがって、粒子の材質は
上記球状粒子と同様のものが採用できる。 【0013】球状粒子の表面に付着する粒子の形状は、
特に制限されず、任意の形状が採用される。 【0014】球状粒子の表面に付着する粒子は、球状粒
子の表面積の被覆率で表示して80%以上、さらに90
%以上を覆っていることが、スペーサー表面に形成され
る液晶の配向する領域をより小さくするうえで好ましい
。上記の粒子は、球状粒子の表面に1層或いはそれ以上
の層を形成して付着していても良い。 【0015】上記した球状粒子の表面に粒子が付着した
複合粒子は、どのような方法で合成されても良いが、好
適には次のような方法で得ることができる。 【0016】公知の方法で合成された平均粒子径が1〜
10μmであり、粒子径の変動係数が5%以下である球
状粒子と、該球状粒子の平均粒子径の10%以下の平均
粒子径を有する粒子とを混合し、それによって発生する
熱で粒子の表面を溶融させて互いの粒子を付着させる方
法、例えば、ホソカワミクロン株式会社製のメカノフュ
ージョンシステムを用いる方法、或いは、上記の粒子を
溶媒中で混合し、その後、乾燥することによって粒子同
士の凝集力を利用して付着させる方法等があげられる。 【0017】 【効果】本発明の液晶表示素子用スペーサーは、球状粒
子の表面に付着した粒子によって液晶の配列が乱される
ために、スペーサーの表面近傍の液晶は液晶本来の機能
を発揮し、液晶として機能しない領域を狭めることがで
きる。したがって、本発明の液晶表示素子用スペーサー
を用いることにより、液晶表示のコントラストを向上さ
せることができる。 【0018】 【実施例】本発明をさらに詳細に述べるために、以下に
実施例及び比較例を掲げるが、本発明は、これら実施例
に限定されるものではない。 【0019】実施例1 平均粒子径5.9μm、変動係数1.0%、及び真球度
1.0の黒色シリカ粒子(徳山曹達株式会社製)とゾル
ゲル法で合成した平均粒子径0.2μmの単分散シリカ
を重量比が10:1の割合でメカノフュージョンシステ
ム(ホソカワミクロン株式会社製)に投入し、1000
rpmで5分間処理した。得られた粒子を電子顕微鏡で
観察した結果、黒色シリカ粒子の表面に単分散シリカが
被覆率95%で付着していることが確認できた。 【0020】このようにして作成した粒子を乾式散布装
置で透明電極及び配向処理ポリイミド付きのガラス基板
上に散布した。その後同じガラス基板を重ね合わせ、1
50℃で周囲を封止し、得られたセルの中に液晶を注入
し、液晶セルを作成した。 【0021】得られた液晶セルの評価をするために、ス
ペーサー周囲の液晶の配向している領域の広さを測定し
た。即ち、液晶セルの背面から光を照射し、液晶セルを
透過する光を顕微鏡で観察し、スペーサーの周囲での光
の透過領域をスペーサー周囲の液晶の配向している領域
とした。その結果、スペーサーの周囲での光の透過領域
はスペーサーの表面から0.1μm以内の範囲であった
。 【0022】実施例2 実施例1で使用した球状粒子及び付着粒子にかえて、表
1に示した粒子を用いた他は実施例1と同様にして、ス
ペーサー周囲の液晶の配向している領域の広さを測定し
た。その結果を表1に示した。 【0023】 【表1】 【0024】実施例3 実施例1で使用した黒色シリカ及び単分散シリカを重量
比で10:1の割合で粒子濃度が20%になるようにフ
ロンーエタノール混合溶媒(容量比1:1)に分散させ
た後、乾燥し溶媒を蒸発させた。得られた粒子を電子顕
微鏡で観察したところ、単分散シリカによる黒色シリカ
表面の被覆率は80%であった。 【0025】得られた粒子を用いて実施例1と同様の測
定を行ったところ、スペーサー周囲の液晶の配向してい
る領域は、スペーサー表面から0.3μmの範囲であっ
た。 【0026】比較例1 実施例1において、単分散シリカの付着していない黒色
シリカを用いた他は実施例1と同様にした。その結果、
スペーサーの周囲で液晶が配向し、スペーサーの表面か
ら1.5μmの範囲は光が透過して白く見えた。 【0027】比較例2 単分散シリカにかえて平均粒子径0.2μmのポリメチ
ルメタクリレートを用いた他は実施例1と同様にした。 150℃でセルを封止するまではスペーサー表面に小さ
い粒子が付着しているのが観察されたが、封止後は、封
止による熱でポリメチルメタクリレートが溶融し、スペ
ーサーの表面に小さい粒子が見当らなくなった。また、
実施例1と同様にしてスペーサー周囲の液晶の配向して
いる領域の広さを測定した結果、スペーサーの表面から
1μmの範囲は光が透過して白く見えた。
Detailed Description of the Invention [0001] The present invention is used to adjust the gap between two transparent plates constituting a liquid crystal display element, and is used to improve the contrast of a liquid crystal display. This invention relates to a spacer for liquid crystal display elements that can be used. 2. Description of the Related Art A liquid crystal display element is composed of two transparent plates sandwiching a liquid crystal and a spacer. The above-mentioned spacer is used to adjust the gap between the two transparent plates to enable alignment of liquid crystal between the two transparent plates. 2
In order to satisfactorily adjust the gap between the transparent plates, the spacer must be particles with small variation in particle size. Currently, spherical particles such as polystyrene and silica are used as the spacer. [0003] The above-mentioned spherical particles of polystyrene and silica are suitably used as spacers because of their small variation in particle diameter. However, the use of such a spacer has the disadvantage that the contrast of the liquid crystal display is insufficient. [0004] The present inventors have studied the cause of the adverse effect of the above-mentioned spacer on the contrast of a liquid crystal display. As a result, the liquid crystals are regularly arranged on the surface of the spacer particles, and the liquid crystals arranged in this way do not function as liquid crystals even when a voltage is applied.As a result, a region that does not function as a liquid crystal is generated near the surface of the spacer. It was found that the wider the area, the poorer the contrast. [Means for Solving the Problems] Therefore, the present inventors
As a result of intensive research to develop a spacer that is a particle with small variation in particle size and a small area for orientation of liquid crystal formed on the particle surface, we succeeded in achieving the above objective and developed the present invention. I came up with a proposal. That is, in the present invention, the average particle diameter is 1 to 10 μm.
m, the coefficient of variation of the particle diameter is 5% or less, and the surface of the spherical particles that does not melt in the liquid crystal assembly process has an average particle diameter of 10% or less of the average particle diameter of the spherical particles, and the liquid crystal This is a spacer for a liquid crystal display element made of composite particles made up of a large number of attached particles that do not melt during the assembly process. [0007] In the present invention, the spherical particles have an average particle diameter of 1 to 10 μm and a coefficient of variation of particle diameter of 5% or less. Particles having an average particle diameter outside the range of 1 to 10 μm cannot be used as a spacer for a liquid crystal display element because the gap between the two transparent plates cannot be adjusted to be suitable for alignment of the liquid crystal. Further, particles having a coefficient of variation of particle diameter exceeding 5% cannot be used as a spacer for a liquid crystal display element because the variation in particle diameter is too large. Spherical particles having an average particle diameter of 2 to 8 μm and a particle diameter variation coefficient of 3% or less are particularly suitable as spacers for liquid crystal display elements, and are therefore preferably used in the present invention. [0008] The shape of the above-mentioned spherical particles is preferably true spherical, but it does not necessarily have to be true spherical, and if the sphericity is 0.9 or more, it can be used satisfactorily as a spacer for liquid crystal display elements. be able to. Incidentally, the sphericity in the present invention is expressed by the ratio of the short axis to the long axis of a spherical particle observed with an electron microscope. [0009] The material of the above-mentioned spherical particles must be one that does not melt when heated during the sealing process of liquid crystal assembly, generally at a temperature of 150 to 200°C. Such materials include synthetic resins such as polystyrene, styrene-divinylbenzene copolymer, benzoguanamine resin, and polytetrafluoroethylene; alumina, silica, titania,
Examples include inorganic oxides such as zirconia. [0010] On the surface of the spherical particles, a large number of particles are attached which have an average particle diameter of 10% or less of the average particle diameter of the spherical particles and which do not melt during the liquid crystal assembly process. The average particle diameter of the particles attached to the surface of the spherical particles must be 10% or less of the average particle diameter of the spherical particles. When the average particle diameter exceeds 10%, it is impossible to reduce the area in which the liquid crystals formed on the surface of the spacer of the present invention are oriented. The average particle diameter of the particles attached to the surface of the spherical particles may be 10% or less of the average particle diameter of the spherical particles, but if the area where the liquid crystals formed on the spacer surface are oriented is made smaller, It is preferably in the range of ~5%. [0011] Such particles usually have a particle size of 0.01
Those having an average particle diameter of ~0.5 μm are employed. The material of the particles attached to the surface of the spherical particles is as follows:
Similar to the spherical particles, the material must not melt during the sealing process of liquid crystal assembly. Therefore, the material of the particles can be the same as that of the spherical particles described above. [0013] The shape of the particles adhering to the surface of the spherical particles is
There is no particular restriction, and any shape may be adopted. [0014] The particles adhering to the surface of the spherical particles have a surface area coverage of 80% or more, and moreover 90%.
% or more is preferable in order to further reduce the area where the liquid crystals formed on the spacer surface are aligned. The above particles may be attached to the surface of the spherical particles in the form of one or more layers. [0015] The above-mentioned composite particles having particles attached to the surface of the spherical particles may be synthesized by any method, but preferably can be obtained by the following method. [0016] Synthesized by a known method, the average particle diameter is 1~
Spherical particles having a diameter of 10 μm and a coefficient of variation of particle diameter of 5% or less are mixed with particles having an average particle diameter of 10% or less of the average particle diameter of the spherical particles, and the heat generated thereby causes the particles to A method of melting the surfaces and adhering the particles to each other, for example, a method using the Mechanofusion system manufactured by Hosokawa Micron Co., Ltd., or a method of mixing the above particles in a solvent and then drying to increase the cohesive force between the particles. Examples include a method of adhering using. [Effects] In the spacer for a liquid crystal display element of the present invention, since the alignment of the liquid crystal is disturbed by the particles attached to the surface of the spherical particles, the liquid crystal near the surface of the spacer can perform its original function as a liquid crystal. The area that does not function as a liquid crystal can be narrowed down. Therefore, by using the spacer for a liquid crystal display element of the present invention, the contrast of a liquid crystal display can be improved. [Examples] In order to describe the present invention in more detail, Examples and Comparative Examples are listed below, but the present invention is not limited to these Examples. Example 1 Black silica particles (manufactured by Tokuyama Soda Co., Ltd.) with an average particle diameter of 5.9 μm, a coefficient of variation of 1.0%, and a sphericity of 1.0 were synthesized by a sol-gel method with an average particle diameter of 0.2 μm. of monodispersed silica at a weight ratio of 10:1 was charged into a Mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.).
rpm for 5 minutes. As a result of observing the obtained particles with an electron microscope, it was confirmed that monodisperse silica was attached to the surface of the black silica particles at a coverage rate of 95%. The particles thus prepared were sprayed onto a glass substrate provided with a transparent electrode and an oriented polyimide using a dry spraying device. After that, stack the same glass substrates and
The surroundings were sealed at 50° C., and liquid crystal was injected into the obtained cell to create a liquid crystal cell. In order to evaluate the obtained liquid crystal cell, the width of the area around the spacer where the liquid crystal was oriented was measured. That is, light was irradiated from the back side of the liquid crystal cell, the light transmitted through the liquid crystal cell was observed with a microscope, and the light transmission area around the spacer was defined as the area around the spacer where the liquid crystal was oriented. As a result, the light transmission area around the spacer was within 0.1 μm from the surface of the spacer. Example 2 In the same manner as in Example 1, except that the particles shown in Table 1 were used instead of the spherical particles and adhered particles used in Example 1, the liquid crystal oriented area around the spacer was The width of the area was measured. The results are shown in Table 1. [Table 1] Example 3 The black silica and monodispersed silica used in Example 1 were mixed in a Freon-ethanol mixed solvent (with a weight ratio of 10:1 so that the particle concentration was 20%). After dispersing at a volume ratio of 1:1), the mixture was dried and the solvent was evaporated. When the obtained particles were observed with an electron microscope, the coverage of the black silica surface with monodisperse silica was 80%. When the obtained particles were measured in the same manner as in Example 1, it was found that the area around the spacer where the liquid crystal was oriented was within a range of 0.3 μm from the spacer surface. Comparative Example 1 The procedure of Example 1 was repeated except that black silica to which no monodispersed silica was attached was used. the result,
The liquid crystal was oriented around the spacer, and the area within 1.5 μm from the surface of the spacer was transparent and appeared white. Comparative Example 2 The same procedure as in Example 1 was carried out except that polymethyl methacrylate having an average particle diameter of 0.2 μm was used instead of monodisperse silica. Small particles were observed to adhere to the spacer surface until the cell was sealed at 150°C, but after sealing, the polymethyl methacrylate melted due to the heat generated by sealing, and small particles adhered to the spacer surface. is no longer found. Also,
As a result of measuring the area of the oriented liquid crystal around the spacer in the same manner as in Example 1, the area within 1 μm from the surface of the spacer was transparent and appeared white.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径が1〜10μmであり、粒子径
の変動係数が5%以下であり、且つ液晶組立て工程にお
いて溶融しない球状粒子の表面に、該球状粒子の平均粒
子径の10%以下の平均粒子径を有し、且つ液晶組立て
工程において溶融しない粒子が多数付着してなる複合粒
子よりなる液晶表示素子用スペーサー。
Claim 1: A spherical particle having an average particle diameter of 1 to 10 μm, a coefficient of variation of the particle diameter of 5% or less, and 10% of the average particle diameter of the spherical particle, which does not melt during the liquid crystal assembly process, is applied to the surface of the spherical particle. A spacer for a liquid crystal display element made of composite particles having the following average particle diameter and having a large number of attached particles that do not melt during the liquid crystal assembly process.
JP4539291A 1991-02-19 1991-02-19 Spacer for liquid crystal display Pending JPH04264427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4539291A JPH04264427A (en) 1991-02-19 1991-02-19 Spacer for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4539291A JPH04264427A (en) 1991-02-19 1991-02-19 Spacer for liquid crystal display

Publications (1)

Publication Number Publication Date
JPH04264427A true JPH04264427A (en) 1992-09-21

Family

ID=12717996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4539291A Pending JPH04264427A (en) 1991-02-19 1991-02-19 Spacer for liquid crystal display

Country Status (1)

Country Link
JP (1) JPH04264427A (en)

Similar Documents

Publication Publication Date Title
KR910002924B1 (en) Spacer for liquid crystal display device
US3653741A (en) Electro-optical dipolar material
JP3189591B2 (en) Manufacturing method of liquid crystal element
US5130831A (en) Particulate spacers and liquid crystal display cells containing these spacers
US5093735A (en) Infrared modulating material comprising a liquid crystal and a medium
CN107703652A (en) A kind of electrically-controlled liquid crystal based on graphene/Meta Materials coordinated drive is adjustable THz wave absorber and preparation method thereof
JPH0352843B2 (en)
JPS62174726A (en) Liquid crystal electrooptic element and its production
JPH06175139A (en) Plastic substrate liquid crystal display element and its production
JPH04264427A (en) Spacer for liquid crystal display
JPH01255832A (en) Liquid crystal display device
JPH0296119A (en) Liquid crystal display device made of film substrate and production thereof
JPS6394224A (en) Spacer particle for display device and its production
JP2001013505A (en) Spacer for liquid crystal display element, its manufacture and liquid crystal display element
JPH01247155A (en) Double-layer structural fine substance
JPS63217323A (en) Liquid crystal display device
JPH0415623A (en) Colored spacer for liquid crystal display element
JPH03163527A (en) Production of liquid crystal element
JPH04165332A (en) Liquid crystal panel and manufacture thereof
JPS6023329B2 (en) Liquid crystal cell alignment treatment method
JP3542866B2 (en) Adhesive spacer for liquid crystal display panel, method for producing the same, and liquid crystal display panel
JPS60185926A (en) Liquid crystal display element
JPH08248426A (en) Spacer for liquid crystal display element and liquid crystal display element using that
JPS63273835A (en) Ferroelectric liquid crystal element and its manufacture
JPH01241524A (en) Liquid crystal electrooptic element