JPH04264296A - Controlling apparatus for feed water of steam generating plant - Google Patents

Controlling apparatus for feed water of steam generating plant

Info

Publication number
JPH04264296A
JPH04264296A JP3023112A JP2311291A JPH04264296A JP H04264296 A JPH04264296 A JP H04264296A JP 3023112 A JP3023112 A JP 3023112A JP 2311291 A JP2311291 A JP 2311291A JP H04264296 A JPH04264296 A JP H04264296A
Authority
JP
Japan
Prior art keywords
flow rate
water supply
water
feed water
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3023112A
Other languages
Japanese (ja)
Other versions
JP3092173B2 (en
Inventor
Toshiya Kurakake
鞍掛 稔也
Shoji Tanigawa
谷川 尚司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03023112A priority Critical patent/JP3092173B2/en
Publication of JPH04264296A publication Critical patent/JPH04264296A/en
Application granted granted Critical
Publication of JP3092173B2 publication Critical patent/JP3092173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Flow Control (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To protect a feed water pump by controlling water feeding by conducting a proportional-plus-integral operation with a feed water control valve opening detection signal used as a starting point, when a feed water flow rate exceeds a reference value. CONSTITUTION:Judging the relation between a pump number determining unit 27 and a feed water flow rate detection signal 17, a feed water flow rate determining unit 30 outputs a feed water pump protection signal 33. when a protection signal 33 is received, a changeover is made from a water level controller 23 for increasing the feed water flow rate to a feed eater flow rate controller 36 for constantly controlling the flow rate at a set value for protection of a pump, on the basis of three element signals of a reactor water level 14, a main steam flow rate 19 and the feed water flow rate 17. Since the feed water flow rate controller 36 controls the flow rate according to a feed water control valve opening signal 48 until the pump is protected, a flow rate control having little overshoot can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蒸気発生器の水位制御
並びに給水ポンプ保護に係り、特に、沸騰水型原子力プ
ラントに適用するのに好適な蒸気発生プラントの給水制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water level control of a steam generator and protection of feedwater pumps, and more particularly to a feedwater control system for a steam generation plant suitable for application to a boiling water nuclear power plant.

【0002】0002

【従来の技術】従来の沸騰水型原子力プラントの給水制
御装置は、特開昭57−197499号公報に示されて
いる。給水制御装置は、原子力圧力容器内の水位(以下
、原子炉水位という)、給水流量及び主蒸気流量の信号
値を取込んで、原子炉圧力容器に供給される給水流量を
制御し、原子炉水位を所定のレベルに保つ。
2. Description of the Related Art A conventional water supply control system for a boiling water nuclear power plant is disclosed in Japanese Patent Application Laid-Open No. 197499/1983. The water supply control device receives signal values of the water level in the nuclear pressure vessel (hereinafter referred to as reactor water level), the water supply flow rate, and the main steam flow rate, and controls the water supply flow rate supplied to the reactor pressure vessel, thereby controlling the reactor water level. Keep the water level at a predetermined level.

【0003】モータ駆動給水ポンプを三台並列したプラ
ントでは、二台のモータ駆動給水ポンプが定速回転の電
動機で駆動されるため、モータ駆動給水ポンプ吐出側に
設けられた給水調節弁の開度を、給水制御装置から出力
された弁開度要求信号に従って制御することにより給水
流量を調整する。
[0003] In a plant where three motor-driven water pumps are installed in parallel, two motor-driven water pumps are driven by electric motors that rotate at a constant speed, so the opening degree of the water supply control valve provided on the discharge side of the motor-driven water pump varies. The water supply flow rate is adjusted by controlling according to the valve opening request signal output from the water supply control device.

【0004】この様なプラントで、選択制御棒(SRI
)の挿入等により原子炉水位低下が発生した場合、図4
に示す様に同じ反応度の投入量であっても、SRIのパ
ターンにより、実線で示した−15cm程度の水位低下
になる場合と破線で示した−40cm程度の水位低下と
なる場合がある。
[0004] In such plants, selective control rods (SRI
) If a drop in the reactor water level occurs due to the insertion of
As shown in , even if the input amount has the same reactivity, depending on the SRI pattern, the water level may drop by about -15 cm as shown by the solid line, or by about -40 cm as shown by the broken line.

【0005】前者の場合、水位低下に合わせて給水制御
装置11により給水調節弁が開けられ、給水流量が一時
的に110%まで増加するが、原子炉水位の回復に伴い
、給水流量も低下し、変化が終わる。
In the former case, the water supply control device 11 opens the water supply control valve as the water level drops, and the water supply flow rate temporarily increases to 110%, but as the reactor water level recovers, the water supply flow rate also decreases. , the change ends.

【0006】一方、後者の場合、破線が示す様に初期の
原子炉水位低下に合わせて給水制御装置の信号で給水流
量が増加し、約135%まで達する。この時、給水ポン
プはランアウト状態となっており、給水ポンプが破損す
る可能性があった。
On the other hand, in the latter case, as shown by the broken line, the water supply flow rate increases according to the signal from the water supply control device in accordance with the initial drop in the reactor water level, reaching approximately 135%. At this time, the water pump was in a runout state, and there was a possibility that the water pump would be damaged.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、給水
ポンプのランアウト保護や過負荷防止の点について考慮
されておらず、選択制御棒挿入等により、原子炉水位が
低下する事象が発生した場合に、給水流量を増加させ過
ぎるためランアウト流量を越える可能性があった。
[Problem to be solved by the invention] The above-mentioned conventional technology does not take into account the runout protection or overload prevention of the feedwater pump, and if an event occurs in which the reactor water level drops due to selective control rod insertion, etc. In addition, there was a possibility that the water supply flow rate would increase too much and exceed the runout flow rate.

【0008】本発明の目的は、給水ポンプのランアウト
を防止するため、さらに、ランアウト防止機構起動直後
の、ランアウト設定値からの給水流量のオーバーシュー
ト量を低減させ、給水流量を給水流量ポンプトリップ値
へ至らせない給水制御装置を提供することにある。
An object of the present invention is to prevent runout of the water supply pump, and further to reduce the amount of overshoot of the water supply flow rate from the runout setting value immediately after activation of the runout prevention mechanism, and to adjust the water supply flow rate to the water supply flow rate pump trip value. The object of the present invention is to provide a water supply control device that does not lead to water damage.

【0009】[0009]

【課題を解決するための手段】上記問題点は、給水流量
を検出する手段と、給水流量を規定値に制御するための
給水流量制御器を設け、給水流量が規定値を越えたとこ
ろで、水位制御から給水流量一定制御に切り替えること
により解決される。
[Means for solving the problem] The above problem is solved by providing a means for detecting the water supply flow rate and a water supply flow rate controller for controlling the water supply flow rate to a specified value, and when the water supply flow rate exceeds the specified value, the water level This problem can be solved by switching from control to constant water flow rate control.

【0010】また、給水流量制御器をラウンアウト保護
回路が起動するまで、給水調節弁開度信号に、常時、タ
イバックさせておく事で、給水流量のオーバーシュート
を低減させ、給水ポンプトリップ値へ至る事から回避で
きる。
[0010] Furthermore, by constantly tying back the water supply flow rate controller to the water supply control valve opening signal until the roundout protection circuit is activated, overshoot of the water supply flow rate can be reduced and the water supply pump trip value can be reduced. You can avoid this from happening.

【0011】[0011]

【作用】給水流量制御器は、ランアウト保護動作が行わ
れるまで、常に給水調節弁開度信号とタイバックしてい
る。このことにより、給水流量が規定値を上回ってラン
アウト保護機構が動作した時点で、給水調節弁開度要求
信号は、実際の給水調節弁位置まで値が上がり、その値
から比例・積分演算を行うので、給水ポンプ保護規定値
からのオーバーシュートを低減でき、給水ポンプトリッ
プ値に到達しなくなる。
[Operation] The water supply flow rate controller is always tied back with the water supply control valve opening signal until the runout protection operation is performed. As a result, when the water supply flow rate exceeds the specified value and the runout protection mechanism is activated, the water supply control valve opening request signal increases to the actual water supply control valve position, and proportional/integral calculations are performed from that value. Therefore, overshoot from the water pump protection specified value can be reduced, and the water pump trip value will not be reached.

【0012】0012

【実施例】沸騰水型原子力プラントに本発明を適用した
場合の好適な一実施例である蒸気発生プラントの給水制
御装置を、図1,図2および図3に基づいて以下に説明
する。沸騰水型原子力プラントの圧力容器は蒸気発生器
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A water supply control system for a steam generation plant, which is a preferred embodiment of the present invention applied to a boiling water nuclear power plant, will be described below with reference to FIGS. 1, 2 and 3. The pressure vessel of a boiling water nuclear power plant is a steam generator.

【0013】沸騰水型原子力プラントの通常運転時、原
子炉圧力容器(蒸気発生器)1内の炉心2で加熱された
冷却水(給水)は蒸気となる。
During normal operation of a boiling water nuclear power plant, cooling water (feed water) heated in the reactor core 2 in the reactor pressure vessel (steam generator) 1 turns into steam.

【0014】この蒸気は、原子炉圧力容器1から吐出さ
れ、主蒸気管3を通ってタービン4に送られる。タービ
ン4から排気された蒸気は、復水器5によって凝縮され
て水になる。復水器5から吐出された凝縮水、即ち、原
子炉の冷却水となる給水は、給水配管6で復水脱塩器(
図示せず)、復水ポンプ7、及び給水加熱器(図示せず
)に供給される。
This steam is discharged from the reactor pressure vessel 1 and sent to the turbine 4 through the main steam pipe 3. Steam exhausted from the turbine 4 is condensed into water by a condenser 5. The condensed water discharged from the condenser 5, that is, the feed water that becomes the cooling water for the reactor, is passed through the water supply pipe 6 to a condensate demineralizer (
(not shown), a condensate pump 7, and a feed water heater (not shown).

【0015】さらに、給水は、給水配管の分岐管8A,
8B,8Cに設けられた三台のMD−RFP9A,9B
,9Cのうちの二台により加圧され、さらに二台の給水
調節弁10A,10Bが給水制御装置11からの弁開度
指令信号12により調節され適切な給水流量となり、原
子炉1に供給される。給水調節弁10A,10Bによる
給水流量の制御は、原子炉圧力容器1内の水位を計測す
る水位計13による水位信号14,給水配管15に設け
られた給水流量計16による給水流量信号17、及び主
蒸気配管3に設けられた主蒸気流量計18による主蒸気
流量信号19の3要素信号により、給水流量制御装置1
1により制御される。
Furthermore, the water supply is carried out through branch pipes 8A and 8A of the water supply piping.
Three MD-RFP9A, 9B installed in 8B, 8C
, 9C, and the two water supply regulating valves 10A and 10B are further adjusted by the valve opening command signal 12 from the water supply control device 11 to obtain an appropriate water supply flow rate, and the supply water is supplied to the reactor 1. Ru. The water supply flow rate is controlled by the water supply control valves 10A and 10B using a water level signal 14 from a water level gauge 13 that measures the water level in the reactor pressure vessel 1, a water supply flow rate signal 17 from a water flow meter 16 provided in the water supply piping 15, and The feedwater flow rate control device 1
1.

【0016】即ち、図2に示す様に、主蒸気流量信号1
9と給水流量信号17の偏差信号に対しミスマッチゲイ
ン20がかけられた信号と原子炉水位信号14との和信
号と原子炉水位設定信号21との差が水位偏差信号22
となり水位制御器23に入力され比例積分演算が行われ
、給水調節弁開度要求信号12として給水制御装置から
出力される。
That is, as shown in FIG. 2, the main steam flow rate signal 1
The water level deviation signal 22 is the difference between the reactor water level setting signal 21 and the sum signal of the signal obtained by applying the mismatch gain 20 to the deviation signal of the water supply flow rate signal 17 and the reactor water level signal 14.
Then, the signal is input to the water level controller 23, where proportional integral calculation is performed, and outputted from the water supply control device as the water supply control valve opening request signal 12.

【0017】本発明による給水制御装置を図2に示す。A water supply control device according to the present invention is shown in FIG.

【0018】本制御装置は、三要素水位制御器に加えて
給水ポンプモータ24A,24B,24Cそれぞれの遮
断器25A,25B,25Cの閉状態を検出した信号2
6A,26B,26Cによりポンプ台数判定部27で、
2アウトオブロジックで給水ポンプ一台運転中か二台運
転中か判断し、一台運転中信号29か二台運転中信号2
8を給水流量制御判定部30に送る。
In addition to the three-element water level controller, this control device also uses a signal 2 that detects the closed state of the breakers 25A, 25B, and 25C of the water supply pump motors 24A, 24B, and 24C.
6A, 26B, and 26C, the number of pumps determining unit 27,
2 Out of logic determines whether one or two water pumps are running, and the one pump running signal is 29 or the two water pumps are running signal 2.
8 is sent to the water supply flow rate control determination section 30.

【0019】給水流量制御判定部30では、給水流量信
号17(c)が、給水ポンプ二台運転中に規定値Dを上
回るか、或いは、給水ポンプ一台運転中に規定値Eを上
回った場合に、オアゲート31で給水ポンプ保護信号3
2を出力する。本信号は自己保持がかかり、給水ポンプ
保護信号33として出力される。
In the water supply flow rate control determination unit 30, if the water supply flow rate signal 17(c) exceeds the specified value D while two water supply pumps are in operation, or exceeds the specified value E while one water supply pump is in operation. , water pump protection signal 3 is activated at or gate 31.
Outputs 2. This signal is self-held and output as the water pump protection signal 33.

【0020】本信号が出力されると、スイッチ35で通
常時の百%の信号発生器34から給水流量制御器36に
切替えられる。
When this signal is output, the switch 35 switches from the normal 100% signal generator 34 to the water supply flow rate controller 36.

【0021】給水流量制御器36では、給水流量信号2
7と給水ポンプ台数判定部27からの信号に従い、与え
られる給水ポンプ一台運転時或いは二台運転時の設定値
38との偏差信号39が入力され、比例・積分演算が行
われ、給水流量制御器出力信号として出力される。通常
運転時、即ち、給水ポンプ保護信号がオフの場合、給水
調節弁開度検出信号52が給水流量制御器36へタイバ
ックされるため、給水ポンプ保護信号33がオンになる
と、給水流量制御出力37はその時点の給水調節弁開度
検出信号52と同じ値から制御を始めるため、給水流量
の規定値からのオーバーシュート量を低減し、一度も給
水ポンプトリツプ値へ至る事は無い。
In the water supply flow rate controller 36, the water supply flow rate signal 2
7 and the signal from the water supply pump number determination unit 27, a deviation signal 39 between the given set value 38 when one or two water supply pumps is operated is input, proportional and integral calculations are performed, and the water supply flow rate is controlled. output as a device output signal. During normal operation, that is, when the water supply pump protection signal is off, the water supply control valve opening detection signal 52 is tied back to the water supply flow rate controller 36, so when the water supply pump protection signal 33 is turned on, the water supply flow rate control output is 37 starts control from the same value as the water supply control valve opening detection signal 52 at that time, so the amount of overshoot of the water supply flow rate from the specified value is reduced, and the water supply pump trip value is never reached.

【0022】給水ポンプ保護信号33がオンになると給
水流量制御器信号37が、低値優先回路42に入力され
水位制御器出力信号12と比較され弁開度要求信号41
として出力される。これにより給水流量が給水ポンプ運
転台数により定まる保護設定値を上回った場合に、給水
流量一定制御が行われる。
When the water supply pump protection signal 33 is turned on, the water supply flow rate controller signal 37 is input to the low value priority circuit 42 and compared with the water level controller output signal 12 to generate the valve opening request signal 41.
is output as As a result, when the water supply flow rate exceeds the protection setting value determined by the number of operating water supply pumps, constant water supply flow rate control is performed.

【0023】一方、給水ポンプ保護がオンの場合、給水
流量制御器36の出力信号40にバイアス(+10%)
42が加算された積分器上限制限値43が水位制御器2
3に入力され、積分器出力の上限は、上記制御器23に
入力され積分器出力の上限は、上記制限値に制限される
On the other hand, when the water supply pump protection is on, the output signal 40 of the water supply flow rate controller 36 is biased (+10%).
The integrator upper limit value 43 to which 42 is added is the water level controller 2.
3, the upper limit of the integrator output is input to the controller 23, and the upper limit of the integrator output is limited to the above limit value.

【0024】これにより、給水ポンプ保護動作が長く続
いても、水位制御器の積分器は飽和する事が無いため原
子炉水位が回復した場合に低値優先回路を通して、水位
制御をすみやかに再開できる。
[0024] As a result, even if the feed water pump protection operation continues for a long time, the integrator of the water level controller will not become saturated, so that when the reactor water level recovers, water level control can be promptly resumed through the low value priority circuit. .

【0025】また、水位制御器出力12と低値優先回路
出力41を給水ポンプ保護リセット判定部44に入力し
、信号比較器45で水位制御器出力信号12が給水調節
弁開度要求信号37よりも小さくなり、かつ、五秒程度
のタイマ46遅れのあと、リセット信号47が給水制御
判定部30に送られ、自己保持回路をリセットすること
により、給水ポンプ保護信号33はリセットされる。
In addition, the water level controller output 12 and the low value priority circuit output 41 are input to the water supply pump protection reset determination section 44 , and the water level controller output signal 12 is determined by the signal comparator 45 from the water supply control valve opening request signal 37 . becomes smaller, and after a delay of about five seconds by the timer 46, a reset signal 47 is sent to the water supply control determining section 30, and by resetting the self-holding circuit, the water pump protection signal 33 is reset.

【0026】以下に本発明の実施例の詳細を示す。[0026] Details of embodiments of the present invention are shown below.

【0027】図5は、主蒸気隔離弁全閉時の、給水流量
,原子炉水位,制御器出力の変化を実線(従来の三要素
方式)及び破線で示したものである。
FIG. 5 shows changes in the feed water flow rate, reactor water level, and controller output when the main steam isolation valve is fully closed, using solid lines (conventional three-element system) and broken lines.

【0028】従来方式(実線)では、主蒸気隔離弁閉に
よる原子炉水位低下に対応して水位制御器にて給水流量
を約140%まで増加させている。そのため、給水ポン
プ二台運転時のランアウトフロー設定値110%を上回
り、機器保護上問題となる。図6では、給水流量制御器
のタイバック先を、水位制御器出力信号(実線)にした
場合と、給水調節弁開度信号(破線,本発明)にした場
合の、給水流量,原子炉水位,制御器出力の変化を示し
たものである。
In the conventional system (solid line), the water level controller increases the water supply flow rate to about 140% in response to the drop in the reactor water level due to the closing of the main steam isolation valve. Therefore, the runout flow exceeds the set value of 110% when two water pumps are operated, which poses a problem in terms of equipment protection. Figure 6 shows the feed water flow rate and reactor water level when the tie back of the feed water flow rate controller is set to the water level controller output signal (solid line) and when the feed water control valve opening signal (broken line, the present invention) is used. , which shows the change in the controller output.

【0029】水位制御器出力信号にタイバックしていた
場合は、給水ポンプ保護機構の作動直後の給水流量のオ
ーバーシュートが約120%に達している。なお、復水
ろ過装置及び復水脱塩装置が設置されているプラントで
は、一時的に給水ポンプトリツプ値に達している。
In the case of tieback to the water level controller output signal, the overshoot of the water supply flow rate immediately after the water supply pump protection mechanism is activated reaches approximately 120%. In addition, in plants where condensate filtration equipment and condensate desalination equipment are installed, the water supply pump trip value is temporarily reached.

【0030】一方、本発明では、給水流量の最大値は約
114%であり、これは、給水ポンプトリツプ値117
%を下回っており、給水ポンプが破損する事を避けられ
る。本発明の他の実施例について説明する。
On the other hand, in the present invention, the maximum value of the water supply flow rate is about 114%, which is equal to the water supply pump trip value of 117%.
%, and damage to the water pump can be avoided. Other embodiments of the present invention will be described.

【0031】前実施例は、給水ポンプ保護動作がかかる
まで、給水流量制御器信号を、給水調節弁開度信号に一
致させていたが、図7に示すように、水位制御器出力信
号に、ある偏差(5%)を差し引いた値と、給水流量制
御器出力を一致させる。
In the previous embodiment, the water supply flow rate controller signal was made to match the water supply control valve opening signal until the water supply pump protection operation was applied, but as shown in FIG. The value obtained by subtracting a certain deviation (5%) is made to match the water supply flow rate controller output.

【0032】これにより、図6に示したと同様に、給水
ポンプトリツプ値に達する事を回避できる。
This makes it possible to avoid reaching the water supply pump trip value, as shown in FIG.

【0033】[0033]

【発明の効果】本発明によれば、主蒸気隔離弁閉等の急
激に原子炉水位が低下し、水位制御により給水流量が増
大し、給水ポンプ保護動作が行われた時に、給水流量の
規定値からのオーバーシュート量が減少し、給水ポンプ
の機器保護が行える。
Effects of the Invention According to the present invention, when the reactor water level suddenly decreases due to closing of the main steam isolation valve, the water supply flow rate increases due to water level control, and the feed water pump protection operation is performed, the specified feed water flow rate can be adjusted. The amount of overshoot from the value is reduced, and water pump equipment can be protected.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による給水制御装置と沸騰水型原子力プ
ラント系統図。
FIG. 1 is a system diagram of a water supply control device and boiling water nuclear power plant according to the present invention.

【図2】本発明による給水制御装置の詳細図。FIG. 2 is a detailed view of the water supply control device according to the invention.

【図3】本発明による給水制御装置の詳細図。FIG. 3 is a detailed view of the water supply control device according to the invention.

【図4】従来給水制御装置によるSRI挿入時のプラン
ト挙動説明図。
FIG. 4 is an explanatory diagram of plant behavior when SRI is inserted using a conventional water supply control device.

【図5】従来給水制御装置による主蒸気隔離弁閉時のプ
ラント挙動説明図。
FIG. 5 is an explanatory diagram of plant behavior when the main steam isolation valve is closed using a conventional water supply control device.

【図6】本発明給水制御装置による主蒸気隔離弁閉時の
プラント挙動説明図。
FIG. 6 is an explanatory diagram of plant behavior when the main steam isolation valve is closed by the water supply control device of the present invention.

【図7】本発明の他の実施例の系統図。FIG. 7 is a system diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、4…主蒸気配管、4…
タービン、5…復水器、6…給水配管、7…復水ポンプ
、8A,8B,8C…給水分岐管、9A,9B,9C…
電動駆動給水ポンプ、10A,10B…給水調節弁、1
1…給水制御装置、12…給水調節弁開度要求信号、1
3…原子炉水位検出器、14…原子炉水位信号、15…
給水配管、16…給水流量検出器、17…給水流量検出
信号、18…主蒸気流量検出器、19…主蒸気流量検出
信号。
1...Reactor pressure vessel, 2...Reactor core, 4...Main steam piping, 4...
Turbine, 5... Condenser, 6... Water supply piping, 7... Condensate pump, 8A, 8B, 8C... Water supply branch pipe, 9A, 9B, 9C...
Electrically driven water supply pump, 10A, 10B...water supply control valve, 1
1... Water supply control device, 12... Water supply control valve opening request signal, 1
3...Reactor water level detector, 14...Reactor water level signal, 15...
Water supply piping, 16... Water supply flow rate detector, 17... Water supply flow rate detection signal, 18... Main steam flow rate detector, 19... Main steam flow rate detection signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蒸気発生器の復水器、前記復水器から前記
蒸気発生器に給水を導く給水配管と、前記給水配管に設
けられた給水ポンプ及び給水流量を前記蒸気発生器の水
位、給水流量,主蒸気流量の信号による三要素制御で調
節する給水調節弁を備えた蒸気発生プラントの給水制御
装置において、給水流量の検出手段と、前記給水流量検
出手段から出力された給水流量信号が規定値を上回った
場合に三要素制御から規定値に給水流量を制御する給水
流量制御器を備えたランアウト保護機構中で、給水流量
が規定値を上回るまでは、給水流量制御器の出力信号を
、給水調節弁から出力される給水調節弁開度信号と一致
させる手段を備えたことを特徴とする蒸気発生プラント
の給水制御装置。
1. A condenser of a steam generator, a water supply pipe that leads water supply from the condenser to the steam generator, a water supply pump provided in the water supply pipe, and a water supply flow rate that is determined by the water level of the steam generator; In a feed water control device for a steam generation plant equipped with a feed water control valve that is adjusted by three-element control using signals of a feed water flow rate and a main steam flow rate, the feed water flow rate signal output from the feed water flow rate detection means and the feed water flow rate detection means is provided. In a runout protection mechanism that is equipped with a water supply flow rate controller that controls the water supply flow rate to the specified value from three-element control when the water flow rate exceeds the specified value, the output signal of the water supply flow rate controller is 1. A water supply control device for a steam generation plant, comprising means for matching the opening degree signal of the water supply control valve output from the water supply control valve.
JP03023112A 1991-02-18 1991-02-18 Water supply control device for steam generation plant Expired - Fee Related JP3092173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03023112A JP3092173B2 (en) 1991-02-18 1991-02-18 Water supply control device for steam generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03023112A JP3092173B2 (en) 1991-02-18 1991-02-18 Water supply control device for steam generation plant

Publications (2)

Publication Number Publication Date
JPH04264296A true JPH04264296A (en) 1992-09-21
JP3092173B2 JP3092173B2 (en) 2000-09-25

Family

ID=12101400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03023112A Expired - Fee Related JP3092173B2 (en) 1991-02-18 1991-02-18 Water supply control device for steam generation plant

Country Status (1)

Country Link
JP (1) JP3092173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026944A (en) * 2010-07-27 2012-02-09 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor water supply control apparatus
CN111951988A (en) * 2020-07-13 2020-11-17 中广核核电运营有限公司 Method and device for detecting abnormity of main water supply flow and computer equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026944A (en) * 2010-07-27 2012-02-09 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor water supply control apparatus
CN111951988A (en) * 2020-07-13 2020-11-17 中广核核电运营有限公司 Method and device for detecting abnormity of main water supply flow and computer equipment

Also Published As

Publication number Publication date
JP3092173B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JPH04264296A (en) Controlling apparatus for feed water of steam generating plant
JP2506224B2 (en) Water supply controller for steam generating plant
JP3502425B2 (en) Boiler control method and control device
JPH06330706A (en) Back pressure steam turbine system
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
JP2519282B2 (en) Deaerator water level control system
JP3114448B2 (en) Water supply control device for steam generation plant
JP3649511B2 (en) Swelling occurrence prediction detection device and boiler water supply control device
JP3604566B2 (en) Water supply control device for boiling water nuclear power plant
JP3462235B2 (en) Steam generator
JPH0368278B2 (en)
JPS6120684B2 (en)
JPS633203B2 (en)
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JP3427733B2 (en) Water supply control method and apparatus for steam generation plant
JP2564351B2 (en) Output control device for reactor plant
JPH0331962B2 (en)
JPH0688504A (en) Turbine high speed valve control device
JPH04309896A (en) Water supply pump controller for system generating plant
JPH0980195A (en) Steam turbine controller for nuclear reactor power plant
JPH0222360B2 (en)
JPH03125804A (en) Condensate supplying equipment, controlling method for condensate supply and condensate controller
JPS597809A (en) Feeding device for steam generator
JPS63277804A (en) Turbine control device for steam generating plant
JPH05223206A (en) Water level controller for drain tank

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees