JPH042632B2 - - Google Patents

Info

Publication number
JPH042632B2
JPH042632B2 JP57146257A JP14625782A JPH042632B2 JP H042632 B2 JPH042632 B2 JP H042632B2 JP 57146257 A JP57146257 A JP 57146257A JP 14625782 A JP14625782 A JP 14625782A JP H042632 B2 JPH042632 B2 JP H042632B2
Authority
JP
Japan
Prior art keywords
antifouling
parts
resin
paint
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57146257A
Other languages
Japanese (ja)
Other versions
JPS5936166A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14625782A priority Critical patent/JPS5936166A/en
Publication of JPS5936166A publication Critical patent/JPS5936166A/en
Publication of JPH042632B2 publication Critical patent/JPH042632B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、塗膜が強固でかつ適度な水可溶性を
有する合成樹脂組成物をビヒクルとして用いた防
汚塗料に関するものである。 船舶や橋粱、海上タンク等の海中構造物や養殖
網、定置網などの海中投入部分には、フジツボ、
セルプラ、カキ、ホヤ、フサコケムシ、アオサ、
アオノリなど多数の海中生物が付着し、構造物体
の腐食や船舶航行速度の低下、網目閉塞のための
潮通し不良による魚類の大量致死などの大きな被
害を発生するため、一般に防汚塗料を用いた防止
方法が行われている。しかしながら従来の防汚塗
料は防汚期間が短かくて僅かに12〜16ケ月に過ぎ
ず、止むなく再々の塗り替えを必要とするため長
期防汚性を有する防汚塗料が要望されていた。 防汚塗料は、防汚作用を発揮するに至る機構の
うえから大略2種類に分類されている。 一つは不溶マトリツクス型と呼ばれるものであ
り、海水に不溶である塩化ビニル、塩化ゴム、ス
チレン−ブタジエンなどの樹脂と海水に溶解する
ロジンなどの樹脂とよりなり、ビヒクルとなるこ
れらの樹脂分がいわゆるマトリツクスを形成して
いる。 この不溶マトリツクス型の防汚塗膜が海中に浸
漬されると、海水中にロジンが溶解すると共にマ
トリツクス中に分散している防汚剤が溶出して、
塗膜近傍の海中防汚剤濃度を海中生物の致死濃度
以上に保ち防汚目的を達成するものである。 この不溶マトリツクス型では、防汚剤の海水へ
の初期溶出速度は大きいが、海中に数ケ月浸漬さ
れた塗膜の切断面を顕微鏡観察および分析して見
ると、塗膜の上層部では不溶性樹脂のみが残り、
下層部では不溶性樹脂、ロジン、防汚剤が含まれ
て浸漬前の健全な状態と同様であることが見られ
る。この様な状態になると、上層部のマトリツク
ス中の不溶性樹脂残渣のためロジンおよび防汚剤
の溶解が妨げられ、防汚剤の溶出速度が徐々に低
下し、浸漬後12〜16ケ月を経過すると、下層部に
十分防汚剤が残つているにもかかわらず防汚剤の
溶出速度が低下して溶出が不十分となり、海中生
物の致死濃度以下となつて生物が付着し始め、長
期防汚が不可能となる。 他方は溶解マトリツクス型と呼ばれるものであ
り、海水に溶解する樹脂をビヒクルとしてマトリ
ツクスを形成しており、マトリツクスが海水に溶
解すると、マトリツクス中に分散している防汚剤
が溶出して、塗膜近傍の海中防汚剤濃度を海中生
物の致死濃度以上に保つことにより防汚目的を達
成するものである。 この溶解マトリツクス型ではロジン、脂肪酸な
どがマトリツクスになつているが、これらは海水
に対する溶解速度が大きく、塗膜の消耗が激しい
ため長期間にわたる防汚が出来ない欠点があり、
またマトリツクスが低分子である処から、塗膜の
強度が小さく脆く、厚塗りが困難である等の欠陥
を有している。しかし、その塗膜が充分な強度を
持ち、かつ海水に適度に溶解し、厚塗りが可能で
あるならば溶解マトリツクス型が最も望ましい防
汚塗料と言う事が出来る。 この様な意図から発明されたものとして特公昭
40−21426号、特公昭44−9579号、特公昭51−
12049号の防汚塗料がある。 これらの発明は で表わされる有機錫化合物単量体を単独重合した
重合体、あるいは他の不飽和化合物と共重合した
重合体がマトリツクスとなり、海水に接触すると
加水分解反応を生じ、防汚剤である有機錫化合物
とカルボニル基を含む重合体に分かれ、この重合
体が海水に溶解するため溶解マトリツクスとなる
ものである。 しかしこの有機錫化合物重合体は、不飽和基を
持つた有機錫化合物の合成が難しいこと、貯蔵安
定性が悪く増粘する傾向が有ること、加水分解に
より溶解するため海水のPHに敏感で海域により溶
出速度が異なることなどの実用上の難点があつ
た。 そこで加水分解機構を採らずにマトリツクスの
重合体に水溶解性を持たせる方法として、重合体
に遊離のカルボキシル基やヒドロキシル基などの
親水基を導入する事が行われたが、これらの親水
基は亜酸化銅、トリブチル錫化合物、トリフエニ
ル錫化合物などの金属系防汚剤と常温で反応し易
く、貯蔵中に容器内で架橋反応を生じてゲル化を
起し使用不可能となる欠点があつた。 そこで本発明者らは鋭意研究の結果、上記有機
錫化合物重合体を用いることなしに溶解マトリツ
クス型樹脂を得る方法として、前記の不溶マトリ
ツクス型防汚塗料として通常用いられる樹脂や一
般塗料用樹脂に、水に可溶な特定の樹脂を混合し
て得られる微水溶性混合樹脂が、溶解マトリツク
ス型防汚塗料のビヒクルとして優れていることを
見出し本発明に到達した。 すなわち、本発明は、水に不溶性の樹脂1〜99
重量%と、分子内にN−ビニル環状アミドまたは
イミド結合を有する単量体の重合物、もしくは上
記単量体と遊離のカルボキシル基またはヒドロキ
シル基をもたない他の単量体との共重合物である
水可溶性樹脂99〜1重量%とからなる微水溶性混
合樹脂(以下単に混合樹脂という)をビヒクルと
して含有することを特徴とする防汚塗料を提供す
るものである。 本発明に用いる分子内にN−ビニル環状アミド
またはイミド結合を有する単量体の例としては、
N−ビニルピロリドン、N−ビニルメチルピロリ
ドン、N−ビニルジメチルピロリドン、N−ビニ
ルトリメチルピロリドン、N−ビニルテトラメチ
ルピロリドン、N−ビニルエチルピロリドン;N
−ビニルピペリドン、N−ビニルメチルピペリド
ン、N−ビニルジメチルピペリドン、N−ビニル
トリメチルピペリドン、N−ビニルテトラメチル
ピペリドン、N−ビニルエチルピペリドン;N−
ビニルサクシンイミド、N−ビニルメチルサクシ
ンイミド、N−ビニルジメチルサクシンイミド、
N−ビニルエチルサクシンイミド、N−ビニルジ
エチルサクシンイミド、N−ビニルクロルサクシ
ンイミド、N−ビニルジクロルサクシンイミド、
N−ビニルプロムサクシンイミド、N−ビニルジ
ブロムサクシンイミド;N−ビニルフタル酸イミ
ド、N−ビニルメチルフタル酸イミド、N−ビニ
ルジメチルフタル酸イミド、N−ビニルトリメチ
ルフタル酸イミド、N−ビニルテトラメチルフタ
ル酸イミド、N−ビニルテトラヒドロフタル酸イ
ミド、N−ビニルヘキサヒドロフタル酸イミド、
N−ビニルメチルヘキサヒドロフタル酸イミド;
N−ビニルグルタルイミド、N−ビニルメチルグ
ルタルイミド、N−ビニルジメチルグルタルイミ
ド、N−ビニルトリメチルグルタルイミド、N−
ビニルエチルグルタルイミド、N−ビニルジエチ
ルグルタルイミド、N−ビニルトリエチルグルタ
ルイミドなどがある。 また、共重合に用いる遊離のカルボキシル基ま
たはヒドロキシル基をもたない他の単量体の例と
しては、アクリル酸アルキルエステル、メタクリ
ル酸アルキルエステル、クロトン酸アルキルエス
テル、マレイン酸アルキルエステル、フマル酸ア
ルキルエステル、イタコン酸アルキルエステル、
アクリルアミド、アクリロニトリル、エチレン、
塩化ビニル、酢酸ビニル、塩化ビニリデン、メチ
ルビニルエーテル、ブタジエン、スチレン、メト
キシスチレン、α−メチルスチレン、クロロスチ
レン、ジ(メトキシジエチレングリコール)マレ
エート、ジ(メトキシトリエチレングリコール)
マレエート、ジ(メトキシジエチレングリコール
ジプロピレングリコール)マレエートなどがあ
り、これらは2種以上混合して使用することがで
きる。 本発明で用いる水可溶性樹脂は、上記の単量体
および必要により他の単量体を用いてラジカル重
合触媒の存在下で溶液、乳化、懸濁、塊状などの
重合方法のほかイオン重合、光重合などいずれの
方法でも合成できる。しかし塗料用ワニスとして
使用する場合は溶液重合法が簡便で好ましい。ま
たこの水可溶性樹脂の平均分子量(重量平均)は
1000〜500000の範囲で使用可能であるが、2000〜
200000の範囲が好ましい。 本発明で用いる水に不溶性の樹脂としては、不
溶マトリツクス型防汚塗料用樹脂や一般の有機重
合体のほとんどのものを用いることができる。前
者の例としては例えば従来公知の油性ワニス、塩
化ビニル、塩化ゴム、スチレン−ブタジエン共重
合体などの樹脂があげられ、又後者の例としては
各種アクリル又はメタクリル酸エステル、スチレ
ン、酢酸ビニル、エチレン、プロピレンなどのモ
ノエチレン性不飽和化合物の単独又は共重合体、
ポリエステル、ポリウレタン、アルキツド樹脂、
メラミン樹脂、尿素樹脂、ケトン樹脂、エポキシ
樹脂、ポリエーテル、石油樹脂などと、これらの
変性誘導体が含まれる。これらの樹脂の分子量、
およびモノマーの組成、変性方法などは、特に限
定するものではないが、カルボキシル基、水酸基
等の官能基を実質的にもたず、又塗膜としての強
度を保ちうる分子量であることが望ましい。 本発明においてビヒクルとして用いる樹脂は、
前記の水に不溶性の樹脂1〜99重量%と水可溶性
樹脂99〜1重量%とからなる混合樹脂であり、特
に好ましくは水可溶性樹脂を5重量%以上含む混
合樹脂である。水可溶性樹脂の量が1重量%未満
では望ましい溶解マトリツクス型のビヒクルが得
られず、またこの量が99重量%を越えてもその効
果は変らない。 本発明に用いる混合樹脂が溶解マトリツクス型
となり得るのは、水可溶性樹脂が一般の有機溶剤
に可溶であるとともに海水にも可溶であるため、
この混合樹脂を塗料ワニスとして用いた時に海水
中でその塗膜マトリツクス中より水可溶性樹脂が
海水中に溶出していくが、その時にマトリツクス
内で絡み合つている水に不溶性の樹脂を随伴して
溶出させ、結果として混合樹脂塗膜全体が溶解マ
トリツクスになるからである。従来のロジンを添
加した樹脂が溶解マトリツクスになり得ないの
は、ロジン分子の大きさが添加した不溶性樹脂に
比べて小さく、水溶性も大きすぎることなどよ
り、周囲の不溶性樹脂を随伴して溶出させる能力
に欠けるからである。 本発明の防汚塗料は、上記の混合樹脂をビヒク
ルとして着色顔料、体質顔料、防汚剤、溶剤など
を分散させて塗料化したものである。ここで防汚
剤としては、亜酸化銅、トリブチル錫化合物、ト
リフエニル錫化合物、チウラム系化合物などを始
め従来公知の防汚剤は全て使用することが出来
る。このほか顔料、添加剤等も従来公知のものが
使用可能である。また塗料化の方法も公知のいづ
れの方法を用いても良い。 本発明の防汚塗料は、得られた塗膜は溶解マト
リツクス型となり、従来のロジンなどの低分子化
合物による溶解マトリツクス型には無い塗膜強度
を持ち、しかも厚塗りが可能である。また最も重
要な防汚剤の溶出速度は、不溶マトリツクス型で
は初期において過剰溶出が多く徐々に溶出速度が
低下するが、本発明の防汚塗料からの塗膜は、初
期の過剰溶出が少なく適度な溶出速度が安定して
保たれるため、塗膜が残つている間は殆ど溶出速
度は低下しない。従つて塗膜厚を厚くしておけば
防汚期間を延長させることが出来る。例えば、乾
燥溶膜厚として150μを塗布すれば、36ケ月を経
過してもなお防汚性は非常に優れ、不溶マトリツ
クス型防汚塗料を同一塗膜厚に塗布したものと比
べると防汚期間は3倍以上に延長される。 本発明は、水に不溶性の樹脂に前記の水可溶性
樹脂を混合するだけで溶解マトリツクス型となる
ので、水に不溶性の樹脂として安価な一般のもの
を多量に用いることにより全体の価格を従来より
も低減でき、しかも混合比率を変えるだけで塗膜
全体としての溶解性を望みどうり変化させること
ができ、さらに従来の溶解マトリツクス型に比べ
てはるかに簡便に製造することができるなどの大
きな利点を有している。 次に製造例、実施例によつて具体的に説明す
る。例中の部は重量部、分子量はGPC法による
重量平均分子量を表わす。 製造例 1 撹拌機付きのフラスコにキシレン50部、酢酸ブ
チル30部を仕込み、窒素を吹き込みつつ90℃に昇
温し、撹拌しながらN−ビニルピロリドン20部、
アクリル酸メチル60部、メタクリル酸メチル20
部、ベンゾイルパーオキサイド1部の混合溶液を
2時間で滴下した。滴下終了後100℃に昇温し同
温度で2時間撹拌を継続した後、キシレン10部、
ベンゾイルパーオキサイド0.2部の混合溶液を加
え、更に1時間撹拌を継続した。次いで110℃に
1時間保ち重合反応を完結させてからイソプロパ
ノール10部を加え、冷却して溶液A−1を得た。 得られた溶液A−1は透明で樹脂の分子量が
56000の重合体溶液であつた。 製造例 2 撹拌機付きのフラスコにトルエン50部、酢酸ブ
チル30部を仕込み、窒素を吹き込みつつ90℃に昇
温し、撹拌しながらN−ビニルピロリドン50部、
酢酸ビニル30部、スチレン10部、マレイン酸ジメ
チル10部、アゾビスイソブチロニトリル1.5部の
混合溶液を2時間で滴下した。滴下終了後105℃
に昇温し同温度で2時間撹拌を継続した後、トル
エン10部、アゾビスイソブチロニトリル0.2部の
混合溶液を加え、更に2時間撹拌を継続して重合
反応を完結させてからイソブロパノール10部を加
え、冷却して溶液A−2を得た。 得られた溶液A−2は透明で分子量が48000の
重合体溶液であつた。 製造例 3 撹拌機付きのフラスコにキシレン50部、エチル
セロソルブ20部、酢酸ブチル20部を仕込み、窒素
を吹き込みつつ105℃に昇温し、撹拌しながらN
−ビニルピロリドン80部、アクリル酸エチル10
部、メタクリル酸ブチル10部、ターシヤリブチル
パーオキシ−2−エチルヘキサノエート2部の混
合溶液を2時間で滴下した。滴下終了後120℃に
昇温し2時間撹拌を継続した後、キシレン10部、
ターシヤリブチルパーオキシ−2−エチルヘキサ
ノエート0.2部の混合溶液を加え2時間撹拌を継
続して反応を完結させ冷却して溶液A−3を得
た。 得られた溶液A−3は透明で分子量が35000の
重合体溶液であつた。 製造例 4 撹拌機付きのフラスコにトルエン50部、酢酸ブ
チル30部を仕込み、窒素を吹き込みつつ90℃に昇
温し、撹拌しながらN−ビニルメチルピロリドン
50部、酢酸ビニル20部、アクリル酸メチル20部、
メタクリル酸メチル10部、アゾビスイソブチロニ
トリル1.5部の混合溶液を2時間で滴下した。滴
下終了後105℃に昇温し同温度で2時間撹拌を継
続した後、トルエン10部、アゾビスイソブチロニ
トリル0.2部の混合溶液を加え、更に2時間撹拌
を継続して重合反応を完結させてからイソプロパ
ノール10部を加え、冷却して溶液A−4を得た。 得られた溶液A−4は透明で分子量が35000の
重合体溶液であつた。 製造例 5 撹拌機付きのフラスコにキシレン70部を仕込み
100℃に昇温し、撹拌しながらメタクリル酸メチ
ル60部、メタクリル酸ブチル20部、アクリル酸−
2−エチルヘキシル20部、ターシヤリブチルパー
オキシ−2−エチルヘキサノエート1部の混合溶
液を2時間で滴下した。滴下終了後110℃に昇温
し2時間撹拌を継続した後、キシレン10部、ター
シヤリブチルパーオキシ−2−エチルヘキサノエ
ート0.2部の混合溶液を加え120℃に昇温し2時間
撹拌を継続して反応を完結させ、キシレン20部を
加え、冷却して溶液B−1を得た。 得られた溶液B−1は透明で分子量が33000の
重合体溶液であつた。 製造例 6 撹拌機付きのフラスコにキシレン20部、メチル
イソブチルケトン80部、塩化ビニル−酢酸ビニル
樹脂(積水化学工業(株)製エスレツクCL、分子量
43000)100部を仕込み、撹拌しながら80℃に昇温
し2時間加熱溶解し透明溶液B−2を得た。 塗料化 製造例1〜4で得た重合体溶液と製造例5〜6
で得た重合体溶液との混合溶液を用いて、第1表
に示した塗料配合に従つて混練分散を行い、実施
例1〜10および比較例1(溶解マトリツクス型)
と2(不溶マトリツクス型)の防汚塗料を製造し
た。 塗装試験板の作成 実施例1〜10および比較例1と2の防汚塗料
を、サンドブラスト処理鋼板に予め防錆塗料を塗
布してある塗板に、乾燥膜厚として150μになる
如くエアレススプレー塗装を2回行い、防汚性能
試験板を作成した。上記と同様にして、一定の面
積(10cm×20cm)にのみ防汚塗料を塗布した防汚
剤の溶出速度測定用試験板を作成した。他にサン
ドブラスト処理した11cm×157cmのアルミニウム
板に防錆塗料を塗布し、乾燥膜厚で150μになる
如く4cm×2cmの面積に防汚塗料をスプレー塗装
した。これを直径30cmの円形ドラムに巻き付け、
塗膜消耗量測定用のロータリードラムを作製し
た。 浸漬試験 防汚性能試験板および溶出速度測定用試験板に
ついては兵庫県洲本市由良湾において36ケ月の海
中浸漬を行つた。塗膜消耗量については周速度16
ノツトでロータリードラムを2ケ月間海中回転を
行い膜厚を初期値と比較し消耗量を測定した。 浸漬試験結果 浸漬試験による防汚性能試験結果を第2表に、
銅の溶出速度を第3表に、錫の溶出速度を第4表
に、塗膜消耗量を第5表に示す。 一般に海水中での防汚剤それぞれ単独の最低防
汚限界濃度は、銅化合物では銅として10γ/cm2
日、錫化合物では錫として1γ/cm2/日であると
されている。 第2表の防汚性能試験については、実施例の総
べては36ケ月経過後においても生物の付着は零%
であるが、比較例においては12ケ月後には生物の
付着が見られ、18ケ月後には全面に付着する。 第3表の銅の溶出速度については、実施例では
36ケ月後においても最低防汚限界濃度以下となる
ものではないが、比較例では12ケ月後には、いづ
れも最低防汚限界濃度以下となる。 第4表の錫の溶出速度についても、実施例では
36ケ月後においても最低防汚濃度以下になるもの
はないが、比較例では6ケ月で最低防汚限界濃度
以下となる。 第5表の塗膜消耗速度については、実施例では
適度な消耗速度を示しているが、比較例1は消耗
が激しく比較例2は塗膜の消耗が見られない。 塗膜の物理性能試験 実施例1〜10および比較例1,2の防汚塗料を
用い、塗膜の物理性能の比較を行つた。 試験結果を第6表に示す。 実施例においては耐衝撃性、耐屈曲性の両試験
ともいずれも合格するが、比較例では耐衝撃性は
いずれも不合格であり、耐屈曲性は比較例2のみ
合格した。 以上の塗膜性能試験結果、海水浸漬試験結果か
ら認められるように、本発明の防汚塗料から得ら
れた塗膜は、強度が大きくしかも適度な海水溶解
性があり、非常に優れた長期防汚性能を持つこと
が明らかである。
The present invention relates to an antifouling paint using a synthetic resin composition having a strong coating film and appropriate water solubility as a vehicle. Barnacles,
Serpura, oysters, sea squirts, bulrushes, sea lettuce,
A large number of sea creatures such as blue laver adhere to the seaweed, causing major damage such as corrosion of structures, reduction of ship navigation speed, and mass mortality of fish due to poor drainage due to blocked mesh, so antifouling paint is generally used. Prevention methods are in place. However, conventional antifouling paints have a short antifouling period of only 12 to 16 months, and require repeated repainting, so there has been a demand for antifouling paints with long-term antifouling properties. Antifouling paints are roughly classified into two types based on the mechanism by which they exhibit their antifouling effect. One type is called an insoluble matrix type, which consists of resins such as vinyl chloride, chlorinated rubber, and styrene-butadiene that are insoluble in seawater, and resins such as rosin that are soluble in seawater. They form a so-called matrix. When this insoluble matrix type antifouling coating is immersed in the sea, the rosin dissolves in the seawater and the antifouling agent dispersed in the matrix elutes.
The purpose of antifouling is achieved by keeping the concentration of the antifouling agent in the sea near the paint film above the lethal concentration for marine organisms. In this insoluble matrix type, the initial rate of elution of the antifouling agent into seawater is high, but microscopic observation and analysis of cut surfaces of the paint film that had been immersed in the sea for several months revealed that the upper layer of the paint film contains insoluble resin. only remains,
It can be seen that the lower layer contains insoluble resin, rosin, and antifouling agent, and is in the same state as before soaking. In such a state, the insoluble resin residue in the upper matrix prevents the dissolution of the rosin and antifouling agent, and the elution rate of the antifouling agent gradually decreases until 12 to 16 months after immersion. , even though there is sufficient antifouling agent remaining in the lower layer, the elution rate of the antifouling agent decreases and the elution becomes insufficient, and the concentration drops below the lethal level for marine organisms, and organisms begin to adhere to it, resulting in long-term antifouling. becomes impossible. The other type is called a dissolved matrix type, in which a matrix is formed using a resin that dissolves in seawater as a vehicle. When the matrix is dissolved in seawater, the antifouling agent dispersed in the matrix is eluted, forming a coating film. The purpose of antifouling is achieved by keeping the concentration of antifouling agent in the nearby ocean at a concentration higher than that lethal to marine organisms. This dissolving matrix type uses rosin, fatty acids, etc. as a matrix, but these have the disadvantage that they dissolve at a high rate in seawater and the coating film is rapidly worn out, making it impossible to provide long-term antifouling.
Furthermore, since the matrix is of low molecular weight, the coating film has low strength and is brittle, making it difficult to apply thick coatings. However, if the coating film has sufficient strength, is appropriately soluble in seawater, and can be applied thickly, then the dissolving matrix type is the most desirable antifouling coating. It is said that Tokkosho was invented with this intention in mind.
No. 40-21426, Special Publication No. 1979-9579, Special Publication No. 1977-
There is antifouling paint No. 12049. These inventions A polymer obtained by homopolymerizing the organotin compound monomer represented by the formula or a polymer copolymerized with other unsaturated compounds forms a matrix, and when it comes into contact with seawater, a hydrolysis reaction occurs, resulting in the formation of an organotin compound that is an antifouling agent. It separates into a polymer containing a carbonyl group and a carbonyl group, and this polymer dissolves in seawater, forming a solubility matrix. However, this organotin compound polymer is difficult to synthesize as an organotin compound with an unsaturated group, has poor storage stability and tends to thicken, and is sensitive to the pH of seawater because it dissolves by hydrolysis. There were practical difficulties such as the elution rate differing depending on the method. Therefore, as a method of imparting water solubility to the matrix polymer without employing a hydrolysis mechanism, it has been attempted to introduce hydrophilic groups such as free carboxyl groups and hydroxyl groups into the polymer, but these hydrophilic groups It has the drawback that it easily reacts with metal antifouling agents such as cuprous oxide, tributyltin compounds, and triphenyltin compounds at room temperature, and a crosslinking reaction occurs in the container during storage, causing gelation and rendering it unusable. Ta. As a result of intensive research, the present inventors have found that a method for obtaining a soluble matrix type resin without using the above-mentioned organotin compound polymer is based on the resin normally used as the above-mentioned insoluble matrix type antifouling paint and the resin for general paints. The inventors have discovered that a slightly water-soluble mixed resin obtained by mixing specific water-soluble resins is excellent as a vehicle for a dissolving matrix type antifouling paint, and have arrived at the present invention. That is, the present invention provides water-insoluble resins 1 to 99
% by weight and polymers of monomers having N-vinyl cyclic amide or imide bonds in the molecule, or copolymers of the above monomers with other monomers that do not have free carboxyl or hydroxyl groups. The present invention provides an antifouling paint characterized by containing, as a vehicle, a slightly water-soluble mixed resin (hereinafter simply referred to as mixed resin) consisting of 99 to 1% by weight of a water-soluble resin. Examples of monomers having an N-vinyl cyclic amide or imide bond in the molecule used in the present invention include:
N-vinylpyrrolidone, N-vinylmethylpyrrolidone, N-vinyldimethylpyrrolidone, N-vinyltrimethylpyrrolidone, N-vinyltetramethylpyrrolidone, N-vinylethylpyrrolidone; N
-vinylpiperidone, N-vinylmethylpiperidone, N-vinyldimethylpiperidone, N-vinyltrimethylpiperidone, N-vinyltetramethylpiperidone, N-vinylethylpiperidone; N-
Vinyl succinimide, N-vinylmethylsuccinimide, N-vinyldimethylsuccinimide,
N-vinylethylsuccinimide, N-vinyldiethylsuccinimide, N-vinylchlorosuccinimide, N-vinyldichlorsuccinimide,
N-vinylpromsuccinimide, N-vinyldibromsuccinimide; N-vinylphthalimide, N-vinylmethylphthalimide, N-vinyldimethylphthalimide, N-vinyltrimethylphthalimide, N-vinyltetramethyl Phthalic acid imide, N-vinyltetrahydrophthalic acid imide, N-vinylhexahydrophthalic acid imide,
N-vinylmethylhexahydrophthalic acid imide;
N-vinylglutarimide, N-vinylmethylglutarimide, N-vinyldimethylglutarimide, N-vinyltrimethylglutarimide, N-
Examples include vinylethylglutarimide, N-vinyldiethylglutarimide, and N-vinyltriethylglutarimide. Examples of other monomers without free carboxyl or hydroxyl groups used in copolymerization include alkyl acrylates, alkyl methacrylates, alkyl crotonates, alkyl maleates, and alkyl fumarates. ester, itaconic acid alkyl ester,
Acrylamide, acrylonitrile, ethylene,
Vinyl chloride, vinyl acetate, vinylidene chloride, methyl vinyl ether, butadiene, styrene, methoxystyrene, α-methylstyrene, chlorostyrene, di(methoxydiethylene glycol) maleate, di(methoxytriethylene glycol)
Examples include maleate, di(methoxydiethylene glycol dipropylene glycol) maleate, and two or more of these can be used in combination. The water-soluble resin used in the present invention can be produced by polymerization methods such as solution, emulsification, suspension, and block formation using the above monomers and other monomers as necessary in the presence of a radical polymerization catalyst, as well as ionic polymerization and photopolymerization. It can be synthesized by any method such as polymerization. However, when used as a paint varnish, the solution polymerization method is simple and preferred. In addition, the average molecular weight (weight average) of this water-soluble resin is
Available in the range of 1000 to 500000, but from 2000 to
A range of 200000 is preferred. As the water-insoluble resin used in the present invention, most resins for insoluble matrix type antifouling paints and general organic polymers can be used. Examples of the former include conventionally known oil-based varnishes, vinyl chloride, chlorinated rubber, resins such as styrene-butadiene copolymers, and examples of the latter include various acrylic or methacrylic acid esters, styrene, vinyl acetate, and ethylene. , mono- or copolymers of monoethylenically unsaturated compounds such as propylene,
polyester, polyurethane, alkyd resin,
Includes melamine resins, urea resins, ketone resins, epoxy resins, polyethers, petroleum resins, and their modified derivatives. The molecular weight of these resins,
The composition and modification method of the monomer are not particularly limited, but it is desirable that the monomer has substantially no functional groups such as carboxyl groups and hydroxyl groups, and has a molecular weight that can maintain the strength of the coating film. The resin used as a vehicle in the present invention is
It is a mixed resin consisting of 1 to 99% by weight of the above-mentioned water-insoluble resin and 99 to 1% by weight of a water-soluble resin, and particularly preferably a mixed resin containing 5% by weight or more of a water-soluble resin. If the amount of water-soluble resin is less than 1% by weight, the desired dissolution matrix type vehicle will not be obtained, and if this amount exceeds 99% by weight, the effect will not change. The mixed resin used in the present invention can be of the dissolution matrix type because the water-soluble resin is soluble in general organic solvents and also in seawater.
When this mixed resin is used as a paint varnish, the water-soluble resin in the coating matrix is eluted into the seawater, but at the same time, the water-insoluble resin entangled in the matrix is eluted into the seawater. This is because the mixed resin coating film as a whole becomes a dissolved matrix. The reason why conventional rosin-added resin cannot become a dissolution matrix is that the size of the rosin molecule is smaller than that of the added insoluble resin, and its water solubility is too large, so it elutes along with the surrounding insoluble resin. This is because they lack the ability to do so. The antifouling paint of the present invention is prepared by dispersing coloring pigments, extender pigments, antifouling agents, solvents, etc. using the above mixed resin as a vehicle. As the antifouling agent, all conventionally known antifouling agents can be used, including cuprous oxide, tributyltin compounds, triphenyltin compounds, thiuram compounds, and the like. In addition, conventionally known pigments, additives, etc. can be used. Further, any known method may be used for forming the material into a paint. The antifouling paint of the present invention has a soluble matrix type coating film, which has a coating strength not found in conventional soluble matrix type coatings made of low molecular weight compounds such as rosin, and can be coated thickly. In addition, the elution rate of the most important antifouling agent is that in the insoluble matrix type, there is a lot of excessive elution at the initial stage, and the elution rate gradually decreases, but the coating film from the antifouling paint of the present invention has a moderate elution rate with little initial excessive elution. Since the elution rate is kept stable, the elution rate hardly decreases while the coating remains. Therefore, by increasing the coating thickness, the antifouling period can be extended. For example, if a dry solution film thickness of 150μ is applied, the antifouling property will still be excellent even after 36 months, and the antifouling time will be longer than when an insoluble matrix type antifouling paint is applied to the same film thickness. will be extended more than three times. In the present invention, a soluble matrix type can be obtained by simply mixing the above-mentioned water-soluble resin with a water-insoluble resin, so by using a large amount of an inexpensive general water-insoluble resin, the overall cost can be lowered than before. Moreover, the solubility of the coating film as a whole can be changed as desired by simply changing the mixing ratio, and furthermore, it has great advantages such as being much easier to manufacture than the conventional dissolving matrix type. have. Next, a detailed explanation will be given using manufacturing examples and examples. In the examples, parts are parts by weight, and molecular weights are weight average molecular weights determined by GPC method. Production Example 1 50 parts of xylene and 30 parts of butyl acetate were placed in a flask equipped with a stirrer, the temperature was raised to 90°C while blowing nitrogen, and while stirring, 20 parts of N-vinylpyrrolidone,
Methyl acrylate 60 parts, methyl methacrylate 20 parts
A mixed solution of 1 part of benzoyl peroxide and 1 part of benzoyl peroxide was added dropwise over 2 hours. After the dropwise addition was completed, the temperature was raised to 100℃ and stirring was continued for 2 hours at the same temperature, then 10 parts of xylene,
A mixed solution of 0.2 part of benzoyl peroxide was added, and stirring was continued for an additional hour. Next, the mixture was maintained at 110° C. for 1 hour to complete the polymerization reaction, and then 10 parts of isopropanol was added and cooled to obtain solution A-1. The obtained solution A-1 was transparent and the molecular weight of the resin was
56,000 polymer solution. Production Example 2 50 parts of toluene and 30 parts of butyl acetate were placed in a flask equipped with a stirrer, the temperature was raised to 90°C while blowing nitrogen, and 50 parts of N-vinylpyrrolidone was added while stirring.
A mixed solution of 30 parts of vinyl acetate, 10 parts of styrene, 10 parts of dimethyl maleate, and 1.5 parts of azobisisobutyronitrile was added dropwise over 2 hours. 105℃ after completion of dripping
After raising the temperature to 10 parts of alcohol was added and cooled to obtain solution A-2. The resulting solution A-2 was a transparent polymer solution with a molecular weight of 48,000. Production Example 3 50 parts of xylene, 20 parts of ethyl cellosolve, and 20 parts of butyl acetate were placed in a flask equipped with a stirrer, and the temperature was raised to 105°C while blowing nitrogen, and N was added while stirring.
- 80 parts of vinylpyrrolidone, 10 parts of ethyl acrylate
A mixed solution of 10 parts of butyl methacrylate and 2 parts of tertiary butyl peroxy-2-ethylhexanoate was added dropwise over 2 hours. After the dropwise addition was completed, the temperature was raised to 120°C and stirring was continued for 2 hours, then 10 parts of xylene,
A mixed solution of 0.2 parts of tertiary butyl peroxy-2-ethylhexanoate was added and stirring was continued for 2 hours to complete the reaction and cooled to obtain solution A-3. The resulting solution A-3 was a transparent polymer solution with a molecular weight of 35,000. Production Example 4 50 parts of toluene and 30 parts of butyl acetate were placed in a flask equipped with a stirrer, the temperature was raised to 90°C while blowing nitrogen, and N-vinylmethylpyrrolidone was added while stirring.
50 parts, vinyl acetate 20 parts, methyl acrylate 20 parts,
A mixed solution of 10 parts of methyl methacrylate and 1.5 parts of azobisisobutyronitrile was added dropwise over 2 hours. After the dropwise addition was completed, the temperature was raised to 105°C and stirring was continued for 2 hours at the same temperature, then a mixed solution of 10 parts of toluene and 0.2 parts of azobisisobutyronitrile was added, and stirring was continued for another 2 hours to complete the polymerization reaction. After this, 10 parts of isopropanol was added and cooled to obtain solution A-4. The resulting solution A-4 was a transparent polymer solution with a molecular weight of 35,000. Production example 5: Place 70 parts of xylene in a flask equipped with a stirrer.
Raise the temperature to 100℃ and add 60 parts of methyl methacrylate, 20 parts of butyl methacrylate, and acrylic acid while stirring.
A mixed solution of 20 parts of 2-ethylhexyl and 1 part of tert-butylperoxy-2-ethylhexanoate was added dropwise over 2 hours. After the dropwise addition was completed, the temperature was raised to 110°C and stirring was continued for 2 hours, and then a mixed solution of 10 parts of xylene and 0.2 parts of tert-butyl peroxy-2-ethylhexanoate was added, and the temperature was raised to 120°C and stirring was continued for 2 hours. The reaction was continued to complete, 20 parts of xylene was added, and the mixture was cooled to obtain solution B-1. The resulting solution B-1 was a transparent polymer solution with a molecular weight of 33,000. Production Example 6 In a flask equipped with a stirrer, 20 parts of xylene, 80 parts of methyl isobutyl ketone, vinyl chloride-vinyl acetate resin (Eslec CL manufactured by Sekisui Chemical Co., Ltd., molecular weight
43000) was charged, the temperature was raised to 80° C. with stirring, and the solution was heated and dissolved for 2 hours to obtain a transparent solution B-2. Painting Polymer solutions obtained in Production Examples 1 to 4 and Production Examples 5 to 6
Using the mixed solution with the polymer solution obtained in , kneading and dispersion was performed according to the coating formulation shown in Table 1, and Examples 1 to 10 and Comparative Example 1 (dissolution matrix type) were prepared.
and 2 (insoluble matrix type) antifouling paints were manufactured. Preparation of paint test plates The antifouling paints of Examples 1 to 10 and Comparative Examples 1 and 2 were airless spray-painted to a sandblasted steel plate coated with antirust paint in advance to a dry film thickness of 150μ. The test was carried out twice and an antifouling performance test plate was prepared. In the same manner as above, a test plate for measuring the elution rate of the antifouling agent was prepared by applying the antifouling paint only to a certain area (10 cm x 20 cm). In addition, an anti-rust paint was applied to a sandblasted aluminum plate measuring 11 cm x 157 cm, and the anti-fouling paint was spray-painted over an area of 4 cm x 2 cm so that the dry film thickness was 150 μm. Wrap this around a circular drum with a diameter of 30cm,
A rotary drum for measuring paint film wear was manufactured. Immersion test The antifouling performance test plate and the elution rate measurement test plate were immersed in the sea for 36 months in Yura Bay, Sumoto City, Hyogo Prefecture. For the amount of paint film consumption, the peripheral speed is 16
A rotary drum was rotated underwater for two months using a knot, and the film thickness was compared with the initial value to measure the amount of wear. Immersion test results Table 2 shows the antifouling performance test results from the immersion test.
The elution rate of copper is shown in Table 3, the elution rate of tin is shown in Table 4, and the amount of coating film consumption is shown in Table 5. In general, the minimum antifouling limit concentration of each antifouling agent in seawater is 10γ/cm 2 / as copper for copper compounds.
In tin compounds, the amount of tin is said to be 1γ/cm 2 /day. Regarding the antifouling performance test in Table 2, all of the examples showed 0% biological adhesion even after 36 months.
However, in the comparative example, organisms were observed to adhere after 12 months, and after 18 months, they were attached to the entire surface. Regarding the elution rate of copper in Table 3, in the example
Even after 36 months, the concentration is not below the minimum antifouling limit, but in the comparative example, after 12 months, the concentration is below the minimum antifouling limit. Regarding the elution rate of tin in Table 4, in the example
Even after 36 months, there is no case where the concentration falls below the minimum antifouling concentration, but in the comparative example, the concentration falls below the minimum antifouling limit concentration after 6 months. Regarding the coating film wear rate in Table 5, the Examples show a moderate wear rate, but Comparative Example 1 shows severe wear, and Comparative Example 2 shows no wear of the paint film. Physical Performance Test of Paint Film The antifouling paints of Examples 1 to 10 and Comparative Examples 1 and 2 were used to compare the physical performance of the paint film. The test results are shown in Table 6. In the Examples, both the impact resistance and bending resistance tests were passed, but in the Comparative Examples, both the impact resistance tests were failed, and only Comparative Example 2 passed the bending resistance tests. As seen from the above coating film performance test results and seawater immersion test results, the coating film obtained from the antifouling paint of the present invention has high strength and moderate seawater solubility, and has excellent long-term protection. It is clear that it has staining properties.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 防錆塗膜が露出。
[Table] Rust-preventive coating is exposed.

【表】【table】

Claims (1)

【特許請求の範囲】 1 防汚剤およびビヒクルを含有する溶解マトリ
ツクス型防汚塗料において、水に不溶性の樹脂1
〜99重量%と、分子内にN−ビニル環状アミドま
たはイミド結合を有する単量体の重合物、もしく
は上記単量体と遊離のカルボキシル基またはヒド
ロキシル基をもたない他の単量体との共重合物で
ある水可溶性樹脂99〜1重量%とからなる微水溶
性混合樹脂をビヒクルとして含有することを特徴
とする防汚塗料。 2 単量体がN−ビニルピロリドンまたはその置
換体である特許請求の範囲第1項記載の防汚塗
料。 3 他の単量体がアクリル酸アルキルエステル、
メタクリル酸アルキルエステル、マレイン酸アル
キルエステル、フマル酸アルキルエステル、ジ
(メトキシポリアルキレングリコール)マレエー
ト、スチレン、酢酸ビニル、ビニルエーテルから
選ばれるものである特許請求の範囲第1項または
第2項記載の防汚塗料。
[Scope of Claims] 1. In a dissolving matrix type antifouling paint containing an antifouling agent and a vehicle, a water-insoluble resin 1
~99% by weight and a polymer of a monomer having an N-vinyl cyclic amide or imide bond in the molecule, or a polymer of the above monomer and another monomer that does not have a free carboxyl group or hydroxyl group. An antifouling paint characterized by containing as a vehicle a slightly water-soluble mixed resin consisting of 99 to 1% by weight of a water-soluble resin that is a copolymer. 2. The antifouling paint according to claim 1, wherein the monomer is N-vinylpyrrolidone or a substituted product thereof. 3 The other monomer is an acrylic acid alkyl ester,
The inhibitor according to claim 1 or 2, which is selected from methacrylic acid alkyl ester, maleic acid alkyl ester, fumaric acid alkyl ester, di(methoxypolyalkylene glycol) maleate, styrene, vinyl acetate, and vinyl ether. Dirty paint.
JP14625782A 1982-08-25 1982-08-25 Antifouling coating Granted JPS5936166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14625782A JPS5936166A (en) 1982-08-25 1982-08-25 Antifouling coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14625782A JPS5936166A (en) 1982-08-25 1982-08-25 Antifouling coating

Publications (2)

Publication Number Publication Date
JPS5936166A JPS5936166A (en) 1984-02-28
JPH042632B2 true JPH042632B2 (en) 1992-01-20

Family

ID=15403644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14625782A Granted JPS5936166A (en) 1982-08-25 1982-08-25 Antifouling coating

Country Status (1)

Country Link
JP (1) JPS5936166A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709816B2 (en) * 1987-01-16 1998-02-04 中国塗料株式会社 Underwater paint-curable antifouling paint composition
EP0289481B1 (en) * 1987-04-28 1993-10-27 Fina Research S.A. Self-polishing antifouling paints

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321885A (en) * 1976-08-13 1978-02-28 Yakubukuro Ichirou Shoulder patting device
JPS5321884A (en) * 1976-08-12 1978-02-28 Bernstein Jacob Instrument for protecting toe and supporting leg with plaster cast
JPS5321883A (en) * 1976-08-12 1978-02-28 Hiroshi Emoto Plaster casting method
JPS5437008A (en) * 1977-08-29 1979-03-19 Kobe Steel Ltd Method of fncapsulation molding of articles by hot static pressing
JPS5773008A (en) * 1980-10-23 1982-05-07 Mitsubishi Rayon Co Ltd Preparation of polymeric organotin compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321884A (en) * 1976-08-12 1978-02-28 Bernstein Jacob Instrument for protecting toe and supporting leg with plaster cast
JPS5321883A (en) * 1976-08-12 1978-02-28 Hiroshi Emoto Plaster casting method
JPS5321885A (en) * 1976-08-13 1978-02-28 Yakubukuro Ichirou Shoulder patting device
JPS5437008A (en) * 1977-08-29 1979-03-19 Kobe Steel Ltd Method of fncapsulation molding of articles by hot static pressing
JPS5773008A (en) * 1980-10-23 1982-05-07 Mitsubishi Rayon Co Ltd Preparation of polymeric organotin compound

Also Published As

Publication number Publication date
JPS5936166A (en) 1984-02-28

Similar Documents

Publication Publication Date Title
US10077366B2 (en) Antifouling coating composition, antifouling coating film formed using said composition, and coated article having antifouling coating film on surface
AU646754B2 (en) Antifouling coatings
EP1641862B1 (en) Silyl ester copolymer compositions
JPS6361989B2 (en)
US4485197A (en) Resinous composition and antifouling paint
JP6360909B2 (en) Two-pack type antifouling paint composition, antifouling coating film, antifouling substrate and method for producing antifouling substrate
US20110144217A1 (en) Polymer with salt groups and antifouling coating composition comprising said polymer
CN103080249A (en) Antifouling coating composition, copolymer for antifouling coating composition, and coated article having surface that is provided with antifouling coating film which is formed using the composition
JP5031133B2 (en) Antifouling paint composition, antifouling coating film, ship or underwater structure coated with the antifouling coating film, and antifouling method for ship outer plate or underwater structure
CN1263810C (en) Antifouling coatings
JP2012251158A (en) Antifouling coating composition, antifouling coating film, ship or submarine structure covered with the antifouling coating film, and antifouling method for shell of ship or submarine structure
CA1139029A (en) Antifouling paints
JPH042632B2 (en)
JPH059415A (en) Antifouling coating composition
JPH0524187B2 (en)
JPS638996B2 (en)
JPH0119432B2 (en)
EP0327021B1 (en) Coating compositions for preventing adhesion of aquatic organisms
JPH0119431B2 (en)
JPS6361988B2 (en)
JPH0119429B2 (en)
JP3443096B2 (en) Antifouling paint composition
JPS5936167A (en) Antifouling coating
JPH0120664B2 (en)
JP2691964B2 (en) Antifouling paint composition