JPH04262398A - Arc moving type heat plasma jet generating device - Google Patents

Arc moving type heat plasma jet generating device

Info

Publication number
JPH04262398A
JPH04262398A JP3023300A JP2330091A JPH04262398A JP H04262398 A JPH04262398 A JP H04262398A JP 3023300 A JP3023300 A JP 3023300A JP 2330091 A JP2330091 A JP 2330091A JP H04262398 A JPH04262398 A JP H04262398A
Authority
JP
Japan
Prior art keywords
arc
discharge
electrodes
plasma jet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3023300A
Other languages
Japanese (ja)
Inventor
Tatsufumi Aoi
辰史 青井
Hideo Yamakoshi
英男 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3023300A priority Critical patent/JPH04262398A/en
Publication of JPH04262398A publication Critical patent/JPH04262398A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To move arc discharge in stable state by changing the inter-electrode distance through repetition of inclining a discharge electrode, inserting a plate in the flow path for a thermo-medium, and moving it periodically in the longitudinal direction of electrodes. CONSTITUTION:When current is fed from a power supply 10 to electrodes 1, 2, an arc current is generated between the electrodes, and heat plasma is produced in a thermo-medium gas flowing in the space between them 1, 2. Thus a plasma jet is obtained. When current is fed to either of the piezo elements 4 and the electrode 2 is inclined relative to the other 1, the electric field is inclined to cause the arc current to move toward the intense side of electric field. An insert plate 7 is installed on the way of an influx hole 9 for the thermo-medium gas to constitute a baffle plate, and thereby a low pressure part is generated locally in the space between the electrodes 1, 2, so that the arc current moves in the direction of generating stable state of electric discharging. Current feed to piezo element 4 is repeated periodically, and the electrode 2 is swung relative to the other 1, and interlockingly the insert plate 7 is moved periodically. At this time, the arc current becomes equivalent to the plane arc state at the electrodes 1, 2, and the thermo-medium gas is heated to cause emission of a plane plasma jet.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、アーク移動式熱プラズ
マジェット発生装置に関し、鋼材、鋼板の加熱装置、溶
接装置、切断装置、溶射装置として適用できるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc-moving thermal plasma jet generator, which can be applied as a heating device for steel materials and steel plates, a welding device, a cutting device, and a thermal spraying device.

【0002】0002

【従来の技術】図3に従来の直線型熱プラズマ発生装置
の構成例を示す。同図に示すように、対向した直線状の
陰極1、陽極2の間にアーク放電8を発生させると共に
水冷コイル9によりプラズマガス噴出方向の交流磁界を
用いて放電位置を移動させ、更に、電磁コイル10によ
るアーク電流方向の定常磁界を用いて放電を安定させて
いた。
2. Description of the Related Art FIG. 3 shows an example of the configuration of a conventional linear thermal plasma generator. As shown in the figure, an arc discharge 8 is generated between the opposing linear cathode 1 and anode 2, and the discharge position is moved by a water cooling coil 9 using an alternating magnetic field in the plasma gas ejection direction. A steady magnetic field in the direction of the arc current by the coil 10 was used to stabilize the discharge.

【0003】0003

【発明が解決しようとする課題】従来の平面型熱プラズ
マジェット発生装置は、アーク放電位置の移動及びアー
ク放電の安定化の為に、電磁コイルによる外部磁界を利
用している。しかし、磁界の適正値を決定するのは困難
であり、この為、アーク放電位置の移動に伴いアーク放
電が不安定となり、アーク放電の停止を招来していた。 本発明は、上記従来技術に鑑みてなされたものであり、
対向した電極間でアーク放電を発生し、放電電極の傾斜
を繰り返すことで、或いは熱媒の流路内に電極の長手方
向に移動する挿入板を配置することによって、放電位置
を周期的に変化させることのできるアーク移動式熱プラ
ズマジェット発生装置を提供することを目的とするもの
である。
A conventional planar thermal plasma jet generator utilizes an external magnetic field from an electromagnetic coil to move the arc discharge position and stabilize the arc discharge. However, it is difficult to determine the appropriate value of the magnetic field, and as a result, arc discharge becomes unstable as the arc discharge position moves, resulting in termination of arc discharge. The present invention has been made in view of the above-mentioned prior art,
Arc discharge is generated between opposing electrodes, and the discharge position is changed periodically by repeatedly tilting the discharge electrodes or by placing an insertion plate that moves in the longitudinal direction of the electrodes in the heat medium flow path. It is an object of the present invention to provide an arc-moving thermal plasma jet generating device that can generate an arc-moving thermal plasma jet.

【0004】0004

【課題を解決するための手段】斯かる目的を達成する本
発明の第一の構成は対向して配置される一対の長尺な放
電電極間にアーク放電を発生させ、該放電電極間を流れ
る熱媒中に熱プラズマを発生させてプラズマジェットを
発生させるアーク式熱プラズマ発生装置において、上記
一対の長尺な放電電極の少なくとも一方を対向する平面
内で周期的に揺動させる手段を有することを特徴とする
。上記目的を達成する本発明の第二の構成は対向して配
置される一対の長尺な放電電極間にアーク放電を発生さ
せ、該放電電極間を流れる熱媒中に熱プラズマを発生さ
せてプラズマジェットを発生させるアーク式熱プラズマ
発生装置において、上記熱媒の流路であって上記放電電
極の上流側に前記放電電極の長手方向に周期的に移動可
能な挿入板を配置したことを特徴とする。上記目的を達
成する本発明の第三の構成は対向して配置される一対の
長尺な放電電極間にアーク放電を発生させ、該放電電極
間を流れる熱媒中に熱プラズマを発生させてプラズマジ
ェットを発生させるアーク式熱プラズマ発生装置におい
て、上記一対の長尺な放電電極の少なくとも一方を対向
する平面内で周期的に揺動させる手段と、上記熱媒の流
路であって上記放電電極の上流側に前記放電電極の長手
方向に周期的に移動可能な挿入板を配置したことを特徴
とする。
[Means for Solving the Problems] A first configuration of the present invention that achieves the above object generates an arc discharge between a pair of long discharge electrodes arranged oppositely, and causes arc discharge to flow between the discharge electrodes. An arc-type thermal plasma generator that generates a plasma jet by generating thermal plasma in a heating medium, comprising means for periodically swinging at least one of the pair of elongated discharge electrodes within an opposing plane. It is characterized by A second configuration of the present invention that achieves the above object is to generate an arc discharge between a pair of elongated discharge electrodes disposed facing each other, and to generate thermal plasma in a heat medium flowing between the discharge electrodes. An arc-type thermal plasma generator for generating a plasma jet, characterized in that an insertion plate movable periodically in the longitudinal direction of the discharge electrode is disposed in the flow path of the heat medium and upstream of the discharge electrode. shall be. A third configuration of the present invention that achieves the above object is to generate an arc discharge between a pair of long discharge electrodes disposed facing each other, and to generate thermal plasma in a heat medium flowing between the discharge electrodes. In an arc-type thermal plasma generation device that generates a plasma jet, means for periodically swinging at least one of the pair of elongated discharge electrodes within opposing planes; The present invention is characterized in that an insertion plate movable periodically in the longitudinal direction of the discharge electrode is arranged on the upstream side of the electrode.

【0005】[0005]

【作用】対向した放電電極の間に発生したアーク放電は
、放電電極を傾斜することによって、電極間隔の縮小化
により、より高電界の位置へと移動する。また、アーク
放電は、熱媒ガスの流入口途中に圧損となる挿入板を挿
入して得られる局所的な低圧力部において、圧力と電極
間隔が充分に大きい場合、圧力又は電極間隔の減少、縮
小化の方向に放電開始電圧が低下するというパッシェン
の法則に従い、低圧力の方向へ放電が安定化する。上記
電極間隔は電極間圧力の連動させた連続操作により、直
線又は曲線状電極間からの平面状アークプラズマジェッ
トが得られる。
[Operation] By tilting the discharge electrodes, the arc discharge generated between the opposing discharge electrodes is moved to a position where the electric field is higher by reducing the distance between the electrodes. In addition, arc discharge occurs when the pressure and electrode spacing are sufficiently large in a localized low-pressure area obtained by inserting an insertion plate that causes pressure loss in the middle of the inlet of the heating medium gas, and the pressure or electrode spacing decreases. According to Paschen's law, which states that the discharge starting voltage decreases in the direction of downsizing, the discharge stabilizes in the direction of lower pressure. By continuously controlling the electrode spacing in conjunction with the interelectrode pressure, a planar arc plasma jet can be obtained from between straight or curved electrodes.

【0006】[0006]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図1(a)(b)に本発明の
一実施例を示す。同図に示すように長尺な一対の放電電
極1,2が対向して配置されると共にこれら電極1,2
は電源10に接続され、それぞれ陽極、陰極として機能
する。 放電電極1,2の内部には、冷却水の通る流路6が貫通
しており、また、その対向する表面は、ほぼ半円形とな
った局面形状となっている。電極1,2の表面は、平面
状となっていも良い。両電極1,2の側壁及び後壁は、
耐熱性を有する絶縁物3で絶縁されると共にこの絶縁物
3を介して放電電極1が支持されている。一方、放電電
極2は、放電電極1に対して傾斜できるように、その両
側を圧電素子4、バネ5でそれぞれ支持されている。電
極2の荷重は、ほとんどバネ5で支持される。従って、
片方の圧電素子4に通電して伸縮させることにより、放
電電極2は放電電極1に対して傾斜する。放電電極1,
2の間隔の狭い部分ほど、電界が高くなるので、放電電
極1に対して放電電極2を傾けると、それらの間で電界
の傾斜が生じることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments shown in the drawings. An embodiment of the present invention is shown in FIGS. 1(a) and 1(b). As shown in the figure, a pair of elongated discharge electrodes 1 and 2 are arranged facing each other, and these electrodes 1 and 2 are
are connected to the power source 10 and function as an anode and a cathode, respectively. A flow path 6 through which cooling water passes passes through the inside of the discharge electrodes 1 and 2, and the opposing surfaces thereof have a substantially semicircular curved shape. The surfaces of the electrodes 1 and 2 may be planar. The side walls and rear walls of both electrodes 1 and 2 are
The discharge electrode 1 is insulated by a heat-resistant insulator 3 and supported via the insulator 3. On the other hand, the discharge electrode 2 is supported on both sides by a piezoelectric element 4 and a spring 5, respectively, so that it can be tilted with respect to the discharge electrode 1. Most of the load of the electrode 2 is supported by the spring 5. Therefore,
The discharge electrode 2 is inclined with respect to the discharge electrode 1 by applying current to one of the piezoelectric elements 4 and causing it to expand and contract. discharge electrode 1,
The narrower the distance between the electrodes 2, the higher the electric field, so if the discharge electrode 2 is tilted with respect to the discharge electrode 1, the electric field will be tilted between them.

【0007】一方、放電電極1,2の間に熱媒ガスを導
入するための流入口9が設けられいる。この流入口9の
途中には、局所的に圧力を低下させる為の挿入板7が配
置されている。この挿入板7は、図示しない機構により
外部から、放電電極1,2の長手方向に沿って移動可能
となっている。挿入板7は、いわゆる邪魔板と同様な作
用をなすものである。
On the other hand, an inlet 9 is provided between the discharge electrodes 1 and 2 for introducing heat medium gas. In the middle of this inlet 9, an insertion plate 7 is arranged to locally lower the pressure. This insertion plate 7 is movable along the longitudinal direction of the discharge electrodes 1 and 2 from the outside by a mechanism not shown. The insertion plate 7 has the same function as a so-called baffle plate.

【0008】上記構成を有する本実施例では、電源10
から放電電極1,2に通電することにより、放電電極1
,2の間でアーク電流8が発生し、放電電極1,2の間
を流れる熱媒ガス中に熱プラズマが発生し、プラズマジ
ェットが得られる。更に、片方の圧電素子4に通電して
、放電電極2を放電電極1に対して傾斜させると、それ
らの間で電界が傾斜する。この為、放電電極1,2の間
で発生するアーク電流8は、高い電界強度の方へ移動す
る。また、挿入板7が放電電極1,2の間で局所的に低
圧力部を発生するので、アーク電流8は、パッシェンの
法則に従い、安定な放電となる方向に移動することにな
る。
In this embodiment having the above configuration, the power supply 10
By applying current to the discharge electrodes 1 and 2 from the
, 2, a thermal plasma is generated in the heating medium gas flowing between the discharge electrodes 1 and 2, and a plasma jet is obtained. Furthermore, when one of the piezoelectric elements 4 is energized to tilt the discharge electrode 2 with respect to the discharge electrode 1, the electric field is tilted between them. Therefore, the arc current 8 generated between the discharge electrodes 1 and 2 moves toward the higher electric field strength. Furthermore, since the insertion plate 7 locally generates a low pressure area between the discharge electrodes 1 and 2, the arc current 8 moves in the direction of stable discharge according to Paschen's law.

【0009】ここで、圧電素子4への通電を数10〜数
100Hzで周期的に繰り返すことにより、放電電極1
に対向する平面内で放電電極2を周期的に揺動させ、同
時に挿入板7の移動を、これに連動させて周期的に繰り
返すと、アーク電流8は、電極1,2の間に全面的に広
がった平面アーク状態と等価となり、熱媒ガスを加熱し
て、平面プラズマジェットを噴出することになる。この
ように、圧電素子4への通電及び挿入板7の移動により
、アーク放電の移動を行うと、電磁コイルによる外部磁
界が不要となる。従って、適正な磁界を得ることが困難
であるという従来の問題が解消され、アーク放電を安定
した状態で移動することが可能となる。
Here, by periodically repeating energization to the piezoelectric element 4 at a frequency of several tens to several hundreds of Hz, the discharge electrode 1
When the discharge electrode 2 is periodically oscillated in a plane facing the electrodes 2 and the insertion plate 7 is moved periodically in conjunction with this movement, the arc current 8 is generated entirely between the electrodes 1 and 2. This is equivalent to a planar arc state that spreads out, heating the heat transfer gas and ejecting a planar plasma jet. In this way, when the arc discharge is moved by energizing the piezoelectric element 4 and moving the insertion plate 7, an external magnetic field by the electromagnetic coil becomes unnecessary. Therefore, the conventional problem of difficulty in obtaining an appropriate magnetic field is solved, and it becomes possible to move the arc discharge in a stable state.

【0010】尚、本実施例では、圧電素子4への給電と
、挿入板7の移動を併用していたが、何れか一方でも、
アーク電流を移動させることができる。従って、圧電素
子4への給電又は挿入板7の移動を、周期的に繰り返し
て行うことにより、平面アークと等価とし、平面プラズ
マジェットを噴出することができる。また、放電電極2
を揺動させる為の手段としては、圧電素子4に限らず、
その他の駆動源であっても良い。更に、電極間の間隔、
電極の長さ、熱媒の圧力及び流速は特に制限のないもの
である。
[0010] In this embodiment, the power supply to the piezoelectric element 4 and the movement of the insertion plate 7 were used together, but even if either one
Arc current can be moved. Therefore, by periodically repeating the power supply to the piezoelectric element 4 or the movement of the insertion plate 7, it is possible to make it equivalent to a planar arc and emit a planar plasma jet. In addition, the discharge electrode 2
The means for oscillating is not limited to the piezoelectric element 4,
Other driving sources may also be used. Furthermore, the spacing between the electrodes,
The length of the electrode, the pressure and flow rate of the heating medium are not particularly limited.

【0011】[0011]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明は、放電電極の少なくとも一方を対向
する平面内で周期的に揺動させ、或いは、放電電極の長
手方向に挿入板を挿入して周期的に移動させることによ
り、アーク放電を放電電極の長手方向で移動を繰り返さ
せて、平面アークと等価とすることができ、これにより
、平面プラズマジェットを噴出することができる。従っ
て、アーク放電を移動させるために、電磁コイルによる
外部磁界が不要となり、アーク放電を安定した状態で移
動させることが可能となる。
Effects of the Invention As described above in detail based on the embodiments, the present invention provides for periodically swinging at least one of the discharge electrodes within the opposing planes, or moving the discharge electrodes in the longitudinal direction. By inserting and periodically moving the insertion plate, the arc discharge can be made to move repeatedly in the longitudinal direction of the discharge electrode, making it equivalent to a planar arc, thereby making it possible to emit a planar plasma jet. can. Therefore, in order to move the arc discharge, an external magnetic field by the electromagnetic coil is not required, and it becomes possible to move the arc discharge in a stable state.

【図面の簡単な説明】 【図1】本発明の一実施例のアーク移動式熱プラズマジ
ェットに係り、同図(a) はその断面図、同図(b)
 はその正面図である。   【図2】本発明の一実施例の作用を示す説明図であり、
同図(a) は放電電極の傾斜によりアーク電流が移動
する様子を示し、また、同図(b) は挿入板の移動に
よりアーク放電が移動する様子を示す。 【図3】従来の直線型熱プラズマジェット発生装置の構
成図である。 【符号の説明】 1  放電電極(陽極) 2  放電電極(陰極) 3  絶縁物 4  圧電素子 5  バネ 6  冷却水流路 7  挿入板 8  アーク電流 9  熱媒ガス流入口 10  電源
[Brief Description of the Drawings] [Fig. 1] An arc moving thermal plasma jet according to an embodiment of the present invention; Fig. 1(a) is a cross-sectional view thereof, and Fig. 1(b)
is its front view. FIG. 2 is an explanatory diagram showing the operation of an embodiment of the present invention;
Figure (a) shows how the arc current moves due to the inclination of the discharge electrode, and figure (b) shows how the arc discharge moves due to the movement of the insertion plate. FIG. 3 is a configuration diagram of a conventional linear thermal plasma jet generator. [Explanation of symbols] 1 Discharge electrode (anode) 2 Discharge electrode (cathode) 3 Insulator 4 Piezoelectric element 5 Spring 6 Cooling water channel 7 Insertion plate 8 Arc current 9 Heat medium gas inlet 10 Power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  対向して配置される一対の長尺な放電
電極間にアーク放電を発生させ、該放電電極間を流れる
熱媒中に熱プラズマを発生させてプラズマジェットを発
生させるアーク式熱プラズマ発生装置において、上記一
対の長尺な放電電極の少なくとも一方を対向する平面内
で周期的に揺動させる手段を有することを特徴とするア
ーク移動式熱プラズマジェット発生装置。
1. An arc-type heating device that generates an arc discharge between a pair of long discharge electrodes arranged opposite each other, generates thermal plasma in a heat medium flowing between the discharge electrodes, and generates a plasma jet. 1. An arc-moving thermal plasma jet generating device, characterized in that the plasma generating device comprises means for periodically swinging at least one of the pair of elongated discharge electrodes within opposing planes.
【請求項2】  対向して配置される一対の長尺な放電
電極間にアーク放電を発生させ、該放電電極間を流れる
熱媒中に熱プラズマを発生させてプラズマジェットを発
生させるアーク式熱プラズマ発生装置において、上記熱
媒の流路であって上記放電電極の上流側に前記放電電極
の長手方向に周期的に移動可能な挿入板を配置したこと
を特徴とするアーク移動式熱プラズマジェット発生装置
2. An arc-type heating device that generates an arc discharge between a pair of long discharge electrodes arranged facing each other, generates thermal plasma in a heat medium flowing between the discharge electrodes, and generates a plasma jet. In the plasma generating device, an arc-moving thermal plasma jet characterized in that an insertion plate movable periodically in the longitudinal direction of the discharge electrode is disposed in the flow path of the heat medium and upstream of the discharge electrode. Generator.
【請求項3】  対向して配置される一対の長尺な放電
電極間にアーク放電を発生させ、該放電電極間を流れる
熱媒中に熱プラズマを発生させてプラズマジェットを発
生させるアーク式熱プラズマ発生装置において、上記一
対の長尺な放電電極の少なくとも一方を対向する平面内
で周期的に揺動させる手段と、上記熱媒の流路であって
上記放電電極の上流側に前記放電電極の長手方向に周期
的に移動可能な挿入板を配置したことを特徴とするアー
ク移動式熱プラズマジェット発生装置。
3. An arc-type heating device in which an arc discharge is generated between a pair of long discharge electrodes arranged facing each other, and thermal plasma is generated in a heat medium flowing between the discharge electrodes to generate a plasma jet. In the plasma generation device, means for periodically swinging at least one of the pair of elongated discharge electrodes within opposing planes, and a means for periodically swinging at least one of the pair of elongated discharge electrodes within opposing planes; An arc-moving thermal plasma jet generator characterized by having an insertion plate that is periodically movable in the longitudinal direction of the plasma jet generator.
JP3023300A 1991-02-18 1991-02-18 Arc moving type heat plasma jet generating device Withdrawn JPH04262398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023300A JPH04262398A (en) 1991-02-18 1991-02-18 Arc moving type heat plasma jet generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023300A JPH04262398A (en) 1991-02-18 1991-02-18 Arc moving type heat plasma jet generating device

Publications (1)

Publication Number Publication Date
JPH04262398A true JPH04262398A (en) 1992-09-17

Family

ID=12106753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023300A Withdrawn JPH04262398A (en) 1991-02-18 1991-02-18 Arc moving type heat plasma jet generating device

Country Status (1)

Country Link
JP (1) JPH04262398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104575A (en) * 2013-01-21 2013-05-15 南京航空航天大学 Electric arc type discharging plasma vortex generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104575A (en) * 2013-01-21 2013-05-15 南京航空航天大学 Electric arc type discharging plasma vortex generator

Similar Documents

Publication Publication Date Title
US4064465A (en) Laser cavities with gas flow through the electrodes
US4077020A (en) Pulsed gas laser
US5107510A (en) Apparatus and method for burst-mode operation of a pulsed laser
US5467362A (en) Pulsed gas discharge Xray laser
US4449220A (en) Apparatus and method for deposition of electrical power in an electric discharge laser
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
US4077018A (en) High power gas transport laser
JPH04262398A (en) Arc moving type heat plasma jet generating device
US4114114A (en) Apparatus and method for initiating electrical discharge in a laser
US4024465A (en) Generation of corona for laser excitation
JPS5890791A (en) Device for forming laser active state in high speed subsonic flow
JPS6342425B2 (en)
JP3796038B2 (en) Gas laser oscillator
JP2735339B2 (en) Gas laser oscillation device
US4250468A (en) Technique for CW or quasi CW operation of planar electrode laser apparatus
TW569511B (en) Laser apparatus
WO1996037935A1 (en) Microwave excited laser with uniform gas discharge
JPS6339113B2 (en)
US5034960A (en) Arrangement for the input of energy into a conducting electrical gas discharge, especially for a gas laser
JPH01194481A (en) Gas laser oscillating apparatus
Azarov et al. Non-self-sustained slab discharge as an efficient method for exciting an active laser medium
JPH10223956A (en) Gas laser device
EP0225413A1 (en) Self-optimizing electrode and pulse stabilized super high power C.W. gas lasers
JPS62214685A (en) Discharger for gas laser oscillator
JPH02260583A (en) Laser oscillator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514