JPH0426230B2 - - Google Patents

Info

Publication number
JPH0426230B2
JPH0426230B2 JP21045583A JP21045583A JPH0426230B2 JP H0426230 B2 JPH0426230 B2 JP H0426230B2 JP 21045583 A JP21045583 A JP 21045583A JP 21045583 A JP21045583 A JP 21045583A JP H0426230 B2 JPH0426230 B2 JP H0426230B2
Authority
JP
Japan
Prior art keywords
flash lamp
laser
pockels cell
circuit
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21045583A
Other languages
Japanese (ja)
Other versions
JPS60102785A (en
Inventor
Yoichi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21045583A priority Critical patent/JPS60102785A/en
Publication of JPS60102785A publication Critical patent/JPS60102785A/en
Publication of JPH0426230B2 publication Critical patent/JPH0426230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はピーク出力の高いレーザ出力でパル
ス発振を行うパルスレーザ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pulse laser device that performs pulse oscillation with a laser output having a high peak output.

〔従来技術〕[Prior art]

第1図は従来のパルスレーザ装置の構成図であ
る。第1図において、1はレーザ発振器、2はフ
ラツシユランプ4に放電エネルギを供給する電
源、3はポツケルスセル7の駆動回路、5はフラ
ツシユランプ4の発光により励起されるレーザ活
性物質、6はレーザ発振光の偏光面を限定する偏
光子、8はレーザ出力を取り出す第1の反射鏡、
9は高い反射率を有する第2の反射鏡、10はフ
ラツシユランプ4の発光開始時間に同期した同期
信号をポツケルスセル7の動作時間までに遅延さ
せる遅延回路、11は遅延回路10の出力信号に
よりパルス信号を得るためのパルス発生回路、1
2はパルス発生回路11の出力信号により高圧の
パルスを得るための高圧パルス発生回路である。
FIG. 1 is a block diagram of a conventional pulse laser device. In FIG. 1, 1 is a laser oscillator, 2 is a power source that supplies discharge energy to the flash lamp 4, 3 is a drive circuit for the Pockels cell 7, 5 is a laser active material excited by the light emission of the flash lamp 4, and 6 is a power source that supplies discharge energy to the flash lamp 4. A polarizer that limits the polarization plane of the laser oscillation light, 8 a first reflecting mirror that takes out the laser output,
9 is a second reflector having a high reflectance; 10 is a delay circuit that delays a synchronization signal synchronized with the light emission start time of the flash lamp 4 until the operating time of the Pockels cell 7; Pulse generation circuit for obtaining pulse signals, 1
2 is a high-voltage pulse generation circuit for obtaining high-voltage pulses from the output signal of the pulse generation circuit 11;

従来のパルスレーザ装置は上記のように構成さ
れ、フラツシユランプ4は電源2からのエネルギ
の供給を受けて発光する。レーザ活性物質5はフ
ラツシユランプ4の発光により励起され高い反転
分布を形成する。
The conventional pulse laser device is constructed as described above, and the flash lamp 4 receives energy from the power source 2 and emits light. The laser active substance 5 is excited by the light emitted from the flash lamp 4 and forms a highly inverted population.

このときレーザ活性物質5から偏光子6を通し
て第2の反射鏡9の側を見たときの反射率は零で
ありレーザ発振は起こり得ない。すなわち、ポツ
ケルスセル7を往復した発振光の偏波面は90°回
転させられるためレーザ活性物質5から偏光子6
を通過した発振光が第2の反射鏡9で反射して再
び偏光子6に到達したとき発振光の偏波面が90°
回転していることから偏光子6での通過が阻止さ
れる。この状態から、やがてレーザ活性物質5の
反転分布が最大となる。このとき、遅延回路10
はあらかじめ反転分布が最大となるタイミングに
設定され、パルス発生器11及び高圧パルス発生
回路12が動作し、ポツケルスセル5が駆動され
る。ポツケルスセル5が動作するとレーザ活性物
質5から偏光子6を通して第2の反射鏡9の側を
見た反射率が急速に100%に近い値となり、急速
にレーザ発振器1の利得が増大し、ピーク出力の
大きなパルスレーザ発振が起こる。このときのフ
ラツシユランプ4の発光強度波形及びレーザ活性
物質5の反転分布を第2図に示す。
At this time, the reflectance when looking from the laser active substance 5 to the second reflecting mirror 9 side through the polarizer 6 is zero, and laser oscillation cannot occur. In other words, since the plane of polarization of the oscillated light that has traveled back and forth through the Pockels cell 7 is rotated by 90 degrees, it
When the oscillated light that has passed through is reflected by the second reflecting mirror 9 and reaches the polarizer 6 again, the plane of polarization of the oscillated light is 90°.
Since it is rotating, it is prevented from passing through the polarizer 6. From this state, the population inversion of the laser active substance 5 eventually reaches its maximum. At this time, the delay circuit 10
is set in advance at a timing at which the population inversion is at its maximum, the pulse generator 11 and the high-voltage pulse generation circuit 12 operate, and the Pockels cell 5 is driven. When the Pockels cell 5 operates, the reflectance from the laser active substance 5 looking toward the second reflecting mirror 9 through the polarizer 6 rapidly approaches 100%, the gain of the laser oscillator 1 rapidly increases, and the peak output A large pulsed laser oscillation occurs. FIG. 2 shows the emission intensity waveform of the flash lamp 4 and the population inversion of the laser active substance 5 at this time.

図においてイはフラツシユランプ4の発光強
度、ロはレーザ活性物質5の反転分布を示す。
In the figure, A shows the emission intensity of the flash lamp 4, and B shows the population inversion of the laser active substance 5.

反転分布ロはレーザ発振が起こる直前までは発
光強度イの増加とともに大きくなるが、レーザ発
振が起こると急速に減少する。
Population inversion B increases as the emission intensity I increases until just before laser oscillation occurs, but it rapidly decreases once laser oscillation occurs.

なお、レーザ発振が生ずる前までの反転分布n
の時間変化はつぎの式で表わすことができる。
Note that the population inversion n before laser oscillation occurs
The time change of can be expressed by the following formula.

αn/αt=ωp(nt−n)−n/τf ……(1) ここでωpはフラツシユランプ4の発光強度に
比例する量であり、ntはレーザ遷移に関係するエ
ネルギレベルの総原子数、τfは自然放出寿命であ
る。通常の固体レーザ活性物質ではτfは十分大き
いので、反転分布nはフラツシユランプ4の発光
強度に比例して増加する。
αn/αt=ωp(nt-n)-n/τf...(1) Here, ωp is an amount proportional to the emission intensity of the flash lamp 4, and nt is the total number of atoms at the energy level related to laser transition. , τf is the spontaneous emission lifetime. Since τf is sufficiently large in a normal solid-state laser active material, the population inversion n increases in proportion to the emission intensity of the flash lamp 4.

レーザ出力は上記反転分布が最大となる時間に
ポツケルスセル7が動作するとき、すなわちQス
イツチングが行われるとき最大となる。
The laser output reaches its maximum when the Pockels cell 7 operates at the time when the population inversion is at its maximum, that is, when Q switching is performed.

通常、このポツケルスセル7の動作するタイミ
ングはあらかじめ遅延回路10で設定される。す
なわち、電源2から供給するエネルギを一定と、
レーザ発振出力を測定し、最大出力を得るタイミ
ングに設定される。
Normally, the timing at which this Pockels cell 7 operates is set in advance by a delay circuit 10. In other words, if the energy supplied from power source 2 is constant,
The laser oscillation output is measured and the timing is set to obtain the maximum output.

しかし、上記のような構成では電源2からの供
給エネルギが変化したり、フラツシユランプ4の
交換、劣化などでポツケルスセル最適動作タイミ
ングが変化し、安定した最大のレーザ出力を得る
ことができない。
However, with the above configuration, the optimum operating timing of the Pockels cell changes due to changes in the energy supplied from the power source 2, replacement of the flash lamp 4, deterioration, etc., making it impossible to obtain a stable maximum laser output.

第3図にフラツシユランプ4の放電回路の等価
回路を示す。図において、13はフラツシユラン
プ4の放電エネルギを蓄積するコンデンサ、14
はフラツシユランプ4の放電電流波形を整形する
ためのチヨークコイルを示す。
FIG. 3 shows an equivalent circuit of the discharge circuit of the flash lamp 4. In the figure, 13 is a capacitor that stores the discharge energy of the flash lamp 4;
shows a choke coil for shaping the discharge current waveform of the flash lamp 4.

第3図において、フラツシユランプ4に放電電
流が流れはじめたときに電流iに関し、つぎの式
が成り立つ。
In FIG. 3, when a discharge current starts flowing through the flash lamp 4, the following equation holds true regarding the current i.

Ldi/dt+Koi1/2+1/C∫t pidt=Vo……(2) 但し、Lはチヨークコイル14のインダクタン
ス、Koはフラツシユランプ4の固有インピーダ
ンス、Cはコンデンサ13の容量、Voはコンデ
ンサ13の充電電圧である。
Ldi/dt+Koi1/2+1/C∫ t p idt=Vo...(2) However, L is the inductance of the choke coil 14, Ko is the characteristic impedance of the flash lamp 4, C is the capacitance of the capacitor 13, and Vo is the charge of the capacitor 13. It is voltage.

ここでZo=(L/C)1/2、i=IVo/Zo、τ=
t/T、T=(LC)1/2、α=Ko/(VoZo)1/2とお
き(2)式についての数値計算結果の一例を第4図に
示す。第4図は縦軸に電流iの規格値Iを、横軸
に時間tの規格値τをとつたもので、パラメータ
αの値によりIが最大となる時間τが変化するこ
とを示す。図において、ハはαが0.6のときの電
流波形、ニはαが0.8のときの電流波形、ホはα
が1.0のときの電流波形を示す。
Here, Zo=(L/C) 1/2 , i=IVo/Zo, τ=
FIG. 4 shows an example of the numerical calculation results for equation (2) where t/T, T=(LC) 1/2 and α=Ko/(VoZo) 1/2 . FIG. 4 shows the standard value I of the current i on the vertical axis and the standard value τ of the time t on the horizontal axis, and shows that the time τ at which I becomes maximum changes depending on the value of the parameter α. In the figure, C is the current waveform when α is 0.6, D is the current waveform when α is 0.8, and E is α
The current waveform is shown when is 1.0.

このようにフラツシユランプ4の放電電流波形
が変化すると同様に発光強度波形も変化し、第3
図に示す反転分布ロも変化することになる。した
がつてレーザ出力が最大となるタイミングすなわ
ち反転分布ロが最大となるタイミングも変化する
ことになる。
When the discharge current waveform of the flash lamp 4 changes in this way, the emission intensity waveform also changes, and the third
The population inversion shown in the figure also changes. Therefore, the timing at which the laser output reaches its maximum, that is, the timing at which the population inversion B reaches its maximum, also changes.

なお、パラメータαは、Ko、Vo、Zoの値に依
存し、たとえば、Voはフラツシユランプ4への
放電エネルギの大きさにより変化し、Koはフラ
ツシユランプ4を交換したとき又は劣化したとき
に変化する。
Note that the parameter α depends on the values of Ko, Vo, and Zo; for example, Vo changes depending on the magnitude of discharge energy to the flash lamp 4, and Ko changes when the flash lamp 4 is replaced or deteriorated. Changes to

以上、上記のようにポツケルスセル7の動作タ
イミングを遅延回路10で一定値に設定したので
は、パラメータαが変化したとき、すなわちコン
デンサ13の充電電圧Voあるいはフラツシユラ
ンプ4を交換して固有インピーダンスKoが変化
し、放電電流波形が変化したときは可能な最大の
レーザ出力を得ることができないという欠点があ
つた。
As mentioned above, if the operation timing of the Pockels cell 7 is set to a constant value by the delay circuit 10 as described above, when the parameter α changes, that is, when the charging voltage Vo of the capacitor 13 or the flash lamp 4 is replaced, the characteristic impedance Ko The disadvantage is that when the discharge current waveform changes, the maximum possible laser output cannot be obtained.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされ
たものでレーザ活性物質5の自然放出光を観測
し、自然放出光強度が最大となるタイミングを測
定して、常にレーザ活性物質5の反転分布が最大
となるタイミングにポツケルスセル7を動作させ
るような駆動回路3を備えたパルスレーザ装置を
提案するものである。
This invention was made with the aim of improving this drawback, and by observing the spontaneous emission light of the laser active substance 5 and measuring the timing at which the spontaneous emission light intensity reaches its maximum, the population inversion of the laser active substance 5 is always at its maximum. The present invention proposes a pulse laser device equipped with a drive circuit 3 that operates the Pockels cell 7 at the timing.

〔発明の実施例〕[Embodiments of the invention]

第5図はこの発明の一実施例を示す構成図であ
り、1〜9及び11〜12は上記従来装置と同一
又は相当するもので15はレーザ活性物質5の自
然放出光強度を観測する光検出器、16は光検出
器15の出力信号を増幅する増幅回路、17は増
幅回路の出力信号を微分する微分回路、18は微
分回路17の出力が零となるタイミングを検出す
る零値検出回路、19はフラツシユランプ4の発
光後の一定時間内のみ駆動回路3の動作を可能と
するゲート回路、20は自然放出光の一部を光検
出器15に導くためのビームスプリツタ、21は
自然放出光の射出方向を示す矢印である。
FIG. 5 is a block diagram showing an embodiment of the present invention, in which 1 to 9 and 11 to 12 are the same as or equivalent to the conventional device described above, and 15 is a light beam for observing the spontaneous emission light intensity of the laser active substance 5. Detector, 16 is an amplifier circuit that amplifies the output signal of the photodetector 15, 17 is a differentiation circuit that differentiates the output signal of the amplifier circuit, 18 is a zero value detection circuit that detects the timing when the output of the differentiation circuit 17 becomes zero. , 19 is a gate circuit that enables the drive circuit 3 to operate only within a certain period of time after the flash lamp 4 emits light, 20 is a beam splitter for guiding a part of spontaneously emitted light to the photodetector 15, and 21 is a This is an arrow indicating the emission direction of spontaneous emission light.

上記のように構成されたパルスレーザ装置にお
いては、レーザ活性物質5の自然放出光強度の波
形すなわち時間変化は光検出器15により観測さ
れ、光検出器15の出力信号は増幅器16により
増幅される。微分回路17は増幅器16の出力信
号の時間変化に比例した大きさの信号を得るもの
で、増幅器16の出力信号の時間変化が零となつ
たときは微分回路17の出力も零となる。すなわ
ち、光検出器15から得られるフラツシユランプ
4の発光強度波形が最大となるタイミングでは微
分回路17の出力が零となる。零値検出回路18
は微分回路17の出力が零となるタイミングにト
リガ信号を発生するもので、このトリガ信号を受
けて、さらに一定の遅れが与えられて、パルス発
生回路11よりパルスが発生する。高圧パルス発
生回路12はパルス発生回路11の出力により動
作し、高圧のパルスを発生してポツケルスセル7
を駆動する。
In the pulsed laser device configured as described above, the waveform or time change of the spontaneous emission light intensity of the laser active substance 5 is observed by the photodetector 15, and the output signal of the photodetector 15 is amplified by the amplifier 16. . The differentiating circuit 17 obtains a signal whose magnitude is proportional to the time change of the output signal of the amplifier 16, and when the time change of the output signal of the amplifier 16 becomes zero, the output of the differentiating circuit 17 also becomes zero. That is, at the timing when the light emission intensity waveform of the flash lamp 4 obtained from the photodetector 15 becomes maximum, the output of the differentiating circuit 17 becomes zero. Zero value detection circuit 18
A trigger signal is generated at the timing when the output of the differentiating circuit 17 becomes zero, and upon receiving this trigger signal, a certain delay is further applied, and a pulse is generated from the pulse generating circuit 11. The high-voltage pulse generation circuit 12 is operated by the output of the pulse generation circuit 11 and generates high-voltage pulses to control the Pockels cell 7.
to drive.

なお光検出器15はレーザ発振波長のみを検出
するための波長選択性を有する光検出器15であ
る。
Note that the photodetector 15 has wavelength selectivity for detecting only the laser oscillation wavelength.

自然放出光は(1)式の右辺の第2項に示すごとく
自然放出寿命τfと反転分布nにより決まり、反転
分布nの大きさに比例して自然放出光強度も大き
くなる。よつて、自然放出光強度が最大のときに
反転分布も最大となり最大のレーザ出力を取り出
し得ることになる。
The spontaneous emission light is determined by the spontaneous emission lifetime τf and the population inversion n, as shown in the second term on the right side of equation (1), and the intensity of the spontaneous emission light increases in proportion to the size of the population inversion n. Therefore, when the spontaneous emission light intensity is maximum, the population inversion is also maximum, and the maximum laser output can be extracted.

このためにフラツシユランプ4の放電エネルギ
を変化するためにコンデンサ13の充電電圧Vo
を変化したり、フラツシユランプ4を交換して固
有インピーダンスKoが変化した場合にフラツシ
ユランプ4の発光強度の波形が変化しても常にレ
ーザ活性物質5の反転分布が最大となるタイミン
グにポツケルスセル7が動作することになる。し
たがつてレーザ出力は常に最大の出力を得ること
が可能となる。
For this purpose, in order to change the discharge energy of the flash lamp 4, the charging voltage Vo of the capacitor 13 is
Even if the waveform of the emission intensity of the flash lamp 4 changes when the intrinsic impedance Ko changes by changing the flash lamp 4 or replacing the flash lamp 4, the Pockels cell is always set at the timing when the population inversion of the laser active substance 5 is at its maximum. 7 will work. Therefore, it is possible to always obtain the maximum laser output.

なお、上記実施例ではビームスプリツタ20を
用いて光検出器15に自然放出光を導いたが、ビ
ームスプリツタを用いないで偏光子6の反射ある
いは漏れによる自然放出光を検出しても同様の動
作を期待できる。
In the above embodiment, the beam splitter 20 was used to guide the spontaneously emitted light to the photodetector 15, but the same effect can be obtained even if spontaneously emitted light due to reflection or leakage of the polarizer 6 is detected without using the beam splitter. You can expect this behavior.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおりレーザ活性物質
5の自然放出光強度波形を観測し、ポツケルスセ
ル7の駆動回路3においてレーザ活性物質5の反
転分布が最大となるタイミングを検出し、このタ
イミングでポツケルスセル7を駆動することで、
フラツシユランプ4の放電エネルギが変化したと
きや、フラツシユランプの交換、劣化によりフラ
ツシユランプ4の発光強度波形が変化しても、常
に最大のレーザ出力を取り出すことができる効果
を有する。
As explained above, this invention observes the spontaneous emission light intensity waveform of the laser active substance 5, detects the timing at which the population inversion of the laser active substance 5 is maximum in the drive circuit 3 of the Pockels cell 7, and activates the Pockels cell 7 at this timing. By driving,
Even when the discharge energy of the flash lamp 4 changes or the waveform of the emission intensity of the flash lamp 4 changes due to replacement or deterioration of the flash lamp, the maximum laser output can always be extracted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のパルスレーザ装置の構成図、第
2図はフラツシユランプ4の発光強度とレーザ活
性物質の反転分布の時間変化を示す図、第3図は
フラツシユランプの放電回路を示す等価回路図、
第4図はフラツシユランプの放電電流の時間変化
を示す図、第5図はこの発明の一実施例を示す図
である。 図において1はレーザ発振器、2は電源、3は
駆動回路、4はフラツシユランプ、5はレーザ活
性物質、6は偏光子、7はポツケルスセル、8は
第1の反射鏡、9は第2の反射鏡、10は遅延回
路、11はパルス発生回路、12は高圧パルス発
生回路、13はコンデンサ、14はチヨークコイ
ル、15は光検出器、16は増幅回路、17は微
分回路、18は零値検出回路、19はゲート回
路、20はビームスプリツタである。なお各図中
同一符号は同一又は相当部分を示す。
Figure 1 is a configuration diagram of a conventional pulse laser device, Figure 2 is a diagram showing the emission intensity of the flash lamp 4 and temporal changes in the population inversion of the laser active substance, and Figure 3 is a diagram showing the discharge circuit of the flash lamp. equivalent circuit diagram,
FIG. 4 is a diagram showing the change in discharge current of a flash lamp over time, and FIG. 5 is a diagram showing an embodiment of the present invention. In the figure, 1 is a laser oscillator, 2 is a power supply, 3 is a drive circuit, 4 is a flash lamp, 5 is a laser active material, 6 is a polarizer, 7 is a Pockels cell, 8 is a first reflecting mirror, and 9 is a second mirror. Reflector, 10 is a delay circuit, 11 is a pulse generation circuit, 12 is a high-voltage pulse generation circuit, 13 is a capacitor, 14 is a chiyoke coil, 15 is a photodetector, 16 is an amplifier circuit, 17 is a differentiation circuit, 18 is a zero value detection 19 is a gate circuit, and 20 is a beam splitter. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 励起光源としてのフラツシユランプと、前記
励起光源により励起されるレーザ活性物質と、発
振光の偏波面を限定する偏光子及びポツケルスセ
ルと、レーザ共振器を構成する2枚の反射鏡と、
上記フラツシユランプに放電エネルギを供給する
電源と、上記レーザ活性物質の自然放出光を観測
する光検出器と、上記光検出器の出力端に接続さ
れた微分回路、上記微分回路の出力端に接続され
た零値検出回路とを設け、ポツケルスセルを動作
させるタイミングを上記光検出器の出力の変化に
応じて可変させる機能を有するポツケルスセル駆
動回路とを具備したことを特徴とするパルスレー
ザ装置。
1. A flash lamp as an excitation light source, a laser active material excited by the excitation light source, a polarizer and a Pockels cell that limit the plane of polarization of oscillated light, and two reflecting mirrors forming a laser resonator.
a power source for supplying discharge energy to the flash lamp; a photodetector for observing the spontaneous emission of the laser active substance; a differential circuit connected to the output end of the photodetector; A pulsed laser device comprising: a zero value detection circuit connected thereto; and a Pockels cell drive circuit having a function of varying the timing at which the Pockels cell is operated in accordance with changes in the output of the photodetector.
JP21045583A 1983-11-09 1983-11-09 Pulse laser Granted JPS60102785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21045583A JPS60102785A (en) 1983-11-09 1983-11-09 Pulse laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21045583A JPS60102785A (en) 1983-11-09 1983-11-09 Pulse laser

Publications (2)

Publication Number Publication Date
JPS60102785A JPS60102785A (en) 1985-06-06
JPH0426230B2 true JPH0426230B2 (en) 1992-05-06

Family

ID=16589616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21045583A Granted JPS60102785A (en) 1983-11-09 1983-11-09 Pulse laser

Country Status (1)

Country Link
JP (1) JPS60102785A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958566A1 (en) * 1999-12-04 2001-06-07 Zeiss Carl Jena Gmbh Q-switched solid state laser with adjustable pulse length has acousto-optical Q-switch controlled by controlling gradient of edges of modulation function of high frequency wave
JP5288575B2 (en) * 2005-09-29 2013-09-11 株式会社メガオプト Laser light source
DE102007041529A1 (en) * 2007-08-31 2009-03-05 Robert Bosch Gmbh Laser device and operating method for this

Also Published As

Publication number Publication date
JPS60102785A (en) 1985-06-06

Similar Documents

Publication Publication Date Title
US4896119A (en) CW pumper CW pumped variable repetition rate regenerative laser amplifier system
US3577097A (en) Laser with combined q-switch and synchronized cavity dump circuit
Kinoshita et al. Subnanosecond fluorescence‐lifetime measuring system using single photon counting method with mode‐locked laser excitation
JP2647832B2 (en) Laser oscillator
JP3879889B2 (en) Injection-locked narrow-band pulse laser device
JPH0426230B2 (en)
JP3035613B1 (en) Apparatus and method for pulsed amplification of single mode laser light
JPH0131716B2 (en)
JP2001308426A (en) Pulse laser oscillating method and oscillating device
Lill et al. Rapid optical sampling of relaxation-phenomena employing two time-correlated picosecond pulsetrains
JPH02260479A (en) Laser oscillator
US4723249A (en) Frequency stabilized pulsed laser system
US3521188A (en) Double q-switched laser with self-mode locked intracavity loss modulator
Brito Cruz et al. A study of the self-injected laser for subnanosecond pulse generation
JPH07154013A (en) Pulsed laser
JP3333242B2 (en) Pulse laser beam amplification method and amplification device
JPS61168979A (en) Pulse laser device
JPH04214690A (en) Oscillator and light frequency measuring apparatus utilizing same
JP2554893B2 (en) High repetition pulse laser stabilizer
JP2600747B2 (en) Laser device
Scott et al. Stabilization of single mode TEA laser
JP2970961B2 (en) Optical waveform measurement device
SU533257A1 (en) Laser
JPH08255941A (en) Ultrashort pulse laser
SU321183A1 (en)