JPH04261437A - Heat-resistant polyacrylonitrile composite film or fiber - Google Patents

Heat-resistant polyacrylonitrile composite film or fiber

Info

Publication number
JPH04261437A
JPH04261437A JP4080791A JP4080791A JPH04261437A JP H04261437 A JPH04261437 A JP H04261437A JP 4080791 A JP4080791 A JP 4080791A JP 4080791 A JP4080791 A JP 4080791A JP H04261437 A JPH04261437 A JP H04261437A
Authority
JP
Japan
Prior art keywords
acrylonitrile
composite
fiber
polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080791A
Other languages
Japanese (ja)
Other versions
JP3087226B2 (en
Inventor
Yuichi Fukui
福 居 雄 一
Hajime Ito
伊 藤  元
Shigeki Hagura
羽 倉 茂 樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4080791A priority Critical patent/JP3087226B2/en
Publication of JPH04261437A publication Critical patent/JPH04261437A/en
Application granted granted Critical
Publication of JP3087226B2 publication Critical patent/JP3087226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide an acrylonitrile film or fiber having excellent heat- resistance and high-temperature dimensional stability and extremely useful as industrial materials, etc. CONSTITUTION:The objective heat-resistant polyacrylonitrile composite film or fiber is composed of a composite of (A) an acrylonitrile polymer having an acrylonitrile content of >=70wt.% and (B) 1-70wt.% (based on the polymer) of a metal oxide derived from a metal alkoxide. The lowering ratio of the elastic modulus at the tandelta peak temperature based on the modulus at 25 deg.C is <=70% by dynamic viscoelasticity measurement. The thermal decomposition initiation temperature of the above composite material is higher than that of the non-composite acrylonitrile fiber by >=10 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐熱性、寸法安定性に
優れたアクリロニトリル系複合体と金属酸化物との複合
体で構成されたフィルム及び繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to films and fibers made of a composite of an acrylonitrile composite and a metal oxide, which have excellent heat resistance and dimensional stability.

【0002】0002

【従来の技術】耐侯性、染色性等に優れたアクリロニト
リル共重合体は、繊維、フィルム等に多用されているが
、産業資材などの用途に使用するものについては、特に
耐熱性、高温寸法安定性が強く要望されている。この要
望を満たすため、一般にSi02微粒子を分散させたも
の、或は無機フィラ−を分散させたものが知られている
。また金属アルコキシドを用いた複合体として、金属ア
ルコキシドと末端シラノ−ル基含有ポリシロキサンとの
複合体よりなる透明耐熱組成物(特開平2−10222
9号)等が知られている。
[Prior Art] Acrylonitrile copolymers, which have excellent weather resistance and dyeability, are widely used in fibers, films, etc.; Sex is strongly desired. In order to meet this demand, it is generally known that Si02 fine particles are dispersed or inorganic fillers are dispersed. In addition, as a composite using a metal alkoxide, a transparent heat-resistant composition consisting of a composite of a metal alkoxide and a polysiloxane containing a terminal silanol group (Japanese Patent Application Laid-Open No. 2-10222
No. 9) etc. are known.

【0003】しかしながら、アクロニトリル系重合体へ
無機フィラ−を添加しても、これによって耐熱性が向上
する例はあまり見られない。またSiO2、TiO2等
を添加する場合は、多量に添加、分散させることが困難
である。またこの場合はあくまで分散の状態であり、添
加によって重合体の強度等の物性の低下を引き起こす。
However, even when an inorganic filler is added to an acronitrile polymer, there are not many examples in which the heat resistance is improved. Furthermore, when adding SiO2, TiO2, etc., it is difficult to add and disperse large amounts. Moreover, in this case, it is only in a dispersed state, and addition causes a decrease in physical properties such as strength of the polymer.

【0004】0004

【発明が解決しようとする課題】本発明者らは、SiO
2、TiO2等、或は無機フィラ−を添加してアクロニ
トリル系重合体の耐熱性を高める従来法の欠点を解消し
、重合体の強度等の物性の低下を惹起することなく耐熱
性を向上させたアクリロニトリル系重合体と金属酸化物
との複合体で構成されたフィルム又は繊維を提供するこ
とを目的とする。
[Problems to be Solved by the Invention] The present inventors have discovered that SiO
2. Eliminates the drawbacks of conventional methods of increasing the heat resistance of acronitrile polymers by adding TiO2, etc. or inorganic fillers, and improves heat resistance without causing a decrease in physical properties such as strength of the polymer. An object of the present invention is to provide a film or fiber composed of a composite of an acrylonitrile polymer and a metal oxide.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、アク
リロニトリルを70重量%以上含有するアクリロニトリ
ル系重合体と該重合体の1〜70重量%の金属アルコキ
シドからの金属酸化物との複合体で構成され、動的粘弾
性測定におけるtanδピ−ク温度の弾性率の25℃の
弾性率に対する低下率が50%以下であることを特徴と
する耐熱性アクリロニトリル系複合体フィルム又は繊維
である。
[Means for Solving the Problems] That is, the present invention consists of a composite of an acrylonitrile polymer containing 70% by weight or more of acrylonitrile and a metal oxide from a metal alkoxide in an amount of 1 to 70% by weight of the polymer. The present invention is a heat-resistant acrylonitrile-based composite film or fiber, characterized in that the reduction rate of the elastic modulus at tan δ peak temperature with respect to the elastic modulus at 25° C. in dynamic viscoelasticity measurement is 50% or less.

【0006】また本発明は、熱分解開始温度が、複合体
を形成していないアクリロニトリル系重合体の熱分解開
始温度より10℃以上高いアクリロニトリル系重合体の
複合体で構成されたフィルム又は繊維である。
The present invention also provides a film or fiber comprising an acrylonitrile polymer composite whose thermal decomposition initiation temperature is 10° C. or more higher than the thermal decomposition initiation temperature of the acrylonitrile polymer that does not form the composite. be.

【0007】本発明におけるアクリロニトリル系重合体
の複合体の形成に用いる金属アルコキシドは、公知の合
成法、例えば塩化水銀を触媒として金属とアルコ−ルを
直接反応させる方法、金属の塩化物とアルコ−ルを反応
させる方法、あるいは直接的な合成が困難な場合にはア
ルコ−ルの交換による合成方法などの種々の方法で製造
できる。また金属としては、これらの方法でアルコキシ
ドを合成できる金属であればいずれの金属でも用いるこ
とができるが、珪素、アルミニウム、チタン、ジルコニ
ウム及びそれらの混合物が好適である。
The metal alkoxide used to form the acrylonitrile polymer complex in the present invention can be synthesized by known synthesis methods, such as a method in which a metal and an alcohol are directly reacted using mercury chloride as a catalyst, or a method in which a metal chloride and an alcohol are directly reacted. It can be produced by various methods such as a method of reacting alcohols, or, when direct synthesis is difficult, a method of synthesis by exchanging alcohols. Further, as the metal, any metal can be used as long as an alkoxide can be synthesized by these methods, but silicon, aluminum, titanium, zirconium, and mixtures thereof are preferable.

【0008】また、本発明におけるのアクリロニトリル
系重合体の複合体の形成に用いるアクリロニトリル系重
合体は、アクリロニトリルの含量が70重量%以上であ
ることが必要で、70重量%より少ない場合、アクリロ
ニトリル系重合体の特性が失なわれ、所望の複合体が得
られない。アクリロニトリルと共重合できる成分として
は、例えばメチルメタクリレ−ト、エチルメタクリレ−
ト、ブチルメタクリレ−ト、ヘキシルメタクリレ−ト等
のメタクリル酸エステル類:メチルアクリレ−ト、エチ
ルアクリレ−ト、ブチルアクリレ−ト、プロピルアクリ
レ−ト、フルオロアルキルアクリレ−ト等のアクリル酸
エステル類:塩化ビニル、臭化ビニル、塩化ビニリデン
等のハロゲン化ビニル類:メタクリル酸、アクリル酸、
イタコン酸、クロトン酸、ビニルスルホン酸等の酸類及
びそれらの塩類:マレイン酸イミド、フェニルマレイミ
ド、アクリルアミド、メタクリルアミド、スチレン、α
−メチルスチレン、酢酸ビニルなどが挙げられ、またこ
れらの混合物でもよい。
[0008] Furthermore, the acrylonitrile polymer used to form the acrylonitrile polymer composite in the present invention must have an acrylonitrile content of 70% by weight or more, and if it is less than 70% by weight, the acrylonitrile The properties of the polymer are lost and the desired composite cannot be obtained. Examples of components that can be copolymerized with acrylonitrile include methyl methacrylate and ethyl methacrylate.
Methacrylic acid esters such as methacrylate, butyl methacrylate, hexyl methacrylate; Acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, fluoroalkyl acrylate, etc. : Vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, etc.: Methacrylic acid, acrylic acid,
Acids such as itaconic acid, crotonic acid, vinyl sulfonic acid and their salts: maleic acid imide, phenylmaleimide, acrylamide, methacrylamide, styrene, α
-Methylstyrene, vinyl acetate, etc., and mixtures thereof may also be used.

【0009】本発明におけるアクリロニトリル系重合体
と金属アルコキシドからの金属酸化物との複合体を形成
させるには、アクリロニトリル系重合体を溶媒に均質に
溶解して溶液状態となし、これに金属アルコキシドを混
合し、次いで金属アルコキシドを加水分解し重縮合反応
させてアクリロニトリル系重合体と金属酸化物との複合
体となす手段を採用するのが好ましい。これらアクリロ
ニトリル系重合体と金属アルコキシドとの混合比率は、
加水分解後の金属酸化物としてアクリロニトリル系重合
体に対し、1重量%以上好ましくは10重量%以上、7
0重量%以下含有させるに必要な比率である。加水分解
後の金属酸化物の含有量が1重量%より少ない場合は、
耐熱性効果が現れず、70重量%を超える場合は、アク
リロニトリル系複合体の物性が低下し、例えば可撓性等
が失われる。
In order to form a composite of an acrylonitrile polymer and a metal oxide derived from a metal alkoxide in the present invention, the acrylonitrile polymer is homogeneously dissolved in a solvent to form a solution, and the metal alkoxide is added to the acrylonitrile polymer. It is preferable to adopt a method of mixing, then hydrolyzing the metal alkoxide and causing a polycondensation reaction to form a composite of the acrylonitrile polymer and the metal oxide. The mixing ratio of these acrylonitrile polymers and metal alkoxides is as follows:
1% by weight or more, preferably 10% by weight or more, based on the acrylonitrile polymer as the metal oxide after hydrolysis, 7
This is the ratio necessary to contain 0% by weight or less. If the content of metal oxide after hydrolysis is less than 1% by weight,
If the heat resistance effect does not appear and the amount exceeds 70% by weight, the physical properties of the acrylonitrile-based composite will deteriorate, for example, flexibility will be lost.

【0010】上記複合体を形成させる際に使用する溶媒
としては、アクリロニトリル系重合体を溶解し、また金
属アルコキシドを溶解する溶媒であれば、何でもよく例
えばジメチルホルムアミド、ジメチルアセトアミド、ジ
メチルスルホキシド、γ−ブチロラクトン、エチレンカ
−ボネ−ト等が挙げられる。また、この複合体を形成さ
せるに当り、金属アルコキシドの加水分解のための適量
の水、更に触媒としての酸あるいは塩基を用いるのが好
ましい。
[0010] Any solvent may be used to form the above-mentioned complex as long as it dissolves the acrylonitrile polymer and also dissolves the metal alkoxide, such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, γ- Examples include butyrolactone and ethylene carbonate. Further, in forming this composite, it is preferable to use an appropriate amount of water for hydrolyzing the metal alkoxide, and an acid or base as a catalyst.

【0011】アクリロニトリル系重合体と金属アルコキ
シドからの金属酸化物との複合体で構成されたフィルム
又は繊維を成形するには種々の方法が利用できる。たと
えば、アクリロニトリル系重合体溶液に金属アルコキシ
ドを添加し、金属アルコキシドを反応させた溶液を流延
し、溶媒を蒸発させ、フィルム形成することができる。 また適当な粘度をもたせた上記の反応溶液から、乾式、
湿式或は乾湿式紡糸等により繊維を形成することができ
る。
Various methods can be used to form a film or fiber composed of a composite of an acrylonitrile polymer and a metal oxide derived from a metal alkoxide. For example, a film can be formed by adding a metal alkoxide to an acrylonitrile polymer solution, casting the solution in which the metal alkoxide is reacted, and evaporating the solvent. In addition, from the above reaction solution with an appropriate viscosity, dry method,
Fibers can be formed by wet or dry-wet spinning.

【0012】本発明におけるアクリロニトリル系重合体
と金属アルコキシドからの金属酸化物との複合体は、金
属酸化物のネットワ−クが重合体分子鎖と互いにからん
だ状態であり、分子分散された複合体となっている。こ
の複合体で構成されたフィルム又は繊維は、動的粘弾性
測定におけるTanδピ−ク温度の弾性率が25℃の弾
性率と比べて弾性率の低下率が70%以下であり、高温
においても弾性率が確保できるという特性を有する。
The composite of the acrylonitrile polymer and the metal oxide derived from the metal alkoxide in the present invention has a network of the metal oxide intertwined with the polymer molecular chain, and is a molecularly dispersed composite. It has become a body. Films or fibers made of this composite exhibit a reduction rate of 70% or less in the elastic modulus at the Tan δ peak temperature in dynamic viscoelasticity measurements compared to the elastic modulus at 25°C, and even at high temperatures. It has the property of ensuring elastic modulus.

【0013】また、本発明におけるアクリロニトリル系
重合体と金属アルコキシドからの金属酸化物との複合体
は、もとのアクリロニトリル系重合体に比べ、熱分解開
始温度(重量減少開始温度)が10℃以上高いという耐
熱性を有する。
[0013] Furthermore, the composite of the acrylonitrile polymer and the metal oxide derived from the metal alkoxide in the present invention has a thermal decomposition initiation temperature (weight loss initiation temperature) of 10°C or more compared to the original acrylonitrile polymer. It has high heat resistance.

【0014】また、本発明の好ましい実施態様を示すと
次ぎのとおりである。 1.金属酸化物成分が、アクリロニトリル系重合体に対
し10重量%以上含有する請求項1又は請求項2記載の
耐熱性アクリロニトリル系複合体フィルム又は繊維。 2.金属アルコキシドの金属が、珪素、アルミニウム、
チタン及びジルコニウムからなる群より選ばれて1種又
は2種以上の金属である請求項1、請求項2又は上記1
記載の耐熱性アクリロニトリル系複合体フィルム又は繊
維。
Further, preferred embodiments of the present invention are as follows. 1. The heat-resistant acrylonitrile composite film or fiber according to claim 1 or 2, wherein the metal oxide component is contained in an amount of 10% by weight or more based on the acrylonitrile polymer. 2. The metal of metal alkoxide is silicon, aluminum,
Claim 1, Claim 2, or 1 above, which is one or more metals selected from the group consisting of titanium and zirconium.
The heat-resistant acrylonitrile composite film or fiber described above.

【0015】[0015]

【実施例】次に本発明の実施例を示す。各実施例におけ
る動的粘弾性は、次の条件で測定した。 測定装置  オリエンテック社レオバイブロンDDV−
2測定条件  測定周波数  110Hz昇温速度  
  2℃/分 また、各実施例において、フィルム又は繊維の窒素中で
の重量減少開始温度を、TG−DTA(熱重量測定−示
差熱分析)によって、次の条件で測定した。 測定装置   理学電機株式会社製  TG−DTA測
定装置 測定条件  サンプル量  10mg 昇温速度    10℃/分 そして、重量減少開始時に観測される発熱ピ−ク温度を
、熱分解開始温度(TD)とした。
[Example] Next, an example of the present invention will be shown. The dynamic viscoelasticity in each example was measured under the following conditions. Measuring device: Orientec Leovibron DDV-
2 Measurement conditions Measurement frequency 110Hz Heating rate
2° C./min Furthermore, in each Example, the weight loss onset temperature of the film or fiber in nitrogen was measured by TG-DTA (thermogravimetry-differential thermal analysis) under the following conditions. Measuring device TG-DTA measuring device manufactured by Rigaku Denki Co., Ltd. Measuring conditions Sample amount 10 mg Heating rate 10° C./min The exothermic peak temperature observed at the start of weight loss was defined as thermal decomposition start temperature (TD).

【0016】実施例1 テトラエトキシシラン[Si(OC2H5)4]4g、
ポリアクリロニトリル(分子量400,000)4g、
ジメチルホルムアミド46g、水0.35g、塩酸(3
5%含有)0.1gを80℃で2時間加熱し、テトラエ
トキシシランを加熱反応させた。この反応後の溶液をガ
ラス板に流延し、80℃で24時間真空乾燥させた。得
られたキャストフィルムは、膜厚30μmであった。ま
た、上記のポリアクリロニトリル(分子量400,00
0)のみからなる膜厚27μmのキャストフィルムを同
様にして溶媒蒸発法で得た。
Example 1 4 g of tetraethoxysilane [Si(OC2H5)4],
4 g of polyacrylonitrile (molecular weight 400,000),
Dimethylformamide 46g, water 0.35g, hydrochloric acid (3
(containing 5%) was heated at 80° C. for 2 hours to cause a heating reaction of tetraethoxysilane. The solution after this reaction was cast onto a glass plate and vacuum dried at 80° C. for 24 hours. The obtained cast film had a thickness of 30 μm. In addition, the above polyacrylonitrile (molecular weight 400,000
A cast film having a thickness of 27 μm consisting only of 0) was similarly obtained by the solvent evaporation method.

【0017】これらのフィルム熱分解開始温度TDは、
次のとおりであった。 ポリアクリロニトリルフィルムTD=275℃ポリアク
リロニトリル複合フィルムTD=300℃また各温度に
おける動的粘弾性E’は次のとおりであった。 25℃のE’=8×1010dyn/cm2Tanδピ
−ク温度110℃のE’=6.8×1010dyn/c
m2 したがって、弾性率低下率は15%であった。
The thermal decomposition start temperature TD of these films is as follows:
It was as follows. Polyacrylonitrile film TD=275°C Polyacrylonitrile composite film TD=300°C Also, the dynamic viscoelasticity E' at each temperature was as follows. E' at 25°C = 8 x 1010 dyn/cm2 Tan δ peak temperature at 110°C E' = 6.8 x 1010 dyn/c
m2 Therefore, the elastic modulus reduction rate was 15%.

【0018】実施例2 テトラ−n−ブトキシチタン(Ti(OC4H9)4)
5部、アクリロニトリル93重量%とメチルアクリレ−
ト7重量%とからなる共重合体(分子量200,000
)20部、水0.5部、塩酸(35%含有)0.1部、
ジメチルアセトアミド80部を、80℃で2時間反応さ
せ、この反応後の溶液を湿式紡糸法により繊維化した。 また、上記の共重合体をジメチルアセトアミドに溶解し
、同様に湿式紡糸により繊維を得た。
Example 2 Tetra-n-butoxytitanium (Ti(OC4H9)4)
5 parts, 93% by weight of acrylonitrile and methyl acrylate
Copolymer consisting of 7% by weight (molecular weight 200,000
) 20 parts, water 0.5 part, hydrochloric acid (containing 35%) 0.1 part,
80 parts of dimethylacetamide was reacted at 80° C. for 2 hours, and the reaction solution was made into fibers by wet spinning. Further, the above copolymer was dissolved in dimethylacetamide, and fibers were obtained by wet spinning in the same manner.

【0019】これらの各繊維のTG−DTAを測定し熱
分解開始温度TDを測定した。未反応繊維TD=270
℃ 複合体繊維TD=310℃ また複合体繊維の動的粘弾性を測定した。 25℃のE’=2.0×1010dyn/cm2Tan
δピ−ク温度107℃のE’=1.7×1010dyn
/cm2 したがって、弾性率低下率は17%であった。
The TG-DTA of each of these fibers was measured to determine the thermal decomposition onset temperature TD. Unreacted fiber TD=270
°C Composite fiber TD = 310 °C The dynamic viscoelasticity of the composite fiber was also measured. E' at 25℃=2.0×1010dyn/cm2Tan
E' at δ peak temperature 107°C = 1.7 x 1010 dyn
/cm2 Therefore, the elastic modulus reduction rate was 17%.

【0020】比較例1 アクリロニトリル95重量%と酢酸ビニル5重量%とか
らなる共重合体(分子量150,000)20部、平均
粒径1.1μmのシリカ(SiO2)微粒子0.4部、
ジメチルアセトアミド80部の混合物を、80℃で2時
間加熱撹拌させ、キャストフィルムを作成した。このキ
ャストフィルムは32μmの膜厚であった。
Comparative Example 1 20 parts of a copolymer (molecular weight 150,000) consisting of 95% by weight of acrylonitrile and 5% by weight of vinyl acetate, 0.4 part of silica (SiO2) fine particles with an average particle size of 1.1 μm,
A mixture of 80 parts of dimethylacetamide was heated and stirred at 80° C. for 2 hours to prepare a cast film. This cast film had a thickness of 32 μm.

【0021】この複合フィルムとシリカを入れないキャ
ストフィルム(27μm)のTG−TDAを測定し、熱
分解開始温度TDを測定した。 シリカなしフィルムTD=272℃ シリカ入りフィルムTD=273℃ また複合フィルムの動的粘弾性を測定した。 25℃のE’=5.3×1010dyn/cm2Tan
δピ−ク温度106℃のE’=8.0×109dyn/
cm2 したがって、弾性率低下率は85%であった。
The TG-TDA of this composite film and a cast film (27 μm) without silica was measured, and the thermal decomposition onset temperature TD was measured. Silica-free film TD = 272°C Silica-containing film TD = 273°C The dynamic viscoelasticity of the composite film was also measured. E' at 25℃=5.3×1010dyn/cm2Tan
E' at δ peak temperature 106℃=8.0×109dyn/
cm2 Therefore, the elastic modulus reduction rate was 85%.

【0022】比較例2 比較例1でシリカ微粒子を2部にした以外は、同じ仕込
みで混合物を調合し80℃で2時間加熱撹拌させ、キャ
ストフィルムを作成した。このキャストフィルムは、3
5μmの膜厚であったが、均質にシリカが分散されず、
強度の弱い斑の多いフィルムしかできなかった。このフ
ィルムの熱分解開始温度(TD)を測定すると274℃
であった。またフィルムがもろく動的粘弾性は測定でき
なかった。
Comparative Example 2 A mixture was prepared in the same manner as in Comparative Example 1 except that the amount of silica particles was changed to 2 parts, and the mixture was heated and stirred at 80° C. for 2 hours to form a cast film. This cast film is 3
Although the film thickness was 5 μm, the silica was not homogeneously dispersed.
Only a film with low strength and many spots was produced. The thermal decomposition onset temperature (TD) of this film was measured at 274°C.
Met. In addition, the film was brittle and dynamic viscoelasticity could not be measured.

【0023】(発明の効果) 本発明のアクリロニトリル系重合体と金属アルコキシド
からの金属酸化物との複合体で構成され、動的粘弾性測
定におけるtanδピ−ク温度の弾性率の25℃の弾性
率に対する低下率が70%以下である耐熱性アクリロニ
トリル系重合体フィルム又は繊維は、従来の有機繊維に
比べて極めて優れた耐熱性、高温寸法安定性を有し、産
業資材等の用途に極めて有用である。
(Effects of the Invention) A composite of the acrylonitrile-based polymer of the present invention and a metal oxide derived from a metal alkoxide has an elastic modulus of tan δ peak temperature of 25° C. in dynamic viscoelasticity measurement. Heat-resistant acrylonitrile polymer films or fibers with a reduction rate of 70% or less have extremely superior heat resistance and high-temperature dimensional stability compared to conventional organic fibers, and are extremely useful for applications such as industrial materials. It is.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アクリロニトリルを70重量%以上含有す
るアクリロニトリル系重合体と該重合体の1〜70重量
%の金属アルコキシドからの金属酸化物との複合体で構
成され、動的粘弾性測定におけるtanδピ−ク温度の
弾性率の25℃の弾性率に対する低下率が70%以下で
あることを特徴とする耐熱性アクリロニトリル系複合体
フィルム又は繊維。
Claim 1: Comprised of a composite of an acrylonitrile polymer containing 70% by weight or more of acrylonitrile and a metal oxide from a metal alkoxide of 1 to 70% by weight of the polymer, tan δ in dynamic viscoelasticity measurement. A heat-resistant acrylonitrile-based composite film or fiber, characterized in that the rate of decrease in the elastic modulus at peak temperature relative to the elastic modulus at 25°C is 70% or less.
【請求項2】アクリロニトリル系重合体の複合体の熱分
解開始温度が、複合されていないアクリロニトリル系重
合体の熱分解開始温度より10℃以上高い請求項1記載
の耐熱性アクリロニトリル系複合体フィルム又は繊維。
2. The heat-resistant acrylonitrile composite film according to claim 1, wherein the thermal decomposition initiation temperature of the acrylonitrile polymer composite is 10° C. or more higher than the thermal decomposition initiation temperature of the non-composite acrylonitrile polymer; fiber.
JP4080791A 1991-02-14 1991-02-14 Heat-resistant acrylonitrile composite Expired - Fee Related JP3087226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080791A JP3087226B2 (en) 1991-02-14 1991-02-14 Heat-resistant acrylonitrile composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080791A JP3087226B2 (en) 1991-02-14 1991-02-14 Heat-resistant acrylonitrile composite

Publications (2)

Publication Number Publication Date
JPH04261437A true JPH04261437A (en) 1992-09-17
JP3087226B2 JP3087226B2 (en) 2000-09-11

Family

ID=12590914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080791A Expired - Fee Related JP3087226B2 (en) 1991-02-14 1991-02-14 Heat-resistant acrylonitrile composite

Country Status (1)

Country Link
JP (1) JP3087226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102848A1 (en) * 2016-12-05 2018-06-14 Metis Technologies Pty Ltd Extruded polyacrylonitrile copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102848A1 (en) * 2016-12-05 2018-06-14 Metis Technologies Pty Ltd Extruded polyacrylonitrile copolymer
JP2020501038A (en) * 2016-12-05 2020-01-16 メティス・テクノロジーズ・ピーティーワイ・リミテッド Extruded polyacrylonitrile copolymer
RU2757908C2 (en) * 2016-12-05 2021-10-22 Метис Текнолоджис Пти Лтд Extruded polyacrylonitrile copolymer
US11504893B2 (en) 2016-12-05 2022-11-22 Metis Technologies Pty Ltd Extruded polyacrylonitrile copolymer

Also Published As

Publication number Publication date
JP3087226B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
CA2112256C (en) Organic-inorganic polymeric composites
Cho et al. Characterization and properties of hybrid composites prepared from poly (vinylidene fluoride–tetrafluoroethylene) and SiO2
JP3883556B2 (en) Organic-inorganic composite nanofiber, organic-inorganic composite structure, and production method thereof
Wang et al. A polyamide-silica composite prepared by the sol-gel process
WO1992012204A1 (en) Composite composition excellent in transparency and production thereof
WO1999041315A1 (en) Aqueous emulsions containing silicone rubber particles and process for producing the same
JPH07292321A (en) Composition for coating
JPH04261437A (en) Heat-resistant polyacrylonitrile composite film or fiber
JP3407303B2 (en) Method for producing polysiloxane composite polymer particles
Ogoshi et al. Synthesis of anionic polymer–silica hybrids by controlling pH in an aqueous solution
Wen et al. Preparation of highly porous silica gel from poly (tetramethylene oxide)/silica hybrids
JP2005213400A (en) Hydrogel, crosslinked hydrogel, and manufacturing method for them
Cho et al. Crystallization of poly (vinylidene fluoride)-SiO 2 hybrid composites prepared by a Sol-gel process
Chiang et al. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method
Nadeem et al. Co‐poly (vinyl chloride‐vinyl acetate‐vinyl alcohol)‐silica nanocomposites from sol–gel process: Morphological, mechanical, and thermal investigations
JP4168541B2 (en) Titanium-silicon composite oxide precursor, precursor solution thereof, production method thereof, and titanium-silicon composite oxide
Huang et al. Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica
Sarwar et al. Investigating the property profile of polyamide–alumina nanocomposite materials
Iwamura et al. Synthesis of poly (vinyl chloride) and silica gel polymer hybrids via CH/π interaction
CN111217968A (en) Polyolefin triblock copolymer responding to multiple effects on environment and preparation method thereof
JPH07118535A (en) Thermally curable organopolysiloxane composition
JP2674605B2 (en) High rigidity and heat resistant polyamide resin composition
JP3477813B2 (en) Inorganic powder, coating liquid for inorganic powder and method for producing the same
JP7125959B2 (en) Carbon material precursor, method for producing flame-resistant carbon material precursor, and method for producing carbon material
JP3681674B2 (en) Acetylated glucomannan / silica hybrid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees