JPH042609A - Production of rare earth element-containing compound metal oxide - Google Patents

Production of rare earth element-containing compound metal oxide

Info

Publication number
JPH042609A
JPH042609A JP10065390A JP10065390A JPH042609A JP H042609 A JPH042609 A JP H042609A JP 10065390 A JP10065390 A JP 10065390A JP 10065390 A JP10065390 A JP 10065390A JP H042609 A JPH042609 A JP H042609A
Authority
JP
Japan
Prior art keywords
rare earth
metal oxide
oxides
earth element
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10065390A
Other languages
Japanese (ja)
Inventor
Hisafumi Shintani
尚史 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10065390A priority Critical patent/JPH042609A/en
Publication of JPH042609A publication Critical patent/JPH042609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain a compound metal oxide not containing unreacted raw materials due to the improved reactivity and having a homogeneous composition free from the fluctuation in the composition by drying and calcining a mixture of slurry-like rare earth element oxides and transition metal oxides and/or carbonates. CONSTITUTION:One kind or more of rare earth element oxides are added to water in a slurry state and the slurry is mixed with one kind or more of transition metal (e.g. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) oxides and/or carbonates. The mixture is separated, dried and calcined.

Description

【発明の詳細な説明】 (産業上の利用分野) 触媒、超伝導材、燃料電池電極用原料として好適な希土
類元素含有複合金属酸化物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a rare earth element-containing composite metal oxide suitable as a raw material for catalysts, superconducting materials, and fuel cell electrodes.

(従来の技術) 従来、触媒、超伝導材、燃料電池電極用原料として好適
な希土類元素含有複合金属酸化物の製造方法としては、
希土類酸化物および遷移金属酸化物および/または遷移
金属炭酸塩を所定の粒度に調整して混合し焼成するか、
共沈法により、夫々の金属の塩化物または硝酸塩等の塩
類から水酸化物や蓚酸塩等として共沈させ、これを濾別
乾燥し焼成して製造していた。しかし、酸化物や炭酸塩
を単に混合して焼成したものは、未反応物が残り易く、
完全な複合型酸化物を製造するためには混合焼成をくり
返す必要があった。(H,Yohiro and Y、
Baba、J、Electochem、Soc、Vol
、 135.No8.2077(1988))。また、
共沈法の場合は、均一かつ反応性の高い混合物になって
おり、望ましい複合酸化物の製造方法ではあるが、各原
料を一旦溶液にして沈殿させるため、工数が多く掛かる
上、組成が原料配合組成との間にズレを生じ易いという
問題があった。
(Prior Art) Conventionally, methods for producing rare earth element-containing composite metal oxides suitable as raw materials for catalysts, superconducting materials, and fuel cell electrodes include:
Rare earth oxides and transition metal oxides and/or transition metal carbonates are adjusted to a predetermined particle size, mixed and fired, or
By coprecipitation, hydroxides, oxalates, etc. are co-precipitated from salts such as chlorides or nitrates of the respective metals, which are then filtered, dried, and fired. However, when oxides and carbonates are simply mixed and fired, unreacted substances tend to remain.
In order to produce a complete composite oxide, it was necessary to repeat the mixing and firing process. (H, Yohiro and Y,
Baba, J., Electochem, Soc, Vol.
, 135. No. 8.2077 (1988)). Also,
The coprecipitation method produces a homogeneous and highly reactive mixture, and is a desirable method for producing composite oxides, but it requires a large number of steps because each raw material is first dissolved and precipitated, and the composition differs from the raw materials. There was a problem in that a discrepancy with the blending composition was likely to occur.

(発明が解決しようとする課題) 従って、本発明の技術的課題は、希土類元素含有複合金
属酸化物を製造するに際し、未反応物を残さない反応性
の向上策と複合金属酸化物の組成変動のない均一性を同
時に満足する製造方法を提供することにある。
(Problems to be Solved by the Invention) Therefore, the technical problems of the present invention are to improve the reactivity without leaving any unreacted materials and to change the composition of the composite metal oxide when producing a rare earth element-containing composite metal oxide. The object of the present invention is to provide a manufacturing method that simultaneously satisfies uniformity without any defects.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するために原料粉末混
合焼成法、共沈法および本発明による水和反応法につい
て比較検討した結果、水和反応法が最も有利であると判
断し、水和反応について鋭意研究し、本発明に到達した
もので、その要旨とするところは、 1種以上の粒土酸化物に水を加えてスラリー状とした後
1種以上の遷移金属酸化物および/または遷移金属炭酸
塩を加えて混合し、該混合物を分離、乾燥、焼成するこ
とを特徴とする希土類元素含有複合金属酸化物の製造方
法にある。
(Means for Solving the Problems) In order to solve the problems, the present inventors conducted a comparative study on the raw material powder mixing and firing method, the coprecipitation method, and the hydration reaction method according to the present invention, and found that the hydration reaction method is We determined that it was the most advantageous, and after intensive research on hydration reactions, we arrived at the present invention. A method for producing a rare earth element-containing composite metal oxide, which comprises adding and mixing at least one type of transition metal oxide and/or transition metal carbonate, and separating, drying, and calcining the mixture.

以下、本発明を詳細に述べる。The present invention will be described in detail below.

先ず、本発明の適応範囲を示すと、主原料となる粒土酸
化物は、Y 、 La、 Ce、 Pr、 Nd、 P
m、 Sm、 Eu、 Gd。
First, to show the scope of application of the present invention, the granular soil oxides that are the main raw materials include Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd.

Tb、 Dy、 )to、 Er、 Tm、 Ybおよ
びLu元素の酸化物が挙げられ、これらの内1種以上を
使用する。遷移金属酸化物および炭酸塩としては、周期
率表の4A〜2B族の金属即ち、Ti、V、Cr、Mn
、Fe、Co、 Ni、Cu、Zn等の酸化物および炭
酸塩が例示され、具体的な例示としては、 Ti0z、
 VO2,CrzCh、 MnCO3,ZnCOx、 
CuC0a、等か挙げられ、これらの内1種以上を用い
る。この希土類元素は一部Mg、 Ca、 Sr等のア
ルカリ土類金属で置換されても良く、その置換度は複合
金属酸化物の性質、用途によって異なるか、一般的には
O〜50原子%の範囲、好ましくはO〜20原子%であ
る。上記各金属から構成される製品となる複合金属酸化
物を例示すると、LaFeO3,LaMnO3,PrC
oO3,NdCrL、 SmNi0a、 (La−Ca
)Mn03. (NclSr)Ni03. acG等が
挙げられる。
Examples include oxides of Tb, Dy, )to, Er, Tm, Yb, and Lu elements, and one or more of these is used. Examples of transition metal oxides and carbonates include metals from groups 4A to 2B of the periodic table, ie, Ti, V, Cr, and Mn.
, Fe, Co, Ni, Cu, Zn and other oxides and carbonates, and specific examples include Ti0z,
VO2, CrzCh, MnCO3, ZnCOx,
CuC0a, etc. may be mentioned, and one or more of these may be used. This rare earth element may be partially substituted with an alkaline earth metal such as Mg, Ca, or Sr, and the degree of substitution may vary depending on the properties and use of the composite metal oxide, but is generally O to 50 atomic %. range, preferably O to 20 atom %. Examples of composite metal oxides that are products made of the above metals include LaFeO3, LaMnO3, PrC
oO3, NdCrL, SmNi0a, (La-Ca
) Mn03. (NclSr)Ni03. Examples include acG.

次に、本発明の製造方法を説明する。Next, the manufacturing method of the present invention will be explained.

本発明の最大の特徴は、上記希土類元素含有複合金属酸
化物を構成する希土類酸化物がいずれも水と容易に水和
反応を起こして微細化する性質を生かしたもので、粒土
酸化物に水を添加してスラリー状とすれば水和反応が進
行し、希土類酸化物は微細化する。これに、遷移金属酸
化物および/または、遷移金属炭素塩を所定の複合金属
酸化物になるような割合で配合し、湿式混合すれば、複
合水和物になる。この複合水和物の組成は原料酸化物の
配合組成と同一であり、これを濾別、乾燥、焼成した複
合金属酸化物の組成にも変動はな(、容易に複合金属酸
化物を製造できるようになった。水和反応条件は製造す
る複合金属酸化物の種類、反応装置等によって異なるが
、一般的には、金属酸化物の総量に対して水を0.5〜
10倍(重量)添加し、温度O〜100℃で反応時間0
,5〜48時間が適当である。炭酸塩の場合も、上記と
同じ条件で良い。
The greatest feature of the present invention is that the rare earth oxides constituting the above-mentioned rare earth element-containing composite metal oxides take advantage of the property of easily causing a hydration reaction with water and becoming fine. When water is added to form a slurry, the hydration reaction proceeds and the rare earth oxide becomes fine. A transition metal oxide and/or a transition metal carbon salt is added to this in a proportion to form a predetermined composite metal oxide, and wet-mixed to form a composite hydrate. The composition of this composite hydrate is the same as that of the raw material oxide, and there is no change in the composition of the composite metal oxide obtained by filtering, drying, and calcining it. The hydration reaction conditions vary depending on the type of composite metal oxide to be produced, the reaction equipment, etc., but in general, the amount of water relative to the total amount of metal oxide is 0.5 to 0.
Added 10 times (by weight) and reacted at a temperature of 0 to 100°C for a reaction time of 0.
, 5 to 48 hours is appropriate. In the case of carbonate, the same conditions as above may be used.

複合金属酸化物の種類にもよるが、焼成は600〜1,
300℃×0.5〜24時間が一般的である。
Although it depends on the type of composite metal oxide, the firing time is 600~1,
Generally, the heating time is 300°C for 0.5 to 24 hours.

以下、本発明の実施態様を実施例と比較例を挙げて説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1) La20387.9gに水150ccを加え、マグネチ
ックスターラーで撹拌し、水和してスラリー状とした。
(Example 1) 150 cc of water was added to 387.9 g of La20, and the mixture was stirred with a magnetic stirrer to hydrate and form a slurry.

これに、MnC0,62,1gを加え、さらに、混合し
、これを濾別乾燥後、1200℃で6時間焼成し、La
MnO3の複合金属酸化物を得た。X線回折により測定
した結果、未反応の存在は認められず、LaMnO3の
単一相であった。
To this, 0.62.1 g of MnC was added and further mixed. After filtering and drying, the mixture was calcined at 1200°C for 6 hours, and La
A composite metal oxide of MnO3 was obtained. As a result of measurement by X-ray diffraction, no unreacted material was found, and it was found to be a single phase of LaMnO3.

(比較例1) La2’g 87.9g、MnCOx 62.1gを乳
鉢により、乾式混合し、これを1200℃で6時間焼成
した。これをX線回折により、測定した結果、未反応の
La2O3の存在が認められた。
(Comparative Example 1) 87.9 g of La2'g and 62.1 g of MnCOx were dry mixed in a mortar, and the mixture was fired at 1200° C. for 6 hours. As a result of measuring this by X-ray diffraction, the presence of unreacted La2O3 was observed.

(比較例2) La2’m 87.9g 、 MnC0a 62.1g
を水150ccと混合し、これに12N−塩酸240c
cを加え、溶解した後、15N−アンモニア水を加え、
PH・9以上とし、共沈させた。これを、濾別乾燥後、
1200″Cで6時間焼成した。これをX線回折により
測定した結果、未反応物は認められなかったが、定量分
析より、組成ズレが認められた。
(Comparative Example 2) La2'm 87.9g, MnC0a 62.1g
was mixed with 150 cc of water, and 240 cc of 12N-hydrochloric acid was added to this.
Add c and dissolve, then add 15N ammonia water,
The pH was adjusted to 9 or higher and coprecipitated. After filtering and drying this,
It was calcined at 1200''C for 6 hours. As a result of measuring this by X-ray diffraction, no unreacted substances were observed, but a compositional deviation was observed by quantitative analysis.

(実施例2) ボールミルにL8203693g 、水1500ccを
仕込み20℃で30分混合、水和した。得られたスラリ
ーに5rCOs 111g、MnCO5696gを加え
、さらに1時間混合した後、濾別乾燥し、1200”C
で6時間焼成しLaSrMnOxの複合金属酸化物粉末
を得た。X線回折により測定した結果、未反応物の存在
は認められず、定量分析の結果、組成ズレは認められな
かった。
(Example 2) L8203693g and 1500cc of water were placed in a ball mill and mixed and hydrated at 20°C for 30 minutes. 111 g of 5rCOs and 5696 g of MnCO were added to the resulting slurry, and after further mixing for 1 hour, it was filtered and dried, and heated at 1200"C.
After firing for 6 hours, a composite metal oxide powder of LaSrMnOx was obtained. As a result of measurement by X-ray diffraction, the presence of unreacted substances was not observed, and as a result of quantitative analysis, no composition deviation was observed.

(比較例3) La2’、693g、5rC(ls 111g、MnC
O5696gを乳鉢により15分分間式混合し、これを
1200℃で6時間焼成した。X線回折により測定した
結果、未反応のLag’sの存在が認められた。
(Comparative Example 3) La2', 693g, 5rC(ls 111g, MnC
5696 g of O was mixed in a mortar for 15 minutes, and this was baked at 1200° C. for 6 hours. As a result of measurement by X-ray diffraction, the presence of unreacted Lag's was observed.

(実施例3) Nd、0.137.6gに水140ccを加え乳鉢でこ
れをスラリー状とした。これに、Cr1Oa 62.4
gを加え、混合した後、濾別乾燥後、1300℃で6時
間焼成し、 NdCrOsの複合金属酸化物を得た。こ
れを、X線回折により、測定した結果、未反応物の存在
は認められなかった。
(Example 3) 140 cc of water was added to 0.137.6 g of Nd and made into a slurry in a mortar. In addition, Cr1Oa 62.4
After mixing, filtering and drying, the mixture was calcined at 1300° C. for 6 hours to obtain a composite metal oxide of NdCrOs. As a result of measuring this by X-ray diffraction, the presence of unreacted substances was not observed.

(実施例4) PraO++ 82.5gに水280ccを加え、羽根
付き撹拌棒で撹拌し、スラリーとした。これに、Coc
oa57、5gを加え、さらに、混合した後濾別乾燥し
、1.300℃で6時間焼成し、PrCoO3の複合金
属酸化物を得た。これを、X 41回折により、測定し
た結果、未反応物の存在は認められなかった。
(Example 4) 280 cc of water was added to 82.5 g of PraO++, and the mixture was stirred with a bladed stirring rod to form a slurry. To this, Coc
After adding 57.0 g of OA and further mixing, the mixture was filtered and dried, and calcined at 1.300° C. for 6 hours to obtain a composite metal oxide of PrCoO3. As a result of measuring this by X41 diffraction, the presence of unreacted substances was not observed.

また、定量分析したところ、組成ズレも認められなかっ
た。
Further, when quantitative analysis was performed, no compositional deviation was observed.

(発明の効果) 本発明によれば、従来法にあった酸化物を単に混合し焼
成しする方法では未反応物が残留するという問題も解消
し、また共沈法のように、原料金属塩類を水に溶解し、
中和して水酸化物等として沈殿させるような長い工程も
必要なく、その上原料配合組成とのズレも無い、均一組
成の希土類元素含有複合金属酸化物の製造が可能となり
、工業上その利用価値は極めて高い。
(Effects of the Invention) According to the present invention, the problem of unreacted substances remaining in the conventional method of simply mixing and firing oxides can be solved, and the problem that raw metal salts Dissolve in water,
There is no need for long processes such as neutralization and precipitation as hydroxides, etc., and it is possible to produce rare earth element-containing composite metal oxides with a uniform composition that does not deviate from the raw material composition, making it possible to use it industrially. The value is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 1種以上の希土類酸化物に水を加えてスラリー状とした
後、1種以上の遷移金属酸化物および/または遷移金属
炭酸塩を加えて混合し、該混合物を分離、乾燥、焼成す
ることを特徴とする希土類元素含有複合金属酸化物の製
造方法。
Water is added to one or more rare earth oxides to form a slurry, one or more transition metal oxides and/or transition metal carbonates are added and mixed, and the mixture is separated, dried, and calcined. A method for producing a complex metal oxide containing rare earth elements.
JP10065390A 1990-04-17 1990-04-17 Production of rare earth element-containing compound metal oxide Pending JPH042609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10065390A JPH042609A (en) 1990-04-17 1990-04-17 Production of rare earth element-containing compound metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10065390A JPH042609A (en) 1990-04-17 1990-04-17 Production of rare earth element-containing compound metal oxide

Publications (1)

Publication Number Publication Date
JPH042609A true JPH042609A (en) 1992-01-07

Family

ID=14279779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10065390A Pending JPH042609A (en) 1990-04-17 1990-04-17 Production of rare earth element-containing compound metal oxide

Country Status (1)

Country Link
JP (1) JPH042609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032349A1 (en) * 1996-02-29 1997-09-04 Westinghouse Electric Corporation Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
WO2004008975A1 (en) 2002-07-19 2004-01-29 Olympus Corporation Clip operation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032349A1 (en) * 1996-02-29 1997-09-04 Westinghouse Electric Corporation Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
WO2004008975A1 (en) 2002-07-19 2004-01-29 Olympus Corporation Clip operation device

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
JPS6214489B2 (en)
Yoshimura et al. Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method
JPS6214490B2 (en)
CN101619212A (en) Carbonic acid lanthana based nanometer fluorescence power and preparation method thereof
US5147848A (en) Precipitation process for forming Bi-Pb-Sr-Ca-Cu-O superconductors by dissolving nitrate salts in acid and adding a solution of triethylamine and oxalic acid
JPH042609A (en) Production of rare earth element-containing compound metal oxide
De Guire et al. Coprecipitation synthesis of doped lanthanum chromite
JPH05262518A (en) Preparation of ammonium pare earth double oxalate, use thereof for production of rare earth oxide, and obtained rare earth oxide
JPH03237014A (en) Production of multiple oxide containing rare earth element
JPH0559048B2 (en)
JPH0474721A (en) Production of lanthanum manganate-based powder
JPH07118017A (en) Production of lanthanum manganite powder
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
JPS6363511B2 (en)
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
US20100207075A1 (en) Method for producing metal complex oxide powder
JP2740648B2 (en) Method for producing soft magnetic oxide material
JPS6363488B2 (en)
JPH06171948A (en) Production of lanthanum manganite powder
Slobodin et al. Chemistry of interactions in the La2O3-MO (MCO3)-Mn2O3, M= Ca, Sr, Ba, Cd systems
JPS63291305A (en) Manufacture of dielectric resonator material
JPS63307109A (en) Method for synthesizing piezoelectric and dielectric ceramics powder
JPS6395119A (en) Production of perovskite raw material powder
JP2757876B2 (en) Ca <bottom 0>. Bottom 8 Bottom 6 Sr Bottom 0 Bottom 1 Bottom 4 Single phase ceramics of CuO Bottom 2