JPH04259813A - Method and device for evaluating strain distribution in optical cable - Google Patents

Method and device for evaluating strain distribution in optical cable

Info

Publication number
JPH04259813A
JPH04259813A JP2216291A JP2216291A JPH04259813A JP H04259813 A JPH04259813 A JP H04259813A JP 2216291 A JP2216291 A JP 2216291A JP 2216291 A JP2216291 A JP 2216291A JP H04259813 A JPH04259813 A JP H04259813A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
cable
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2216291A
Other languages
Japanese (ja)
Inventor
Makoto Tsubokawa
坪川 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2216291A priority Critical patent/JPH04259813A/en
Publication of JPH04259813A publication Critical patent/JPH04259813A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To easily recognize a change in the status of an optical cable after the cable is laid by making an optical pulse, the polarized state of which is adjusted, incident to the optical fiber of the optical cable and separating the back scattering light of the pulse into two orthogonally crossing polarized components, and the, photoelectrically detecting at least one of the polarized components. CONSTITUTION:When a local stress or geometric strain exist in an optical fiber 2 to be measured in an optical cable 1 to be evaluated, the light propagated through the stressed or strained section is polarized and modulated and its back scattering light enters a lens 15 from the fiber 2. After entering the lens 15, the light is made incident to a polarizing prism 16 after it is reflected by an opaque mirror 14 and spatially separated into two orthogonally crossing polarized components. The polarized components are respectively photoelectrically converted by means of photoreceptors 17A and 17B and the outputs of the photoreceptors 17A and 17B are averaged by means of a computer The processed results are displayed as the positional function the fiber 2 in the length direction. Therefore, when the intensity change in connection with the position of at least one of the polarized components of the back scattering light is observed, the position and extent of the strain applied to the optical fiber 2 can be estimated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信の伝送媒体であ
る光ファイバケーブルの布設後の長手方向の状態変化を
観測する光ケーブル歪分布評価方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical cable strain distribution evaluation method and apparatus for observing changes in the longitudinal condition of an optical fiber cable, which is a transmission medium for optical communication, after installation.

【0002】0002

【従来の技術】従来、光ファイバの長手方向の歪分布を
評価するための装置としては、ブリルアン散乱光を利用
した測定装置が知られている(T. Horiguch
i, T. Kurashima and M. Ta
teda, Trans, IEICE Japan,
 J73−B−1 巻、144ページ、1990年)。
BACKGROUND OF THE INVENTION Conventionally, as a device for evaluating the strain distribution in the longitudinal direction of an optical fiber, a measuring device using Brillouin scattered light has been known (T. Horiguch
i, T. Kurashima and M. Ta
teda, Trans, IEICE Japan,
J73-B-1, 144 pages, 1990).

【0003】0003

【発明が解決しようとする課題】しかし、前述した装置
は、2つ以上の狭帯域の光源や光周波数解析装置等、高
価な装置を必要とし、また、光ファイバの片端側だけか
らの測定が不可能であるなどの欠点がある。
[Problems to be Solved by the Invention] However, the above-mentioned device requires expensive equipment such as two or more narrow-band light sources and an optical frequency analyzer, and also requires measurement from only one end of the optical fiber. There are drawbacks such as being impossible.

【0004】本発明はこのような事情に鑑み、光ファイ
バケーブル布設後の光ファイバの状態変化を容易且つ片
端測定で把握することができる光ケーブル歪分布評価方
法及び装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide an optical cable strain distribution evaluation method and apparatus that can easily determine changes in the state of an optical fiber after installation by measuring one end of the optical fiber cable. .

【0005】[0005]

【課題を解決するための手段】前記目的を達成する本発
明に係る光ケーブル歪分布評価方法は、光パルスを繰り
返し発振する光源から評価対象の光ファイバケーブル中
の光ファイバに偏光状態を調整した光パルスを入射し、
該光ファイバの入射端から出射する後方散乱光を互いに
直交する二つの偏光成分に分離してその少なくとも一方
の偏光成分を光電検出することを特徴とし、また、本発
明に係る光ケーブル歪分布評価装置は、光パルスを繰り
返し発振する光源と、この光源からの光パルスを偏光状
態を調整して評価対象の光ファイバケーブル中の光ファ
イバに入射し且つ該光ファイバ入射端から出射する後方
散乱光を集光する光学系と、この光学系により集光され
た後方散乱光を互いに直交する二つの偏光成分に分離す
ると共にその少なくとも一方の偏光成分を受光して光電
検出する受光系と、この受光系で検出された光強度を受
信時間の関数として平均化処理して表示する計算機とを
具えたことを特徴とする。
[Means for Solving the Problems] The optical cable strain distribution evaluation method according to the present invention achieves the above object, in which a light source that repeatedly oscillates optical pulses transmits light whose polarization state has been adjusted to an optical fiber in an optical fiber cable to be evaluated. Inject a pulse,
The optical cable strain distribution evaluation device according to the present invention is characterized in that the backscattered light emitted from the input end of the optical fiber is separated into two mutually orthogonal polarization components, and at least one of the polarization components is photoelectrically detected. A light source that repeatedly oscillates light pulses, and a light pulse from this light source that adjusts the polarization state and enters the optical fiber in the optical fiber cable to be evaluated, and generates backscattered light that exits from the input end of the optical fiber. An optical system that collects light, a light receiving system that separates the backscattered light collected by this optical system into two mutually orthogonal polarized components, and receives and photoelectrically detects at least one of the polarized light components, and this light receiving system. and a calculator that averages and displays the detected light intensity as a function of reception time.

【0006】[0006]

【作用】評価対象の光ファイバケーブル中の被測定光フ
ァイバに局所的な応力又は幾何的歪が存在すると、その
部分を伝搬する光は偏光の変調を受ける。このとき、被
測定光ファイバからの後方散乱光についての二つの直線
偏光成分のうち、少なくとも一方の直線偏光を独立して
検出すると、観測される光強度は、偏光変調の影響によ
りレベル変動を伴う。この偏光の変調は、光ファイバに
歪が加わっている部分で特に偏光状態の変化が顕著とな
り、周波数が高くなり易いというものであるため、光フ
ァイバの長手方向に沿った散乱位置の関数としての受光
強度の変化から歪の度合いと存在位置を推定できる。し
たがって、光パルスを繰り返し発振する光源から光ファ
イバへ光パルスを入射すると共に該入射端から出射する
後方散乱光を互いに直交する二つの偏光成分に分離して
その少なくとも一方を光電検出し、この光強度を受信時
間の関数として平均化処理することにより、光ファイバ
の歪の度合い及び存在位置が推定できる。
[Operation] When a local stress or geometric strain exists in the optical fiber to be measured in the optical fiber cable to be evaluated, the light propagating through that portion undergoes polarization modulation. At this time, when at least one of the two linearly polarized light components of the backscattered light from the optical fiber under test is detected independently, the observed light intensity will be accompanied by level fluctuations due to the influence of polarization modulation. . This polarization modulation is a function of the scattering position along the length of the optical fiber, because the change in polarization state is particularly noticeable in the strained portion of the optical fiber, and the frequency tends to increase. The degree and location of distortion can be estimated from changes in the received light intensity. Therefore, a light pulse is input into an optical fiber from a light source that repeatedly oscillates light pulses, and the backscattered light emitted from the input end is separated into two mutually orthogonal polarized components, at least one of which is photoelectrically detected. By averaging the intensity as a function of reception time, it is possible to estimate the degree of distortion and the location of the optical fiber.

【0007】また、二つの偏光成分の両方を独立して受
光して処理した場合、各々の受光強度のケーブルの長手
方向位置に対する変化は相補的となり、両者の合成和は
通常の光パルス試験器と同様な光損失を反映した波形と
なる。したがって、この場合には、偏光変動による強度
揺らぎと単純な損失変化との区別化も可能になる。
[0007] Furthermore, when both of the two polarized light components are received and processed independently, the changes in the received light intensity with respect to the longitudinal position of the cable are complementary, and the combined sum of the two can be calculated using an ordinary optical pulse tester. The waveform reflects the same optical loss. Therefore, in this case, it is also possible to distinguish between intensity fluctuations due to polarization fluctuations and simple loss changes.

【0008】なお、後方散乱光を評価する装置として光
パルス試験器、OTDR(S. D. Personi
ck, Bell Syst. Tech. J., 
56巻、355ページ、1977年、参照)は従来から
知られている。しかし、従来、OTDRを後方散乱光の
全偏光成分の強度和を観測するために用いており、光ケ
ーブルの長手方向の光損失値が得られるに過ぎなかった
[0008] As a device for evaluating backscattered light, an optical pulse tester, OTDR (S.D.
ck, Bell Syst. Tech. J. ,
56, p. 355, 1977) has been known for a long time. However, conventionally, OTDR has been used to observe the intensity sum of all polarized light components of backscattered light, and only the optical loss value in the longitudinal direction of the optical cable can be obtained.

【0009】[0009]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be explained below based on examples.

【0010】図1には本発明方法を実施するための装置
の一例の構成を示す。同図中、1は評価対象となる光フ
ァイバケーブル、2は該光ファイバケーブル1に保持さ
れる単一モード光ファイバ、10は光ケーブル歪分布評
価装置を示す。光ケーブル歪分布評価装置10は、周期
的な光パルス列を発振する光源11を有し、この光源1
1からの光を光ファイバ2に入射するための光学系には
1/4波長板12、1/2波長板13及び半透鏡14が
順次設けられており、光源11からの光パルスは1/4
波長板12、1/2波長板13及び半透鏡14を通過し
た後、レンズ15を介して光ファイバ2に入射されるよ
うになっている。また、光ファイバ2から出射する後方
散乱光はレンズ15を介して半透鏡14へ入射した後反
射されて受光系へ入射するようになっている。ここで、
受光系は、例えばウォラストンプリズムのような偏光プ
リズム16及び受光器17A,17Bからなり、偏光プ
リズム16で分離された二つの直線偏光はそれぞれ受光
器17A,17Bに入射し、それぞれ光電変換される。 さらに、光ケーブル歪分布評価装置10には、受光器1
7A,17Bからの受光強度のデータを受け、その平均
化処理、表示及び装置全体の制御を行う計算機18が具
えられている。
FIG. 1 shows the configuration of an example of an apparatus for carrying out the method of the present invention. In the figure, 1 is an optical fiber cable to be evaluated, 2 is a single mode optical fiber held in the optical fiber cable 1, and 10 is an optical cable strain distribution evaluation device. The optical cable strain distribution evaluation device 10 has a light source 11 that oscillates a periodic optical pulse train.
The optical system for inputting the light from the light source 11 into the optical fiber 2 includes a 1/4 wavelength plate 12, a 1/2 wavelength plate 13, and a semi-transparent mirror 14 in this order. 4
After passing through the wavelength plate 12 , the half-wave plate 13 , and the semi-transparent mirror 14 , the light enters the optical fiber 2 via the lens 15 . Further, the backscattered light emitted from the optical fiber 2 enters the semi-transparent mirror 14 via the lens 15, is reflected, and enters the light receiving system. here,
The light receiving system includes a polarizing prism 16 such as a Wollaston prism, and light receivers 17A and 17B, and the two linearly polarized lights separated by the polarizing prism 16 enter the light receivers 17A and 17B, respectively, and are photoelectrically converted. . Furthermore, the optical cable strain distribution evaluation device 10 includes a light receiver 1
A computer 18 is provided which receives data on the received light intensity from 7A and 17B, averages the data, displays it, and controls the entire device.

【0011】このような光ケーブル歪分布評価装置10
を用いて光ケーブル1の歪分布の評価を行う方法につい
て説明する。光源11から、例えば、繰り返し周波数:
数kHz 、尖頭値:数十mW以上、幅:1μm以下の
光パルスを出射し、1/4波長板12及び1/2波長板
13により適当な偏光状態に設定して光ケーブル1の光
ファイバ2へ入射する。なお、適当な偏光状態とは、後
述のように光ファイバ2からの後方散乱光の偏光変動幅
が最も大きく感度最大となる入射偏光状態のことである
Such an optical cable strain distribution evaluation device 10
A method of evaluating the strain distribution of the optical cable 1 using the following will be explained. From the light source 11, for example, the repetition frequency:
A light pulse of several kHz, peak value: tens of mW or more, width: 1 μm or less is emitted, and the optical fiber of the optical cable 1 is set to an appropriate polarization state by the quarter-wave plate 12 and half-wave plate 13. 2. Note that the appropriate polarization state is an incident polarization state in which the polarization fluctuation width of the backscattered light from the optical fiber 2 is the largest and the sensitivity is maximum, as will be described later.

【0012】ここで、本発明方法の原理を図2を参照し
ながら説明する。図2に示すように、光ファイバケーブ
ル1内に螺旋状態で保持されている光ファイバ2に伝搬
される光は、偏光状態が変化しながら伝搬されるが、例
えば側圧などの外力や温度変化が局所的に加わると、そ
の箇所に応力歪が誘起される。その結果、伝搬光は、そ
の箇所において変調を受け、偏光状態の変化のピッチが
短かくなる。また、光ファイバ2中でのレーリー散乱は
散乱過程において偏光状態を保存するため、折り返しの
散乱光である後方散乱光は、散乱位置に到る往復伝搬に
伴うだけの偏光変調を受け、入射端側へ戻る。なお、こ
のときの偏光変調の度合いは光ファイバ中の応力あるい
は幾何学的歪みによる複屈折軸方向と光パルスの偏光角
度とに依存するため、入射光パルスの偏光状態を調整し
ながら観察することにより、後方散乱光の受ける変調の
度合を最良のところに調整することができる。
The principle of the method of the present invention will now be explained with reference to FIG. As shown in FIG. 2, the light propagated through the optical fiber 2 held in a helical state within the optical fiber cable 1 is propagated while changing its polarization state. When applied locally, stress strain is induced at that location. As a result, the propagating light is modulated at that location, and the pitch of change in polarization state becomes shorter. In addition, since Rayleigh scattering in the optical fiber 2 preserves the polarization state during the scattering process, the backscattered light, which is the backscattered light, undergoes polarization modulation as much as it accompanies round-trip propagation to the scattering position. Return to the side. Note that the degree of polarization modulation at this time depends on the birefringence axis direction due to stress or geometric distortion in the optical fiber and the polarization angle of the optical pulse, so it is necessary to observe while adjusting the polarization state of the incident optical pulse. Accordingly, the degree of modulation received by the backscattered light can be adjusted to the optimum degree.

【0013】このようにして光ファイバ2から出射する
偏光変調を受けた後方散乱光は、レンズ15から入り半
透鏡14で反射されて偏光プリズム16に入射し、互い
に直交する二つの偏光成分に空間的に分離され、各々の
光は受光器17A,17Bでそれぞれ光電変換される。 そして、各受光器17A,17Bの出力は計算機18に
おいて平均化処理が施され、被測定光ファイバ2中での
散乱位置、即ち光ファイバ2の長手方向の位置の関数と
して表示される。
The backscattered light that has undergone polarization modulation and exits from the optical fiber 2 in this manner enters through the lens 15, is reflected by the semi-transparent mirror 14, and enters the polarizing prism 16, where it is spatially divided into two mutually orthogonal polarization components. and each light is photoelectrically converted by photoreceivers 17A and 17B. The outputs of the respective light receivers 17A and 17B are averaged by the computer 18 and displayed as a function of the scattering position in the optical fiber 2 to be measured, that is, the position in the longitudinal direction of the optical fiber 2.

【0014】このときの出力状態の一例を図3に示す。 図3中、(a) は外的な刺激等による被測定光ファイ
バ2への歪が小さい場合、(b) は曲げ等により歪が
局所的(位置Z1 )に加えられた場合であり、横軸は
光ファイバ2に沿った位置座標Z、縦軸は後方散乱光の
強度Iを示す。そして、(ア) 及び(イ) はそれぞ
れ受光器17A,17Bの出力の平均化処理後の波形、
(ウ) は二つの受光器17A,17Bの出力の和の処
理波形を示す。
An example of the output state at this time is shown in FIG. In Figure 3, (a) shows the case where the strain on the optical fiber 2 under test due to external stimulation is small, and (b) shows the case where the strain is applied locally (position Z1) due to bending, etc. The axis shows the position coordinate Z along the optical fiber 2, and the vertical axis shows the intensity I of backscattered light. And (a) and (b) are the waveforms after averaging processing of the outputs of the light receivers 17A and 17B, respectively.
(c) shows the processed waveform of the sum of the outputs of the two light receivers 17A and 17B.

【0015】図3に示すように、実際の光ファイバ2で
は元々、長手方向に沿って緩やかに変化するわずかな複
屈折が存在するため、(a) に見られるように、(ア
) ,(イ) は位置Zに対して相補的に緩やかな変動
を示す。そして、局所的(位置Z1 )に曲げや引っ張
り等の要因で歪が加えられた場合、例えば光ファイバ2
の曲げ径の縮小が生じると、その部分の複屈折値は縮小
の度合にほぼ比例して増大し、その結果、(b) に示
すように位置Z1 において部分的に受光強度レベルの
揺らぎ変動周期が短くなる。
As shown in FIG. 3, the actual optical fiber 2 originally has a slight birefringence that changes gradually along the longitudinal direction. b) shows a gradual fluctuation complementary to the position Z. If strain is applied locally (position Z1) due to factors such as bending or pulling, for example, the optical fiber 2
When the bending diameter is reduced, the birefringence value of that part increases almost in proportion to the degree of reduction, and as a result, as shown in (b), the fluctuation period of the received light intensity level partially decreases at position Z1. becomes shorter.

【0016】したがって、後方散乱光の少なくとも一方
の偏光成分の位置Zに関する強度変化を観察すると、光
ファイバ2に加わっている歪の位置と度合いが推定でき
る。
Therefore, by observing the intensity change with respect to the position Z of at least one polarization component of the backscattered light, the position and degree of strain applied to the optical fiber 2 can be estimated.

【0017】なお、位置Zの分解能は、通常の光パルス
試験器と同様に光パルス幅の二倍となる。また、二つの
受光器17A,17Bの出力和の結果は図3中の(ウ)
 のようになるが、これは偏光成分の分離をしていない
通常の光パルス試験器と同様な位置Zに対する損失分布
波形に等価となる。
Note that the resolution of the position Z is twice the optical pulse width as in a normal optical pulse tester. In addition, the result of the output sum of the two light receivers 17A and 17B is shown in (c) in Fig. 3.
This is equivalent to the loss distribution waveform for position Z, which is similar to that of a normal optical pulse tester that does not separate polarization components.

【0018】一般に、光ファイバ2に沿った複屈折値は
時間的にも変動するが、光ファイバケーブル1の状態が
安定しておればその変化の周期は数十分以上程度と比較
的遅い。本発明においては受光器出力の平均化処理時間
が、この変動周期よりも十分小さければ問題無い。時間
的な偏光変動ゆらぎを監視するには、図3(a) ,(
b) において観測波形の右端の突起部(エ) に見ら
れる被測定光ファイバ全長を往復伝搬する光ファイバ遠
端側でのフレネル反射光のレベルが測定時間内で安定し
ているか否かを見ればよく、このレベルが安定していれ
ばゆらぎの影響は無視できる。
Generally, the birefringence value along the optical fiber 2 changes over time, but if the state of the optical fiber cable 1 is stable, the period of change is relatively slow, on the order of several tens of minutes or more. In the present invention, there is no problem as long as the averaging processing time of the light receiver output is sufficiently shorter than this fluctuation period. To monitor temporal polarization fluctuation fluctuations, Fig. 3(a), (
In b), check whether the level of the Fresnel reflected light at the far end of the optical fiber propagating back and forth over the entire length of the optical fiber to be measured, seen in the protrusion (d) at the right end of the observed waveform, is stable within the measurement time. If this level is stable, the effects of fluctuations can be ignored.

【0019】図4には他の実施例に係る光ケーブル歪分
布評価装置を示す。同図に示すように、この装置は図1
に示す装置の受光系を簡略化したものであり、図1と同
一作用を示す部材には同一符号を付して重複する説明は
省略する。
FIG. 4 shows an optical cable strain distribution evaluation device according to another embodiment. As shown in the figure, this device is shown in Figure 1.
This is a simplified version of the light receiving system of the device shown in FIG. 1, and members having the same functions as those in FIG.

【0020】図4に示す光ケーブル歪分布評価装置10
Aは、受光系に直線偏光子19及び受光器17Cを配し
たものである。すなわち、半透鏡14で反射された後方
散乱光は、直線偏光子19に入射し、その一方の偏光成
分のみが受光器17Cに入射するようになっており、こ
の偏光成分の光強度を計算機18で平均化処理すること
により上述したように光ファイバ2の歪分布を推定する
ことができる。
Optical cable strain distribution evaluation device 10 shown in FIG.
A shows a light receiving system in which a linear polarizer 19 and a light receiver 17C are arranged. That is, the backscattered light reflected by the semi-transparent mirror 14 enters the linear polarizer 19, and only one polarized light component enters the light receiver 17C, and the light intensity of this polarized light component is calculated by the computer 18. By performing the averaging process, the strain distribution of the optical fiber 2 can be estimated as described above.

【0021】また、図4の光ケーブル歪分布評価装置1
0Aでは、直線偏光子19はその主軸を90度回転でき
ると共に、後方散乱光の入射方向とは交叉する方向へス
ライドできるようになっている。したがって、直線偏光
子19の主軸を90度回転することにより、他方の偏光
成分を受光器18Cに入射してその強度を知ることがで
きる。また、直線偏光子19をスライドさせて後方散乱
光の通路外へ移動させると、後方散乱光は直接受光器1
8Cに入射するようになり、二つの偏光成分の和の強度
を知ることができる。
Furthermore, the optical cable strain distribution evaluation device 1 shown in FIG.
At 0A, the linear polarizer 19 can rotate its main axis by 90 degrees and can also slide in a direction intersecting the direction of incidence of backscattered light. Therefore, by rotating the main axis of the linear polarizer 19 by 90 degrees, the other polarized light component can be incident on the light receiver 18C and its intensity can be determined. Moreover, when the linear polarizer 19 is slid and moved out of the path of the backscattered light, the backscattered light is directly transmitted to the light receiver 1.
8C, and the intensity of the sum of the two polarized components can be determined.

【0022】[0022]

【発明の効果】以上、説明したように本発明によれば、
従来、評価が困難であった光ファイバの長手方向の歪み
やその変化が光ファイバの片端側から容易に推定できる
。したがって、光ファイバケーブルの光ファイバ心線に
付加される歪み、特に布設後の接続点や余長部分等、故
障の比較的生じやすい部分における歪み量の変化が観測
できるようになり、ケーブルや光ファイバ心線の状態監
視と共に更改の指針を得ることができるという効果を奏
する。
[Effects of the Invention] As explained above, according to the present invention,
Distortion in the longitudinal direction of an optical fiber and its changes, which have been difficult to evaluate in the past, can be easily estimated from one end of the optical fiber. Therefore, it becomes possible to observe the strain added to the optical fiber core of an optical fiber cable, especially changes in the amount of strain in areas where failures are relatively easy to occur, such as connection points and excess length after installation, and This has the effect that it is possible to monitor the condition of the fiber core and to obtain guidelines for renewal.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】一実施例に係る光ケーブル歪分布評価装置の構
成図である。
FIG. 1 is a configuration diagram of an optical cable strain distribution evaluation device according to an embodiment.

【図2】光ケーブル中の単一モード光ファイバの伝搬に
伴う偏光の変化を示す説明図である。
FIG. 2 is an explanatory diagram showing changes in polarization as propagation of a single mode optical fiber in an optical cable.

【図3】実施例に係る受光器出力の平均化処理後の信号
波形を示すグラフである。
FIG. 3 is a graph showing a signal waveform after averaging processing of the light receiver output according to the example.

【図4】他の実施例に係る光ケーブル歪分布評価装置の
構成図である。
FIG. 4 is a configuration diagram of an optical cable strain distribution evaluation device according to another embodiment.

【符号の説明】[Explanation of symbols]

1  光ケーブル 2  光ファイバ 10,10A  光ケーブル歪分布評価装置11  光
源 12  1/4波長板 13  1/2波長板 14  半透鏡 16  偏光プリズム 17A,17B,17C  受光器 18  計算機
1 Optical cable 2 Optical fiber 10, 10A Optical cable strain distribution evaluation device 11 Light source 12 1/4 wavelength plate 13 1/2 wavelength plate 14 Semi-transparent mirror 16 Polarizing prism 17A, 17B, 17C Light receiver 18 Computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光パルスを繰り返し発振する光源から
評価対象の光ファイバケーブル中の光ファイバに偏光状
態を調整した光パルスを入射し、該光ファイバの入射端
から出射する後方散乱光を互いに直交する二つの偏光成
分に分離してその少なくとも一方の偏光成分を光電検出
することを特徴とする光ケーブル歪分布評価方法。
Claim 1: An optical pulse whose polarization state has been adjusted is input from a light source that repeatedly oscillates optical pulses into an optical fiber in an optical fiber cable to be evaluated, and the backscattered lights emitted from the input end of the optical fiber are orthogonal to each other. An optical cable strain distribution evaluation method characterized in that the optical cable is separated into two polarized light components, and at least one of the polarized light components is photoelectrically detected.
【請求項2】  光パルスを繰り返し発振する光源と、
この光源からの光パルスを偏光状態を調整して評価対象
の光ファイバケーブル中の光ファイバに入射し且つ該光
ファイバ入射端から出射する後方散乱光を集光する光学
系と、この光学系により集光された後方散乱光を互いに
直交する二つの偏光成分に分離すると共にその少なくと
も一方の偏光成分を受光して光電検出する受光系と、こ
の受光系で検出された光強度を受信時間の関数として平
均化処理して表示する計算機とを具えたことを特徴とす
る光ケーブル歪分布評価装置。
[Claim 2] A light source that repeatedly oscillates light pulses;
an optical system that adjusts the polarization state of the light pulse from this light source, enters the optical fiber in the optical fiber cable to be evaluated, and condenses the backscattered light that exits from the input end of the optical fiber; A light receiving system that separates the collected backscattered light into two mutually orthogonal polarized components and receives at least one of the polarized light components for photoelectric detection, and a light receiving system that converts the light intensity detected by this light receiving system into a function of reception time. 1. An optical cable strain distribution evaluation device, comprising: a computer that performs averaging processing and displays the results.
JP2216291A 1991-02-15 1991-02-15 Method and device for evaluating strain distribution in optical cable Withdrawn JPH04259813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216291A JPH04259813A (en) 1991-02-15 1991-02-15 Method and device for evaluating strain distribution in optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216291A JPH04259813A (en) 1991-02-15 1991-02-15 Method and device for evaluating strain distribution in optical cable

Publications (1)

Publication Number Publication Date
JPH04259813A true JPH04259813A (en) 1992-09-16

Family

ID=12075130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216291A Withdrawn JPH04259813A (en) 1991-02-15 1991-02-15 Method and device for evaluating strain distribution in optical cable

Country Status (1)

Country Link
JP (1) JPH04259813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047669A (en) * 2011-07-25 2013-03-07 Kansai Electric Power Co Inc:The Apparatus and method for analyzing optical fiber
IT202200004667A1 (en) 2022-03-11 2022-06-11 Sestosensor S R L PHASE AND POLARIZATION DETECTOR FOR DISTRIBUTED FIBER OPTIC ACOUSTIC SENSORS AND INTERROGATOR BASED ON THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047669A (en) * 2011-07-25 2013-03-07 Kansai Electric Power Co Inc:The Apparatus and method for analyzing optical fiber
IT202200004667A1 (en) 2022-03-11 2022-06-11 Sestosensor S R L PHASE AND POLARIZATION DETECTOR FOR DISTRIBUTED FIBER OPTIC ACOUSTIC SENSORS AND INTERROGATOR BASED ON THE SAME

Similar Documents

Publication Publication Date Title
US6724469B2 (en) Polarization-OTDR for measuring characteristics of optical fibers
Gisin Distributed PMD measurement with a polarization-OTDR in optical fibers
EP1705471B1 (en) Apparatus for measuring differential mode delay of multimode optical fiber
JP3335205B2 (en) Optical system calibration method
US7212281B2 (en) Optical fiber polarization mode dispersion measurement method and measurement device
JP4769411B2 (en) Polarized lightwave reflectometry and system
JP3290453B2 (en) Polarization independent type optical coherence area reflection measuring device
EP3346250B1 (en) Method and system for differentiating macro-bend losses from splice and connector losses in fiber-optic links
JP5037506B2 (en) Fiber PMD evaluation method using composite POTDR trace
CN110518969B (en) Optical cable vibration positioning device and method
Calvani et al. Polarization measurements on single-mode fibers
JP3147616B2 (en) Distributed waveguide sensor
US8390797B2 (en) Enhanced optical time-domain reflectometer resolution using depolarization of light source
KR20050084946A (en) Method of evaluating fiber pmd using polarization optical time domain recflectometry
EP0605301B1 (en) Optical time domain reflectometer
US5654793A (en) Method and apparatus for high resolution measurement of very low levels of polarization mode dispersion (PMD) in single mode optical fibers and for calibration of PMD measuring instruments
CN109991511A (en) A kind of overhead transmission line lightning stroke monitoring device and monitoring method
CA2219286A1 (en) Measurement of polarization mode dispersion
JPH04259813A (en) Method and device for evaluating strain distribution in optical cable
Braunfelds et al. Demonstration of polarization optical-time-domain reflectometer for monitoring of optical fiber lines
Wang et al. Temporal depolarization suppressed POTDR system for quasi-distributed instantaneous intrusion sensing and vibration frequency measurement
CN110518967B (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
CN210183335U (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
CN210405317U (en) Single-axis optical fiber interferometer and positioning device for eliminating optical fiber vibration blind area
EP1462788A1 (en) Bidirectional optical loss measurement

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514