JPH04259010A - Adverse conversion method for robot - Google Patents

Adverse conversion method for robot

Info

Publication number
JPH04259010A
JPH04259010A JP4130091A JP4130091A JPH04259010A JP H04259010 A JPH04259010 A JP H04259010A JP 4130091 A JP4130091 A JP 4130091A JP 4130091 A JP4130091 A JP 4130091A JP H04259010 A JPH04259010 A JP H04259010A
Authority
JP
Japan
Prior art keywords
axis
robot
inverse transformation
tool
wrist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4130091A
Other languages
Japanese (ja)
Inventor
Ryuichi Hara
龍一 原
Hidekazu Kobayashi
英一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP4130091A priority Critical patent/JPH04259010A/en
Publication of JPH04259010A publication Critical patent/JPH04259010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To precisely decide the position of a tool of a robot having an offset wrist with the adverse conversion calculation. CONSTITUTION:The position and the attitude of a desired tool are set (S1), and the adverse conversion calculation A is carried out (S2) based on the position and the attitude of the tool. The calculation A is identical with a repetitive solution, and the joint angles J4, J5 and J6 of a wrist axis are obtained (S3 and S4) through the convergence as the approximate solutions. Then the adverse conversion calculation B is carried out based on the angles J4-J6 and the preceding position of the tool. Thus, the joint angles J1, J3 and J5 of a basic axis of a robot are obtained (S7) through the calculation B.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はロボットのツールの位置
及び姿勢から、各関節軸の関節角を求めるロボットの逆
変換方法に関し、特にオフセット手首を有するロボット
の逆変換方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverse transformation method for a robot for determining the joint angle of each joint axis from the position and orientation of a robot tool, and more particularly to an inverse transformation method for a robot having an offset wrist.

【0002】0002

【従来の技術】ロボットのツールの位置及び姿勢が与え
られ、その希望する位置及び姿勢からロボットの各関節
軸の関節角を求める方法として、逆変換計算がある。こ
の逆変換計算は、ロボットがオフセット手首を有する場
合、繰り返し計算(反復解法)により実行されるため、
求められた関節角は近似解となる。
2. Description of the Related Art Inverse transformation calculation is a method for determining the joint angle of each joint axis of the robot from the desired position and orientation of a tool given the position and orientation of the robot. This inverse transformation calculation is performed by iterative calculation (iterative solution method) when the robot has an offset wrist.
The joint angles found are approximate solutions.

【0003】0003

【発明が解決しようとする課題】このため、この関節角
からツールの位置及び姿勢を求めた場合、その位置及び
姿勢は、希望するツールの位置及び姿勢を正確に実現し
ていなかった。一方、ロボットに作業を行わせる場合は
、少なくともツールの位置が、希望する位置に対してず
れていないことが必要である。本発明はこのような点に
鑑みてなされたものであり、オフセット手首を有するロ
ボットの場合でも、与えられたツールの位置を正確に実
現することができるロボットの逆変換方法を提供するこ
とを目的とする。
For this reason, when the position and orientation of the tool are determined from the joint angles, the position and orientation do not accurately realize the desired position and orientation of the tool. On the other hand, when a robot is used to perform work, it is necessary that at least the position of the tool does not deviate from the desired position. The present invention has been made in view of these points, and it is an object of the present invention to provide a robot inverse conversion method that can accurately realize the position of a given tool even in the case of a robot with an offset wrist. shall be.

【0004】0004

【課題を解決するための手段】本発明では上記課題を解
決するために、オフセット手首を有するロボットのツー
ルの位置及び姿勢から、前記ロボットの各関節軸の関節
角を求めるロボットの逆変換方法において、前記ツール
の位置及び姿勢に基づいて第1の逆変換計算を行い、前
記第1の逆変換計算を反復解法により収束させて、前記
ロボットの手首軸の関節角を求め、前記手首軸の関節角
及び前記ツールの位置に基づいて、第2の逆変換計算を
行い、前記第2の逆変換計算により前記ロボットの基本
軸の関節角を求めることを特徴とするロボットの逆変換
方法が、提供される。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a robot inverse transformation method for determining the joint angle of each joint axis of a robot having an offset wrist from the position and orientation of a tool of the robot. , perform a first inverse transformation calculation based on the position and orientation of the tool, converge the first inverse transformation calculation by an iterative solution method, obtain the joint angle of the wrist axis of the robot, and calculate the joint angle of the wrist axis of the robot. Provided is a robot inverse transformation method, characterized in that a second inverse transformation calculation is performed based on the angle and the position of the tool, and a joint angle of a fundamental axis of the robot is determined by the second inverse transformation calculation. be done.

【0005】[0005]

【作用】希望するツールの位置及び姿勢が与えられ、そ
のツールの位置及び姿勢に基づいて第1の逆変換計算を
行う。この第1の逆変換計算は反復解法であり、収束さ
せることによって手首軸の関節角が近似解として求めら
れる。次に、手首軸の関節角と、最初に与えられたツー
ルの位置とに基づいて第2の逆変換計算を行う。この第
2の逆変換計算により、ロボットの基本軸の関節角が解
析解として求まる。この手首軸の関節角及び基本軸の関
節角により、ツールの位置が正確に実現される。
[Operation] A desired tool position and orientation are given, and the first inverse transformation calculation is performed based on the tool position and orientation. This first inverse transformation calculation is an iterative solution method, and by convergence, the joint angle of the wrist axis is obtained as an approximate solution. Next, a second inverse transformation calculation is performed based on the joint angle of the wrist axis and the initially given tool position. Through this second inverse transformation calculation, the joint angle of the basic axis of the robot is determined as an analytical solution. The position of the tool is accurately realized by the joint angle of the wrist axis and the joint angle of the basic axis.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図2は本発明が実施されるロボットの外観を示
す図である。図において、ロボット1は6軸多関節ロボ
ットであり、基本軸2及び手首軸3から構成される。基
本軸2はθ、W、Uの3関節軸から成る。手首軸3は、
図に示すようにオフセット手首であり、α、β、γの3
関節軸から成る。手首軸の先端に位置するα軸には、ツ
ール4が取り付けられている。ロボット制御装置10は
マイクロプロセッサ構成で、ロボット1のサーボモータ
を駆動してロボット1を制御する。ロボット制御装置1
0には教示操作盤(図示せず)が設けられている。この
教示操作盤から、オペレータが希望するツール4の位置
及び姿勢のデータが入力されると、ロボット制御装置1
0はその位置及び姿勢のデータ等に基づいて、後述する
逆変換計算を行い、ロボット1の各関節角を求める。ロ
ボット1はその関節角によって、ツール4の位置を実現
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the appearance of a robot in which the present invention is implemented. In the figure, a robot 1 is a six-axis articulated robot, and is composed of a basic axis 2 and a wrist axis 3. The basic axis 2 consists of three joint axes: θ, W, and U. The wrist axis 3 is
As shown in the figure, it is an offset wrist, and there are three
Consists of joint axes. A tool 4 is attached to the α axis located at the tip of the wrist axis. The robot control device 10 has a microprocessor configuration and controls the robot 1 by driving a servo motor of the robot 1. Robot control device 1
0 is provided with a teaching operation panel (not shown). When data on the position and orientation of the tool 4 desired by the operator is input from this teaching operation panel, the robot control device 1
0 performs an inverse transformation calculation, which will be described later, based on the position and orientation data, and calculates each joint angle of the robot 1. The robot 1 realizes the position of the tool 4 by its joint angles.

【0007】次に、この各関節角を求める方法を説明す
る。図1は本発明のロボットの逆変換方法のフローチャ
ートを示す図である。図において、Sに続く数値はステ
ップ番号を示す。 〔S1〕ツール4の位置及び姿勢のデータが入力される
。 〔S2〕ツール4の位置及び姿勢のデータに基づいて、
逆変換計算Aを行う。この逆変換計算Aは反復解法によ
り実行される。 〔S3〕γ軸の関節角J4を逆変換計算Aにより求め、
その関節角J4が近似解に収束したか否かを判別する。 収束していないときはS2に戻り、収束したときはS4
に進む。 〔S4〕β軸の関節角J5、α軸の関節角J6を近似解
として順次求める。 〔S5〕関節角J4、J5、J6を一旦出力する。 〔S6〕関節角J4、J5、J6が入力される。また、
S1で入力されたツール4の位置のデータが再度入力さ
れる。 〔S7〕関節角J4、J5、J6及びツール4の位置の
データに基づいて、逆変換計算Bを行う。この逆変換計
算Bは解析的に可能である。 〔S8〕逆変換計算Bにより、θ軸、W軸、U軸の各関
節角J1、J2、J3を解析解として求め、その関節角
J1、J2、J3を出力する。 このように、まず、逆変換計算Aにより手首軸3の関節
角J4を近似解として求め、その近似解J4をもとにし
て手首軸3の関節角J5,J6を求める。次に、その手
首軸の関節角J4、J5、J6及びツール4の位置に基
づいて、逆変換計算Bを行う。その逆変換計算Bにより
基本軸2の関節角J1、J2、J3を解析解として求め
る。このため、ツール4の位置は、希望する位置からず
れない。すなわち、オフセット手首を有するロボット1
の場合でも、与えられたツール4の位置を正確に実現す
ることができる。上記の説明では、6軸多関節ロボット
に適用したが、6軸以外の多関節ロボットにも同様に適
用することができる。
Next, a method for determining each joint angle will be explained. FIG. 1 is a diagram showing a flowchart of the robot inverse conversion method of the present invention. In the figure, the number following S indicates the step number. [S1] Data regarding the position and orientation of the tool 4 is input. [S2] Based on the position and orientation data of the tool 4,
Perform inverse transformation calculation A. This inverse transformation calculation A is performed by an iterative solution method. [S3] Find the joint angle J4 of the γ-axis by inverse transformation calculation A,
It is determined whether the joint angle J4 has converged to an approximate solution. If it has not converged, return to S2, and if it has converged, return to S4
Proceed to. [S4] The β-axis joint angle J5 and the α-axis joint angle J6 are sequentially determined as approximate solutions. [S5] Joint angles J4, J5, and J6 are output once. [S6] Joint angles J4, J5, and J6 are input. Also,
The data on the position of the tool 4 input in S1 is input again. [S7] Inverse transformation calculation B is performed based on the joint angles J4, J5, J6 and the position data of the tool 4. This inverse transformation calculation B is analytically possible. [S8] Through inverse transformation calculation B, each joint angle J1, J2, J3 of the θ-axis, W-axis, and U-axis is determined as an analytical solution, and the joint angles J1, J2, and J3 are output. In this way, first, the joint angle J4 of the wrist axis 3 is determined as an approximate solution by the inverse transformation calculation A, and the joint angles J5 and J6 of the wrist axis 3 are determined based on the approximate solution J4. Next, inverse transformation calculation B is performed based on the joint angles J4, J5, J6 of the wrist axis and the position of the tool 4. Through the inverse transformation calculation B, the joint angles J1, J2, and J3 of the basic axis 2 are obtained as analytical solutions. Therefore, the position of the tool 4 does not deviate from the desired position. That is, the robot 1 with an offset wrist
Even in this case, the given position of the tool 4 can be realized accurately. In the above description, the invention was applied to a 6-axis articulated robot, but it can be similarly applied to articulated robots other than 6-axes.

【0008】[0008]

【発明の効果】以上説明したように本発明では、まず、
第1の逆変換計算により手首軸の関節角を近似解として
求め、次に、その手首軸の関節角及びツールの位置に基
づいて、第2の逆変換計算を行い、その第2の逆変換計
算により基本軸の関節角を解析解として求める。このた
め、ツールの位置は、希望する位置からずれない。すな
わち、オフセット手首を有するロボットの場合でも、与
えられたツールの位置を正確に実現することができる。
[Effects of the Invention] As explained above, in the present invention, first,
The joint angle of the wrist axis is obtained as an approximate solution by the first inverse transformation calculation, and then the second inverse transformation calculation is performed based on the joint angle of the wrist axis and the position of the tool. The joint angle of the basic axis is determined as an analytical solution by calculation. Therefore, the position of the tool does not deviate from the desired position. That is, even in the case of a robot with an offset wrist, the position of a given tool can be realized accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のロボットの逆変換方法のフローチャー
トを示す図である。
FIG. 1 is a diagram showing a flowchart of a robot inverse conversion method according to the present invention.

【図2】本発明が実施されるロボットの外観を示す図で
ある。
FIG. 2 is a diagram showing the appearance of a robot in which the present invention is implemented.

【符号の説明】[Explanation of symbols]

1  ロボット 2  基本軸 3  手首軸 4  ツール 10  ロボット制御装置 1 Robot 2 Basic axis 3 Wrist axis 4 Tools 10 Robot control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  オフセット手首を有するロボットのツ
ールの位置及び姿勢から、前記ロボットの各関節軸の関
節角を求めるロボットの逆変換方法において、前記ツー
ルの位置及び姿勢に基づいて第1の逆変換計算を行い、
前記第1の逆変換計算を反復解法により収束させて、前
記ロボットの手首軸の関節角を求め、前記手首軸の関節
角及び前記ツールの位置に基づいて、第2の逆変換計算
を行い、前記第2の逆変換計算により前記ロボットの基
本軸の関節角を求めることを特徴とするロボットの逆変
換方法。
1. A robot inverse transformation method for determining joint angles of respective joint axes of the robot from the position and orientation of a tool of a robot having an offset wrist, comprising: performing a first inverse transformation based on the position and orientation of the tool; do the calculations,
converging the first inverse transformation calculation by an iterative solution method to obtain a joint angle of the wrist axis of the robot, and performing a second inverse transformation calculation based on the joint angle of the wrist axis and the position of the tool; A robot inverse transformation method, characterized in that a joint angle of a fundamental axis of the robot is determined by the second inverse transformation calculation.
【請求項2】  前記手首軸の関節角は、前記第1の逆
変換計算の近似解として求められ、前記基本軸の関節角
は、前記第2の逆変換計算の解析解として求められるこ
とを特徴とする請求項1記載のロボットの逆変換方法。
2. The joint angle of the wrist axis is obtained as an approximate solution of the first inversion calculation, and the joint angle of the basic axis is obtained as an analytical solution of the second inversion calculation. The robot inverse transformation method according to claim 1.
【請求項3】  前記手首軸はα軸、β軸及びγ軸であ
り、前記基本軸はθ軸、W軸及びU軸であることを特徴
とする請求項1記載のロボットの逆変換方法。
3. The robot inverse conversion method according to claim 1, wherein the wrist axes are an α-axis, a β-axis, and a γ-axis, and the basic axes are a θ-axis, a W-axis, and a U-axis.
【請求項4】  前記手首軸の関節角は、まずγ軸が収
束計算により求められ、β軸及びα軸は前記収束計算に
より求められたγ軸の近似解をもとにして求められるこ
とを特徴とする請求項2記載のロボットの逆変換方法。
4. The joint angle of the wrist axis is determined by first determining the γ-axis by a convergence calculation, and determining the β-axis and the α-axis based on an approximate solution of the γ-axis determined by the convergence calculation. The robot inverse transformation method according to claim 2, characterized in that:
JP4130091A 1991-02-13 1991-02-13 Adverse conversion method for robot Pending JPH04259010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130091A JPH04259010A (en) 1991-02-13 1991-02-13 Adverse conversion method for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130091A JPH04259010A (en) 1991-02-13 1991-02-13 Adverse conversion method for robot

Publications (1)

Publication Number Publication Date
JPH04259010A true JPH04259010A (en) 1992-09-14

Family

ID=12604622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130091A Pending JPH04259010A (en) 1991-02-13 1991-02-13 Adverse conversion method for robot

Country Status (1)

Country Link
JP (1) JPH04259010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177436A (en) * 2018-03-30 2019-10-17 日本電産株式会社 Robot control device, method for determining angle of joint of robot, and program
JP2022544650A (en) * 2019-08-15 2022-10-20 イントリンジック イノベーション エルエルシー Inverse Kinematics Solver for Wrist Offset Robots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177436A (en) * 2018-03-30 2019-10-17 日本電産株式会社 Robot control device, method for determining angle of joint of robot, and program
JP2022544650A (en) * 2019-08-15 2022-10-20 イントリンジック イノベーション エルエルシー Inverse Kinematics Solver for Wrist Offset Robots

Similar Documents

Publication Publication Date Title
US4771222A (en) Tool coordinate system setting system
JPH079606B2 (en) Robot controller
JP2684359B2 (en) Robot work Cartesian coordinate system setting device
JPS6126106A (en) Correcting system of position of tool
JPH04259010A (en) Adverse conversion method for robot
JPH0693209B2 (en) Robot's circular interpolation attitude control device
JPH1158014A (en) Weaving controller of welding robot
JP2979552B2 (en) Robot control method
JPH08155647A (en) Weaving controller of welding robot
JP2649463B2 (en) Method of teaching an industrial robot having a rotating external axis and teaching device used therefor
KR20040034167A (en) The method of control- ling straight-line movement of vertical multi-joint six-axis manipulator
JPH0647689A (en) Control method of articulated robot
JP3402378B2 (en) Control method of 7-axis manipulator
JPH02310706A (en) Articulated robot controller
JP2752784B2 (en) Robot posture correction method
JP2914719B2 (en) Industrial robot
JP2827381B2 (en) Robot teaching point change device
JP2947417B2 (en) Robot control method
Asadi Planning Arm with 5 Degrees of Freedom for Moving Objects Based on Geometric Coordinates and Color
JPH02271405A (en) Controlling method for robot
JP2002301672A (en) Position control method for industrial robot
JPH04232512A (en) Attitude teaching method for robot
JP2932443B2 (en) Circular interpolation posture control method of robot
JPH08255011A (en) Control method for robot
JPH0732281A (en) Robot control device