JPH04258998A - Sound absorbing material, powder for sound absorbing material and production thereof - Google Patents
Sound absorbing material, powder for sound absorbing material and production thereofInfo
- Publication number
- JPH04258998A JPH04258998A JP3042600A JP4260091A JPH04258998A JP H04258998 A JPH04258998 A JP H04258998A JP 3042600 A JP3042600 A JP 3042600A JP 4260091 A JP4260091 A JP 4260091A JP H04258998 A JPH04258998 A JP H04258998A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sound absorbing
- particles
- absorbing material
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 55
- 239000011358 absorbing material Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002245 particle Substances 0.000 claims abstract description 50
- 239000000126 substance Substances 0.000 claims abstract description 22
- 239000011148 porous material Substances 0.000 claims abstract description 21
- 239000000378 calcium silicate Substances 0.000 claims description 17
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 17
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 13
- 239000006096 absorbing agent Substances 0.000 claims description 10
- 239000011882 ultra-fine particle Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 238000012856 packing Methods 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Building Environments (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は吸音材および吸音材用
粉体とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to sound absorbing materials, powders for sound absorbing materials, and methods for producing the same.
【0002】0002
【従来の技術】吸音材として、一側面が開口した薄い箱
体に粉体を充填し、開口を音響的に透明なシートで塞い
だ吸音材がある。粉体充填層が吸音体として吸音作用を
発揮する。吸音作用の周波数特性(以下、「吸音特性」
と言う)は、粉体充填層のかさ密度、ヤング率等の物性
値により決まってしまう。2. Description of the Related Art As a sound absorbing material, there is a sound absorbing material in which a thin box having an open side is filled with powder and the opening is closed with an acoustically transparent sheet. The powder filled layer acts as a sound absorber and exerts a sound absorbing effect. Frequency characteristics of sound absorption (hereinafter referred to as “sound absorption characteristics”)
) is determined by physical property values such as the bulk density and Young's modulus of the powder packed bed.
【0003】図3に、多孔質のケイ酸カルシウム粉体か
らなる吸音体の吸音特性を示す。この吸音体は、図3に
みるように、500Hzおよび1400Hz付近に吸音
ピークがあらわれる。FIG. 3 shows the sound absorption characteristics of a sound absorber made of porous calcium silicate powder. As shown in FIG. 3, this sound absorber exhibits sound absorption peaks around 500 Hz and 1400 Hz.
【0004】0004
【発明が解決しようとする課題】上記の吸音材は、50
0Hzおよび1400Hzを中心として前後一定周波数
範囲の音に対しては非常に有効であるが、500Hzよ
り低い周波数域の音に対しては余り有効ではない。リス
ニングルームや楽器練習室等には、極く低い周波数の音
が強調されボンボンと響くいわゆるブーミング現象があ
るが、このブーミング現象を阻止するために、より低周
波数域(500Hzより下の周波数域)の音が十分に吸
収できるものが望まれている。[Problems to be Solved by the Invention] The above sound absorbing material has a
Although it is very effective against sounds in a constant frequency range around 0Hz and 1400Hz, it is not very effective against sounds in a frequency range lower than 500Hz. In listening rooms, musical instrument practice rooms, etc., there is a so-called booming phenomenon in which extremely low frequency sounds are emphasized and reverberate, but in order to prevent this booming phenomenon, lower frequency ranges (frequency ranges below 500Hz) are used. What is desired is something that can absorb enough sound.
【0005】もちろん、粉体充填層の厚みを増せば吸音
作用は強くなるが、吸音材自体が厚くなり過ぎて室内空
間が狭くなってしまうため、粉体充填層の厚み増大策は
適切な解決方法とは言えない。この発明は、上記事情に
鑑み、粉体充填層の厚みを増さずともより低い周波数域
で十分な吸音作用を発揮する吸音材を提供することを第
1の課題とし、このような吸音材を容易に実現する吸音
材用粉体を提供することを第2の課題とし、さらに、こ
の有用な吸音材用粉体を製造する方法を提供することを
第3の課題とする。[0005] Of course, increasing the thickness of the powder-filled layer increases the sound absorption effect, but the sound-absorbing material itself becomes too thick and the indoor space becomes narrow, so increasing the thickness of the powder-filled layer is not an appropriate solution. I can't say it's a method. In view of the above circumstances, the first object of this invention is to provide a sound absorbing material that exhibits a sufficient sound absorbing effect in a lower frequency range without increasing the thickness of the powder packed layer. The second objective is to provide a powder for a sound absorbing material that easily realizes the following, and the third objective is to provide a method for manufacturing this useful powder for a sound absorbing material.
【0006】[0006]
【課題を解決するための手段】前記の第1の課題を解決
するため、請求項1記載の発明にかかる吸音材では、特
定周波数域で強い吸音作用を有する粉体からなる吸音体
における粉体粒子として、例えば、図1にみるように、
内部に空孔1・・・を有する多孔質粒子の前記空孔1に
重量増加物質2・・・が内在する粉体粒子を用いるよう
にしている。[Means for Solving the Problems] In order to solve the first problem, in the sound absorbing material according to the invention as set forth in claim 1, in the sound absorbing material, the powder has a strong sound absorbing effect in a specific frequency range. As particles, for example, as shown in Figure 1,
Powder particles are used in which weight-increasing substances 2 are contained in the pores 1 of porous particles having pores 1 therein.
【0007】そして、第2の課題を解決するため、請求
項2記載の発明にかかる吸音材用粉体は、特定周波数域
で強い吸音作用を有する粉体における粉体粒子として、
内部に空孔を有する多孔質粒子の前記空孔に重量増加物
質が内在する粉体粒子を用いるようにしている。さらに
、第3の課題を解決するため、請求項3記載の発明にか
かる吸音材用粉体を製造する方法は、請求項2記載の吸
音材用粉体を得るにあたり、重量増加物質を分散してな
る溶液に多孔質粒子を添加し、前記溶液を多孔質粒子の
空孔に導入したあと、乾燥により溶液の溶媒を除去する
ようにしている。[0007] In order to solve the second problem, the powder for a sound absorbing material according to the invention as claimed in claim 2 includes powder particles having a strong sound absorbing effect in a specific frequency range.
Powder particles are used in which a weight-increasing substance is contained in the pores of porous particles having pores inside. Furthermore, in order to solve the third problem, the method for producing a powder for sound absorbing materials according to the invention as claimed in claim 3 includes dispersing a weight increasing substance in obtaining the powder for sound absorbing materials as described in claim 2. After the porous particles are added to a solution consisting of porous particles and the solution is introduced into the pores of the porous particles, the solvent of the solution is removed by drying.
【0008】多孔質粒子としては、多孔質のケイ酸カル
シウム粒子等があげられる。このケイ酸カルシウム粒子
は、超微粒子(例えば、シリカ超微粒子)を導入する前
は、図5に示す走査電子顕微鏡写真にみるように、薄板
状結晶が不規則に寄せ集まり、薄板状結晶の間に空孔が
生じたハニカム状物であって、1μm程度の空孔多数が
0.1μm程度の細孔で連通した状態となっている。こ
のケイ酸カルシウム粒子の平均粒径は、例えば、5〜6
0μm程度であって、空孔率が96%前後に達する高度
に多孔質の粒子である。Examples of porous particles include porous calcium silicate particles. Before introducing ultrafine particles (for example, ultrafine silica particles), these calcium silicate particles had thin plate-like crystals gathered together irregularly, as seen in the scanning electron micrograph shown in Figure 5. It is a honeycomb-like material in which pores are formed, and a large number of pores of about 1 μm are connected through pores of about 0.1 μm. The average particle size of the calcium silicate particles is, for example, 5 to 6
They are highly porous particles with a diameter of approximately 0 μm and a porosity of approximately 96%.
【0009】空孔内の重量増加物質としては、シリカ、
アルミナ、ジルコニア等のセラミック系超微粒子、アル
ミニウム、亜鉛、鉄等の金属系超微粒子、酸化鉄、酸化
マグネシウム、酸化アンチモン等の金属酸化物系超微粒
子、硫酸バリウム、塩化バリウム、炭酸カルシウム、炭
酸マグネシウム等の無機化合物系超微粒子、シリコン系
高分子化合物、アクリル系高分子化合物等の高分子化合
物系超微粒子(シリコンパウダーやアクリルパウダー)
、あるいは、アクリル樹脂、ウレタン樹脂、エポキシ樹
脂、シリコン樹脂、油脂等が挙げられる。空孔内へ挿入
できるものであればよいのである。なお、固系超微粒子
の場合、例えば、粒径0.01〜0.02μm程度のも
のが挙げられる。[0009] Examples of weight-increasing substances in the pores include silica,
Ultrafine ceramic particles such as alumina and zirconia, ultrafine metal particles such as aluminum, zinc, and iron, ultrafine metal oxide particles such as iron oxide, magnesium oxide, and antimony oxide, barium sulfate, barium chloride, calcium carbonate, and magnesium carbonate. Inorganic compound-based ultrafine particles such as silicon-based polymer compounds, acrylic-based polymer compounds, and other polymer compound-based ultrafine particles (silicon powder and acrylic powder)
Alternatively, examples include acrylic resin, urethane resin, epoxy resin, silicone resin, oil and fat. Any material can be used as long as it can be inserted into the hole. In addition, in the case of solid ultrafine particles, for example, those having a particle size of about 0.01 to 0.02 μm can be mentioned.
【0010】この発明の吸音材用粉体は、前記の請求項
3記載の発明の方法で簡単に作ることができる。重量増
加物質を多孔質粒子の空孔内に直に生成させる場合も、
重量増加物質生成用の化合物(樹脂等)等を溶解した溶
液に多孔質粒子を添加し、前記溶液を多孔質粒子の空孔
に導入したあと、溶液 溶媒だけを乾燥等により除去
するようにして重量増加物質を生成させるようにする。[0010] The powder for a sound absorbing material of the present invention can be easily produced by the method of the invention described in claim 3 above. Even when the weight-increasing substance is generated directly within the pores of porous particles,
Porous particles are added to a solution in which a compound (resin, etc.) for producing a weight increasing substance is dissolved, and after the solution is introduced into the pores of the porous particles, only the solution solvent is removed by drying, etc. Causes weight gain substances to be produced.
【0011】シリカ超微粒子を多孔質のケイ酸カルシウ
ム粒子に導入すると、図4の走査電子顕微鏡写真に示す
ような状態となる。シリカ超微粒子はケイ酸カルシウム
内だけでなく粒子表面にも付着するようになる。空孔内
の重量増加物質は、結果として、粉体充填層(吸音体)
のかさ密度の増大をもたらすのであるが、かさ密度の増
大の程度は物質導入量に比例し、導入量が多いほどかさ
密度の増加率が高いことはいうまでもない。通常、重量
増加物質導入前後のかさ密度比率(重量増加物質導入後
のかさ密度/重量増加物質導入前のかさ密度)が1.5
以上程度となるようにする。When ultrafine silica particles are introduced into porous calcium silicate particles, a state as shown in the scanning electron micrograph of FIG. 4 is obtained. The ultrafine silica particles become attached not only inside the calcium silicate but also on the particle surface. The weight-increasing material within the pores results in a powder-filled layer (sound absorber)
This results in an increase in bulk density, and it goes without saying that the degree of increase in bulk density is proportional to the amount of substance introduced, and the larger the amount of substance introduced, the higher the rate of increase in bulk density. Usually, the bulk density ratio before and after introducing the weight-increasing substance (bulk density after introducing the weight-increasing substance/bulk density before introducing the weight-increasing substance) is 1.5.
The above should be maintained.
【0012】吸音材としての具体的形態には、一側面が
開口した薄い箱体に重量増加物を導入した粉体を充填し
、開口を音響的に透明なシートで塞いだ構成が挙げられ
る。従来の粉体に換えて重量増加物質導入粉体を用いる
だけだから製造は容易である。粉体の充填層が吸音体と
して吸音作用を発揮することは言うまでもない。A specific form of the sound absorbing material includes a structure in which a thin box with an opening on one side is filled with powder into which a weight increaser has been introduced, and the opening is closed with an acoustically transparent sheet. Manufacturing is easy because the powder into which the weight-increasing substance has been introduced is simply used in place of the conventional powder. It goes without saying that the packed bed of powder exhibits a sound absorbing effect as a sound absorber.
【0013】[0013]
【作用】この発明の吸音材は、吸音体を構成する多孔質
粒子の空孔内に重量増加物質があるため、粉体のかさ密
度が増加し、その結果、より低周波数域の音に対する吸
収作用が高まる。粉体からなる吸音体の1次吸音ピーク
周波数fは、以下の式に従う。[Operation] The sound absorbing material of this invention has a weight-increasing substance in the pores of the porous particles constituting the sound absorbing body, so the bulk density of the powder increases, and as a result, it absorbs sound in a lower frequency range. The effect increases. The primary sound absorption peak frequency f of a sound absorber made of powder follows the following formula.
【0014】f=0.25× E1/2 ÷ρ1/2
÷L但し、Eは粉体充填層のヤング率、ρは粉体充填
層のかさ密度、Lは粉体充填層厚みである。上の式は、
重量増加物質の導入によるかさ密度の増大が、粉体充填
層の厚みLを厚くせずともそのままの状態で1次吸音ピ
ークを低周波数側にシフトさせ、より低周波数域の音に
対する吸音作用を高めるものであることを裏付けている
。[0014] f=0.25×E1/2 ÷ρ1/2
÷L However, E is Young's modulus of the powder packed bed, ρ is the bulk density of the powder packed bed, and L is the powder packed bed thickness. The above formula is
The increase in bulk density due to the introduction of weight-increasing substances causes the primary sound absorption peak to shift to the lower frequency side without increasing the thickness L of the powder-filled layer, resulting in a sound absorption effect for sounds in a lower frequency range. This proves that it is an enhancement.
【0015】また、吸音ピークのシフト量はかさ密度の
増大の程度に依る。かさ密度の増大の程度は重量増加物
質導入量で決まるのであるから、重量増加物質導入量の
調節により吸音ピークのシフト量を制御することが可能
となる。つまり、吸音特性の制御が容易に行えるのであ
る。Furthermore, the amount of shift of the sound absorption peak depends on the degree of increase in bulk density. Since the degree of increase in bulk density is determined by the amount of weight-increasing material introduced, it is possible to control the shift amount of the sound absorption peak by adjusting the amount of weight-increasing material introduced. In other words, the sound absorption characteristics can be easily controlled.
【0016】[0016]
【実施例】以下、この発明の実施例について説明する。
勿論、この発明の吸音材は下記の実施例に限らない。多
孔質粒子として、多孔質のケイ酸カルシウム粒子(徳山
曹達製 フローライトR、粒径20〜30μm、空孔
率95%)を準備するとともに、粒径0.01〜0.0
2μmのシリカ超微粒子を水に分散させてなるシリカゾ
ル(日産化学製)を準備した。[Embodiments] Examples of the present invention will be described below. Of course, the sound absorbing material of the present invention is not limited to the following embodiments. As the porous particles, porous calcium silicate particles (Fluorite R manufactured by Tokuyama Soda, particle size 20 to 30 μm, porosity 95%) were prepared, and the particle size was 0.01 to 0.0.
A silica sol (manufactured by Nissan Chemical Industries, Ltd.) made by dispersing ultrafine silica particles of 2 μm in water was prepared.
【0017】そして、シリカゾル1リットル当たりケイ
酸カルシウム粉末100gの割合でシリカゾルに粉末を
分散させるとともに30Torr以下の減圧下におき、
シリカゾルを粉末の空孔内に含浸導入させた。ついで、
濾過、乾燥することにより水分を蒸発させ、シリカ超微
粒子が空孔に導入された吸音材用粉体を得たあと、この
粉体を薄い箱体に充填してから開口を薄いシートで覆い
吸音材を得た。[0017] Then, the powder was dispersed in silica sol at a ratio of 100 g of calcium silicate powder per liter of silica sol and placed under reduced pressure of 30 Torr or less,
Silica sol was impregnated into the pores of the powder. Then,
After evaporating water through filtration and drying to obtain a sound-absorbing powder in which ultrafine silica particles are introduced into the pores, this powder is filled into a thin box and the opening is covered with a thin sheet to absorb sound. I got the material.
【0018】実施例の吸音材の特性を知るため、シリカ
超微粒子導入後のケイ酸カルシウム粒子充填層(吸音体
)の吸音特性、かさ密度およびヤング率を測定した。
吸音特性の測定結果を図2に示す。かさ密度およびヤン
グ率の測定結果は以下の通りである。
かさ密度:315.0kg/m3 ヤング率:
1.42×105 N/m 2比較のために、シリカ超
微粒子導入前のケイ酸カルシウム粒子の充填層(実施例
の場合と同じ厚み)の吸音特性、かさ密度およびヤング
率も測定した。吸音特性の測定結果を図3に示す。かさ
密度およびヤング率の測定結果は以下の通りである。In order to understand the characteristics of the sound absorbing material of the example, the sound absorbing characteristics, bulk density and Young's modulus of the calcium silicate particle packed bed (sound absorbing material) after introducing ultrafine silica particles were measured. Figure 2 shows the measurement results of the sound absorption properties. The measurement results of bulk density and Young's modulus are as follows. Bulk density: 315.0kg/m3 Young's modulus:
1.42×10 5 N/m 2 For comparison, the sound absorption properties, bulk density, and Young's modulus of a packed layer of calcium silicate particles (same thickness as in the example) before introduction of ultrafine silica particles were also measured. Figure 3 shows the measurement results of sound absorption characteristics. The measurement results of bulk density and Young's modulus are as follows.
【0019】
かさ密度: 83.0kg/m ヤング率
:1.35×105 N/m 2図2、3にみるように
、シリカ超微粒子を導入したケイ酸カルシウム粒子の充
填層の場合、1次吸音ピークが505Hzから265H
zへと大きくシフトしており、500Hz以下の非常に
低い周波数域で高い吸音作用を発揮する吸音体が実現で
きることが良く分かる。そして、かさ密度およびヤング
率の測定結果も、吸音ピークのシフトはかさ密度の増大
によるものであることをよく裏付けている。Bulk density: 83.0 kg/m Young's modulus: 1.35×105 N/m 2 As shown in Figures 2 and 3, in the case of a packed bed of calcium silicate particles into which ultrafine silica particles are introduced, the primary Sound absorption peak from 505Hz to 265H
It is clearly seen that a sound absorbing body that exhibits a high sound absorbing effect in a very low frequency range of 500 Hz or less can be realized. The measurement results of bulk density and Young's modulus also well support that the shift in the sound absorption peak is due to an increase in bulk density.
【0020】[0020]
【発明の効果】以上に述べたように、請求項1記載の発
明にかかる吸音材は、吸音体を構成する粉体のかさ密度
が増加するため、より低い周波数域での吸音作用が強く
なり、しかも、吸音体が粉体からなるものであるため、
厚みが薄くとも十分な吸音率が確保できるため薄型適応
性に優れる。Effects of the Invention As described above, the sound absorbing material according to the invention as claimed in claim 1 has a stronger sound absorbing effect in a lower frequency range because the bulk density of the powder constituting the sound absorber increases. Moreover, since the sound absorbing material is made of powder,
Even if the thickness is thin, sufficient sound absorption coefficient can be ensured, making it highly adaptable to thin shapes.
【0021】請求項2記載の発明にかかる吸音材用粉体
を用いれば、請求項1記載の優れた吸音材が容易に実現
できる。請求項3記載の発明の方法によれば、請求項2
記載の有用な吸音材用粉体を容易に得ることができる。[0021] By using the powder for a sound absorbing material according to the second aspect of the invention, the excellent sound absorbing material according to the first aspect can be easily realized. According to the method of the invention recited in claim 3, claim 2
The useful powder for sound absorbing materials described above can be easily obtained.
【図1】シリカ超微粒子を空孔内に導入したケイ酸カル
シウム粒子の様子をあらわす説明図である。FIG. 1 is an explanatory diagram showing the appearance of calcium silicate particles in which ultrafine silica particles are introduced into the pores.
【図2】シリカ超微粒子導入後のケイ酸カルシウム粒子
を用いた吸音体の吸音特性をあらわすグラフである。FIG. 2 is a graph showing the sound absorption characteristics of a sound absorber using calcium silicate particles after the introduction of ultrafine silica particles.
【図3】シリカ超微粒子導入前のケイ酸カルシウム粒子
を用いた吸音体の吸音特性をあらわすグラフである。FIG. 3 is a graph showing the sound absorption characteristics of a sound absorber using calcium silicate particles before introducing ultrafine silica particles.
【図4】シリカ超微粒子導入後のケイ酸カルシウム粒子
の粒子構造をあらわす電子顕微鏡写真である。FIG. 4 is an electron micrograph showing the particle structure of calcium silicate particles after introduction of ultrafine silica particles.
【図5】シリカ超微粒子導入前のケイ酸カルシウム粒子
の粒子構造をあらわす電子顕微鏡写真である。FIG. 5 is an electron micrograph showing the particle structure of calcium silicate particles before the introduction of ultrafine silica particles.
【符号の説明】 1 空孔 2 重量増加物質[Explanation of symbols] 1 Vacancy 2. Weight-increasing substances
Claims (4)
粉体からなる吸音体を備えた吸音材において、前記粉体
粒子として、内部に空孔を有する多孔質粒子の前記空孔
に重量増加物質が内在してなる粉体粒子が用いられてい
ることを特徴とする吸音材。1. A sound absorbing material comprising a sound absorbing body made of powder that has a strong sound absorbing effect in a specific frequency range, wherein the powder particles are porous particles having voids inside, and a weight increasing substance is added to the pores of the porous particles. A sound-absorbing material characterized by using powder particles in which is incorporated.
吸音体用の粉体において、粉体粒子は、内部に空孔を有
する多孔質粒子の前記空孔に重量増加物質が内在してな
る粉体粒子であることを特徴とする吸音材用粉体。2. In a powder for a sound absorber having a strong sound absorbing effect in a specific frequency range, the powder particles are porous particles having pores inside, and a weight increasing substance is present in the pores. A powder for sound-absorbing materials characterized by being body particles.
る方法であって、重量増加物質を分散してなる溶液に多
孔質粒子を添加し、前記溶液を多孔質粒子の空孔に導入
したあと、乾燥により溶液の溶媒を除去するようにする
ことを特徴とする吸音材用粉体の製造方法。3. A method for producing a powder for a sound absorbing material according to claim 2, wherein porous particles are added to a solution in which a weight increasing substance is dispersed, and the solution is filled into the pores of the porous particles. A method for producing a powder for a sound absorbing material, which comprises removing the solvent of the solution by drying after introducing the powder.
あって、重量増加物質が固系超微粒子である請求項1記
載の吸音材および請求項2記載の吸音材用粉体と請求項
3記載の吸音材用粉体の製造方法。4. The sound absorbing material according to claim 1, the powder for a sound absorbing material according to claim 2, and the powder for a sound absorbing material according to claim 3, wherein the porous particles are calcium silicate particles, and the weight increasing substance is solid ultrafine particles. A method for producing powder for sound absorbing materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3042600A JPH04258998A (en) | 1991-02-13 | 1991-02-13 | Sound absorbing material, powder for sound absorbing material and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3042600A JPH04258998A (en) | 1991-02-13 | 1991-02-13 | Sound absorbing material, powder for sound absorbing material and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04258998A true JPH04258998A (en) | 1992-09-14 |
Family
ID=12640548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3042600A Pending JPH04258998A (en) | 1991-02-13 | 1991-02-13 | Sound absorbing material, powder for sound absorbing material and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04258998A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007102113A (en) * | 2005-10-07 | 2007-04-19 | Sekisui Chem Co Ltd | Sound insulating particle |
-
1991
- 1991-02-13 JP JP3042600A patent/JPH04258998A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007102113A (en) * | 2005-10-07 | 2007-04-19 | Sekisui Chem Co Ltd | Sound insulating particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5836941B2 (en) | Sonic barrier for audible acoustic frequency management | |
WO2010134312A1 (en) | Loudspeaker device | |
US20200071480A1 (en) | Acoustic graphene-containing compositions/materials and methods of formation | |
WO2003013183A2 (en) | Improvements in acoustic enclosures | |
JPH0578998B2 (en) | ||
CA2179110A1 (en) | Insulating construction material | |
US3508626A (en) | Acoustic diaphragm | |
JPH04258998A (en) | Sound absorbing material, powder for sound absorbing material and production thereof | |
JP5597913B2 (en) | Sound absorbing structure | |
JP2784294B2 (en) | Sound absorbing material and method of manufacturing sound absorbing material | |
JPH0251517B2 (en) | ||
JP2840130B2 (en) | Sound absorber | |
JP4550703B2 (en) | Vibration damping material | |
JP3124823B2 (en) | Sound absorbing material | |
JPH04305696A (en) | Acoustical absorbent | |
JPH0534045B2 (en) | ||
JPH04369690A (en) | Sound adsorbing material | |
JPH04257896A (en) | Sound absorber and powder for the same | |
JPH05173577A (en) | Acoustical material | |
JPH04348397A (en) | Sound absorber and powder for the same | |
JPH05158483A (en) | Sound absorbent material | |
CN213572749U (en) | Sound-absorbing soft bag | |
CN210048692U (en) | Adhesive tape with sound absorption structure | |
JPH0891909A (en) | Sound-absorbing material | |
JP2022144613A (en) | Sound absorption material and manufacturing method thereof |