JPH04258798A - Loose part monitoring device - Google Patents

Loose part monitoring device

Info

Publication number
JPH04258798A
JPH04258798A JP3040492A JP4049291A JPH04258798A JP H04258798 A JPH04258798 A JP H04258798A JP 3040492 A JP3040492 A JP 3040492A JP 4049291 A JP4049291 A JP 4049291A JP H04258798 A JPH04258798 A JP H04258798A
Authority
JP
Japan
Prior art keywords
loose
inference
parts
loose parts
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3040492A
Other languages
Japanese (ja)
Other versions
JP3074190B2 (en
Inventor
Hiroshi Nomura
洋 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP03040492A priority Critical patent/JP3074190B2/en
Publication of JPH04258798A publication Critical patent/JPH04258798A/en
Application granted granted Critical
Publication of JP3074190B2 publication Critical patent/JP3074190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To infer the occurrence position of a loose-part and structure to have been a loose-part and provide the information to a plant operator. CONSTITUTION:Multiple detector 2 fietted to apparatuses constituting a fluid passage, a noise sence section 3 sensing the signals from the detectors 2, an inference section 4 inferring the occurrence position of a loose-part and structure to have been a loose-part from the signal sensed by the noise sense section 3, a memory section 8 storing the data (flow velocity, weight position of parts) of a plant structure required for inference, and a display section 9 displaying the inference result.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、原子炉装置の流体流路
内のルースパーツ監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a loose parts monitoring system in a fluid flow path of a nuclear reactor system.

【0002】0002

【従来の技術】原子炉やこれに接続する上記発生部等、
原子炉の蒸気や液体が流動する管路からなる各種循環系
において、装置部品の脱落が生じるとこの脱落部品(ル
ースパーツ)により各種機器が損傷を受けたり、内部流
体の流れが阻害される等の問題が生じる。原子力技術は
他の技術分野以上に安全性が強く要求されるものであつ
て、ルースパーツの発生は極力低減する必要があり、ま
たルースパーツが発生したならば、その事実を早く察知
し、かつ発生部位およびこのルースパーツの移動状態を
正確に検知する必要がある。
[Prior art] Nuclear reactor and the above-mentioned generation parts connected to it, etc.
In various circulation systems consisting of pipes through which steam and liquid flow in a nuclear reactor, if equipment parts fall off, these loose parts may damage various equipment or obstruct the flow of internal fluids. The problem arises. Nuclear technology requires greater safety than other technical fields, and it is necessary to reduce the occurrence of loose parts as much as possible, and if loose parts occur, the fact should be detected early and It is necessary to accurately detect the occurrence site and the movement state of this loose part.

【0003】このため従来からいろいろの対策が考えら
れており、本願出願人も特願昭57−178567号、
特願昭57−212687号、特願昭58−11983
4号、特願昭61−233443号、特願昭62−17
1853号、特願昭63−40379号、特願昭63−
155468号、特願昭63−317313号、特願平
2−4711号のような出願を行つている。従来の原子
力プラントのルースパーツ監視装置においては、原子路
や蒸気発生器のような1次冷却系の各機器に取付けた検
出器(例えば加速度計)にて検出されたルースパーツの
インパクト波形の値が、各機器に発生する通常のノイズ
(例えばポンプやモーターの運転音、あるいは流体の流
動音など、これらをバツクグランドノイズという)に比
し、一定比率以上の大きさであればハイアラーム警報を
発することにしている。また、ルースパーツ監視装置に
は、各機器に取付けた検出器の検出信号の正誤を判断す
るロケータという装置が内蔵されており、このロケータ
では各検出器からの信号の正誤を判断する機能を持たせ
ていた。その正誤判断の基準としては、(イ)50ミリ
秒(mmsec)以内にハイアラーム警報の受信回数が
1回の場合は誤信号とみなす。その理由は、鋼中の音速
は3m/ミリ秒であり、50ミリ秒間には150mの距
離を伝わることになる。各機器に取付けた検出器間の距
離は最大20m程度であり、ルースパーツが発生してい
るのであれば、短時間内に付近の検出器から多数の信号
が発信されるはずである。(ロ)0.5ミリ秒以内に3
つ以上の警報が受信されたときは誤信号とみなす。検出
器の配置上、0.5ミリ秒以内に3つ以上の警報が受信
されることは、ほとんどあり得ないことであり、これは
各検出器から制御盤までを接続するケーブル間で電気的
ノイズを誘導して発したパルス信号である可能性が高い
ためである。以上(イ)および(ロ)の場合は、信号調
整器、検出器をリセツトすると同時に、集中警報器やロ
ケータなどもリセツトし、データをキヤンセルすること
にしていた。
[0003] For this reason, various countermeasures have been considered in the past, and the applicant of the present application has also proposed Japanese Patent Application No. 57-178567,
Patent application No. 57-212687, Patent application No. 11983-1983
No. 4, Patent Application No. 1983-233443, Patent Application No. 1982-17
No. 1853, Patent Application No. 1983-40379, Patent Application No. 1983-
155468, Japanese Patent Application No. 63-317313, and Japanese Patent Application No. 2-4711. In conventional loose parts monitoring equipment for nuclear power plants, the value of the impact waveform of loose parts detected by detectors (e.g. accelerometers) attached to each device of the primary cooling system such as the atomic path and steam generator. However, if the noise exceeds a certain level compared to the normal noise generated in each device (for example, the operating sound of pumps and motors, or the sound of fluid flowing, these are called background noise), a high alarm is issued. I am planning to issue it. Loose parts monitoring equipment also has a built-in device called a locator that determines whether the detection signals from the detectors attached to each device are correct. It was set. The criteria for determining whether it is correct or incorrect are: (a) If the number of times a high alarm alarm is received within 50 milliseconds (mmsec) is one, it is considered to be an erroneous signal. The reason is that the speed of sound in steel is 3 m/millisecond, and sound travels a distance of 150 m in 50 msec. The maximum distance between the detectors attached to each device is about 20 meters, and if loose parts are occurring, many signals should be emitted from nearby detectors within a short period of time. (b) 3 within 0.5 milliseconds
If more than one alarm is received, it is considered a false signal. Due to the arrangement of the detectors, it is highly unlikely that more than two alarms will be received within 0.5 milliseconds, and this is due to the electrical connection between the cables connecting each detector to the control panel. This is because there is a high possibility that the pulse signal is generated by inducing noise. In the above cases (a) and (b), it was decided to reset the signal conditioner and detector, and at the same time reset the central alarm, locator, etc., and cancel the data.

【0004】その他の場合は、妥当なルースパーツ警報
と判断して、集中警報器による警報を発し、テープレコ
ーダの自動起動、外部警報の発生、プリンタによる記録
などを行つていた。この記録と同時に、作動している外
部警報とテープレコーダを除いて装置の全構成機器をリ
セツトすることにしている。そして、外部警報が発令さ
れるたびに、運転員は監視装置のところまで出向き、外
部警報を一応停止して、オーデイオモニタで現場に異常
音があるかどうか確認する。さらに、テープレコーダを
停止し、プリンタの打出し時間ならびにオーデイオモニ
タの聴音結果を記録用紙に記録するなどの諸作業を行つ
ていた。
[0004] In other cases, it has been determined that the loose parts alarm is valid, and an alarm is issued by a central alarm, the tape recorder is automatically started, an external alarm is issued, and a record is made by a printer. At the same time as this recording, all components of the apparatus will be reset, except for the external alarm and tape recorder, which are in operation. Then, each time an external alarm is issued, the operator goes to the monitoring device, temporarily suspends the external alarm, and checks the audio monitor to see if there is any abnormal sound at the site. Furthermore, the tape recorder was stopped and various tasks were performed, such as recording the ejection time of the printer and the listening results of the audio monitor on recording paper.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では警報
が発生した場合にその警報が、原子炉装置のどの部位か
らどのパーツが脱落したかについては全く情報が得られ
ず、プラントの損傷の程度を知ることはできないという
問題があつた。本発明の目的は上記のような欠点を改善
し、ルースパーツの発生場所の推論とルースパーツとな
つた構造物の推論を行い、プラント運転員にその情報を
提供することにある。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, when an alarm occurs, no information can be obtained as to which part of the reactor equipment has fallen off, and the degree of damage to the plant has not been obtained. The problem was that it was impossible to know. An object of the present invention is to improve the above-mentioned drawbacks, to infer the location of loose parts and the structures that have become loose parts, and to provide this information to plant operators.

【0006】[0006]

【課題を解決するための手段】上記目的は、原子炉装置
の流体流路内のルースパーツの監視装置において、流体
流路を構成する各機器に取付けられた複数個の検出器と
、該検出器からの信号を感知する異音感知部と、異音感
知部で感知した信号からルースパーツ発生場所の推論と
ルースパーツとなつた構造物を推論する推論部と、推論
に必要なプラント構造物のデータを記憶しておく記憶部
と、推論結果を表示する表示部とを備えたことにより達
成される。
[Means for Solving the Problems] The above object is to provide a monitoring device for loose parts in a fluid flow path of a nuclear reactor system, which includes a plurality of detectors attached to each device constituting the fluid flow path, an abnormal noise sensing unit that senses signals from the noise sensing unit, an inference unit that infers the location of loose parts and structures that have become loose parts from the signals detected by the abnormal noise sensing unit, and plant structures necessary for the inference. This is achieved by including a storage unit that stores data and a display unit that displays the inference results.

【0007】[0007]

【作用】複数の検出器から得られた信号からルースパー
ツがプラント構造物に衝突した位置とエネルギーを推定
する機能と、その推定した位置からルースパーツの落下
経路を推定する機能と、その経路上にあるルースパーツ
となるおそれのあるパーツをリストアツプし、推定した
エネルギーからその妥当性をチエツクしてルースパーツ
となつたパーツの推論を行い、運転員に表示する。
[Function] A function to estimate the position and energy at which a loose part collides with a plant structure from signals obtained from multiple detectors, a function to estimate the fall route of the loose part from the estimated position, and a function to estimate the fall path of the loose part from the estimated position, and The system restores parts that are likely to become loose parts, checks their validity based on the estimated energy, infers which parts have become loose parts, and displays the results to the operator.

【0008】[0008]

【実施例】図1に本発明の実施例を示す。機器1に取付
けられた検出器2で検出された信号は、異音感知部3に
導かれ、ルースパーツと疑わしいかどうかを判定する。 その手法については、従来技術で述べた方法や、特願昭
63−317313号、特願昭63−155468号、
特願昭63−40379号等の技法が提案されている。 これらの処理を施した後、ルースパーツと判定した場合
には、推論部4へ信号を導く。推論部4では得られた信
号から3点測量の要領で位置を推定し、記憶部8に蓄え
たエネルギーの距離減衰データおよび感知エネルギーか
ら衝突エネルギーを推定する「位置、エネルギー推論部
」5により、位置および衝突エネルギーを推定する。 衝突ルート推論部6では推定した衝突位置に至るまでの
ルースパーツの流出ルートを記憶部8に蓄えたプラント
構造データより推論する。又、同時にその推論した流出
ルートの流速を推論する。ルースパーツ推論部7では、
予めリストアツプして記憶部8に蓄えている機器のパー
ツの中から、推定した衝突した位置に、推定した衝突エ
ネルギーを発生し得る可能性のあるパーツが流出経路上
に存在するかどうかをチエツクする。候補となつたパー
ツは表示部9に表示する。
Embodiment FIG. 1 shows an embodiment of the present invention. A signal detected by a detector 2 attached to the device 1 is guided to an abnormal noise sensing section 3, and it is determined whether or not it is suspected to be a loose part. Regarding the method, the method described in the prior art, Japanese Patent Application No. 63-317313, Japanese Patent Application No. 63-155468,
Techniques such as Japanese Patent Application No. 63-40379 have been proposed. After performing these processes, if it is determined that the part is a loose part, a signal is guided to the inference section 4. The inference unit 4 estimates the position from the obtained signal using a three-point survey method, and the “position and energy inference unit” 5 estimates the collision energy from the energy distance attenuation data and the sensed energy stored in the storage unit 8. Estimate position and collision energy. The collision route inference unit 6 infers the outflow route of the loose parts up to the estimated collision position from the plant structure data stored in the storage unit 8. At the same time, the flow velocity of the inferred outflow route is inferred. In the loose parts inference section 7,
Checks whether there is a part on the outflow route that could potentially generate the estimated collision energy at the estimated collision position from among the parts of the equipment that have been restored and stored in the storage unit 8 in advance. do. The candidate parts are displayed on the display section 9.

【0009】推論部4の構成部分の作用について説明す
る。位置、エネルギー推論部5では検出した信号間の時
間差を求め、位置を推定する。図2に示すように、衝突
点Pから発した音は、Pから距離の近い順に検出する。 検知した検出器(センサ)A,B,Cの位置と、点Pの
位置との距離d1 ,d2 ,d3 の関係をd1 >
d2 >d3 とすると、各センサで検出した波形は図
3のようにセンサCの波形を先着(第1チヤンネルと呼
ぶことにする)としてセンサB,Aの順に時間差t1 
,t2 を伴つたものとなる。時間差t1 ,t2 は
機器中の音速をvK とすると、
The functions of the components of the inference section 4 will be explained. The position and energy inference section 5 calculates the time difference between the detected signals and estimates the position. As shown in FIG. 2, sounds emitted from the collision point P are detected in order of distance from P. The relationship between the distances d1, d2, and d3 between the detected positions of detectors (sensors) A, B, and C and the position of point P is expressed as d1>
If d2 > d3, the waveforms detected by each sensor will be processed in the order of sensors B and A with a time difference t1, with the waveform of sensor C being the first (referred to as the first channel) as shown in Fig. 3.
, t2. The time difference t1 and t2 is as follows, assuming that the speed of sound in the device is vK.

【数1】t1 =(d2 −d3 )/vK ,  t
2 =(d1 −d3 )/vK となる。従つて、時間差t1 ,t2 が計測できれば
、それを決定する点Pを逆算することができる。点Pの
位置が分かれば、第1チヤンネルと衝突点Pとの距離d
(図2ではd3 )を求めることができるため、そのセ
ンサでのエネルギーの距離減衰データ(図4)を用いて
センサが感知したエネルギーから衝突エネルギーを推定
する。 エネルギーの距離減衰データはプラント試運転時等に各
機器のヒツテイングテストを実施して求めておき、記憶
部8に記憶しておく。
[Equation 1] t1 = (d2 - d3)/vK, t
2 = (d1 - d3)/vK. Therefore, if the time difference t1 and t2 can be measured, the point P that determines it can be calculated backwards. If the position of point P is known, the distance d between the first channel and the collision point P
(d3 in FIG. 2), the collision energy is estimated from the energy sensed by the sensor using distance attenuation data of energy at that sensor (FIG. 4). Energy distance attenuation data is obtained by performing a heating test on each device during plant trial operation, etc., and is stored in the storage unit 8.

【0010】衝突ルート推論部6では、衝突点Pへ機器
のパーツが流出するルートを推論する。例えば図5のよ
うに、機器を複数個の要素に分割し(分割要素11)、
各要素間へパーツが流出可能かどうかを定義しておく。 ルースパーツ衝突位置Pを含む要素13に至るまでのル
ースパーツ流出ルート12を順次さかのぼり、流出ルー
トに該当する要素をリストアツプする。又、各要素には
流体の速度データをベクトル14として記憶部8に記憶
しておく(図6)。すなわち、流速とその方向性である
。これはプラント状態によつて異なるので、運転状況に
よつて流体の比重量のデータとともに変更するようにす
る。流出ルートに該当する要素の流速の平均値Vを求め
る。今、重力加速度の方向を正にとり、上向きの流速V
が働いているとすると、ルースパーツに働く抵抗Dは次
式で示される。
The collision route inference unit 6 infers a route through which the parts of the equipment will flow to the collision point P. For example, as shown in FIG. 5, the device is divided into multiple elements (divided element 11),
Define whether parts can flow between each element. The loose parts outflow route 12 up to the element 13 including the loose parts collision position P is sequentially traced back, and the elements corresponding to the outflow route are restored. Further, fluid velocity data for each element is stored in the storage unit 8 as a vector 14 (FIG. 6). That is, the flow velocity and its directionality. Since this varies depending on the plant status, it should be changed along with the specific weight data of the fluid depending on the operating status. The average value V of the flow velocity of the elements corresponding to the outflow route is determined. Now, taking the direction of gravitational acceleration as positive, the upward flow velocity V
is acting, the resistance D acting on the loose parts is expressed by the following equation.

【数2】D=(1/2)ρV2 CD Sρ;流体の比
重  V;流速  CD ;抵抗係数  S;代表面積
(抗力を受ける面積)従つて、ルースパーツに働く力F
[Equation 2] D = (1/2) ρV2 CD Sρ: Specific gravity of fluid V: Flow velocity CD; Resistance coefficient S: Representative area (area receiving drag) Therefore, force acting on loose parts F
teeth

【数3】F=Mg−D g;重力加速度  M;重量 この力を受けながら落下すると仮定し、その加速度をα
とすれば、
[Formula 3] F=Mg-D g; Gravitational acceleration M; Weight Assuming that it falls while receiving this force, the acceleration is α
given that,

【数4】F=Mα 数3,数4により、[Equation 4] F=Mα According to numbers 3 and 4,

【数5】α=F/M=g−(D/M) ルースパーツとなつたパーツの取付け高さをhT 、衝
突点Pの高さをhP とすれば、衝突エネルギーEは、
[Equation 5] α=F/M=g-(D/M) If the installation height of the part that has become a loose part is hT, and the height of the collision point P is hP, the collision energy E is:

【数6】E=Mα(hT −hP )[Equation 6] E=Mα(hT - hP)

【0011】従つて、衝突エネルギーと位置および流出
ルートの流速と流体の比重が分かれば、ルースパーツの
可能性を推論することが可能となる。そのためには、図
7に示したような、機器を構成するパーツの重量M、抵
抗係数CD、代表面種S、パーツの設置されている分割
要素NO、および高さデータ等を含んだパーツリストを
記憶部8に記憶しておき、数2〜数6を用いて、ルース
パーツとなつた可能性のあるパーツをリストアツプする
。リストアツプしたパーツは表示部9に表示する。
[0011] Therefore, if the collision energy and position, the flow velocity of the outflow route, and the specific gravity of the fluid are known, it becomes possible to infer the possibility of loose parts. To do this, a parts list including the weight M, resistance coefficient CD, representative surface type S, division element number where the parts are installed, height data, etc. of the parts configuring the device is required, as shown in Figure 7. is stored in the storage unit 8, and parts that may have become loose parts are restored using Equations 2 to 6. The restored parts are displayed on the display section 9.

【0012】衝突エネルギーと重量の関係がうまくマツ
チしない場合は、パーツの一部分が欠落したことも考え
られるので、各パーツの何%相当の重量であれば、他の
条件を満足し得るかについてもチエツクする。流失ルー
ト、流速については、本実施例では機器を分割した要素
に分けて考えたが、一つのパーツに対して流出ルートと
流速について計算して決定しておく方式も考えられる。 すなわち、図7で示したパーツリストの項目に入れてお
く。この方式だと検索が早いことが予想される。しかし
ながら、プラント負荷変化等でプラント状態が変化する
ことを想定すると、流速については複数の条件を持つ必
要があり、条件変更の容易な要素分割する方式の方が良
いと考えられる。
[0012] If the relationship between collision energy and weight does not match well, it is possible that a part of the part is missing, so it is also important to consider what percentage of each part's weight should satisfy the other conditions. Check. Regarding the outflow route and flow velocity, in this embodiment, the equipment is divided into divided elements, but it is also possible to calculate and determine the outflow route and flow velocity for one part. That is, it is placed in the parts list shown in FIG. 7. This method is expected to result in faster searches. However, assuming that the plant condition changes due to changes in plant load, etc., it is necessary to have multiple conditions for flow velocity, and it is considered better to divide the flow rate into elements that allow easy changes in conditions.

【0013】[0013]

【発明の効果】本発明によれば、検出した信号がルース
パーツとなた可能性のある部品を知ることができるので
、プラント損傷程度を把握でき、プラントの安全性を保
つための操作(プラント停止等)をするための判断材料
を提供することが可能である。
[Effects of the Invention] According to the present invention, it is possible to know which parts are likely to be loose parts based on the detected signal, so it is possible to grasp the extent of plant damage and to carry out operations to maintain plant safety. It is possible to provide materials for making a decision (such as suspension, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるルースパーツ監視装置の一実施例
のブロツク図である。
FIG. 1 is a block diagram of an embodiment of a loose parts monitoring device according to the present invention.

【図2】ルースパーツが衝突した際に発生した音響信号
が複数個のセンサに検知される様子を示す説明図である
FIG. 2 is an explanatory diagram showing how acoustic signals generated when loose parts collide are detected by a plurality of sensors.

【図3】図2のセンサが検知した信号の波形図である。FIG. 3 is a waveform diagram of a signal detected by the sensor in FIG. 2;

【図4】エネルギーの距離減衰のカーブの一例を示す特
性図である。
FIG. 4 is a characteristic diagram showing an example of a curve of distance attenuation of energy.

【図5】機器を要素に分割してルースパーツ衝突位置に
至るまでの流出ルートを探索する様子を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing how a device is divided into elements and an outflow route to a loose part collision position is searched.

【図6】上記の要素における流速分布を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing flow velocity distribution in the above elements.

【図7】ルースパーツの可能性となるパートリストの説
明図である。
FIG. 7 is an explanatory diagram of a part list that is a possibility of loose parts.

【符号の説明】[Explanation of symbols]

1  機器 2  検出器 3  異音感知部 4  推論部 5  位置、エネルギー推論部 7  ルースパーツ推論部 8  記憶部 9  表示部 1 Equipment 2 Detector 3 Abnormal noise detection section 4 Reasoning part 5 Position, energy inference section 7 Loose parts inference section 8 Memory section 9 Display section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原子炉装置の流体流路内のルースパー
ツの監視装置において、流体流路を構成する各機器に取
付けられた複数個の検出器と、該検出器からの信号を感
知する異音感知部と、該異音感知部で感知した信号から
ルースパーツ発生場所の推論とルースパーツとなつた構
造物を推論する推論部と、推論に必要なプラント構造物
のデータを記憶しておく記憶部と、推論結果を表示する
表示部とを備えたことを特徴とするルースパーツの監視
装置。
Claim 1: A monitoring device for loose parts in a fluid flow path of a nuclear reactor system, which includes a plurality of detectors attached to each device constituting the fluid flow path, and an abnormality that senses signals from the detectors. A sound sensing unit, an inference unit that infers the location of the occurrence of loose parts and structures that have become loose parts from the signals detected by the abnormal noise sensing unit, and stores data on the plant structures necessary for the inference. A loose parts monitoring device comprising a storage unit and a display unit that displays inference results.
JP03040492A 1991-02-13 1991-02-13 Loose parts monitoring device Expired - Fee Related JP3074190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03040492A JP3074190B2 (en) 1991-02-13 1991-02-13 Loose parts monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03040492A JP3074190B2 (en) 1991-02-13 1991-02-13 Loose parts monitoring device

Publications (2)

Publication Number Publication Date
JPH04258798A true JPH04258798A (en) 1992-09-14
JP3074190B2 JP3074190B2 (en) 2000-08-07

Family

ID=12582076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03040492A Expired - Fee Related JP3074190B2 (en) 1991-02-13 1991-02-13 Loose parts monitoring device

Country Status (1)

Country Link
JP (1) JP3074190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093840A (en) * 2013-01-25 2013-05-08 杭州电子科技大学 Reactor loose part alarm method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093840A (en) * 2013-01-25 2013-05-08 杭州电子科技大学 Reactor loose part alarm method

Also Published As

Publication number Publication date
JP3074190B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US4649524A (en) Integrated acoustic network
US5327783A (en) Method of monitoring heat exchanger vibrations
US5548530A (en) High-precision leak detector and locator
JP3113351B2 (en) Fault diagnosis support device
EA032736B1 (en) System and method for supervising, managing and monitoring the structural integrity of a pipeline network for fluid transportation, locating the leaking point and evaluating the extent of the failure
JPS609759Y2 (en) Online shock monitoring device for pressurized water reactors
JP2912545B2 (en) Pressurized water reactor and defense method for pressurized water reactor
US4380924A (en) Method for monitoring flow condition of liquid metal
JP2862876B2 (en) Loose parts monitoring device
JP3074190B2 (en) Loose parts monitoring device
JP3394817B2 (en) Plant diagnostic equipment
JP2886862B2 (en) Loose parts monitoring device in the fluid channel of the reactor
JPS628095A (en) Monitor device for loose part
Kim et al. Development of automatic algorithm for localizing loose parts with a steam generator
JPH06324158A (en) Radioactive ray monitoring device
JP2648597B2 (en) Monitoring equipment for loose parts in the fluid flow path of a nuclear reactor
JP2001307290A (en) System for preventing tunnel disaster
EP0489596B1 (en) Monitoring of check valves
JPH07104200B2 (en) Loose part position estimating device in flow path
JP3314912B2 (en) How to measure seismic intensity
JP3380160B2 (en) Fire alarm device, fire alarm method and recording medium
JPH02162293A (en) Monitoring of missing parts
US6463347B1 (en) System for detecting occurrence of an event when the slope of change based upon difference of short and long term averages exceeds a predetermined limit
JPH0436621A (en) Device and method for monitoring equipment
JP3376531B2 (en) Leak monitoring device and leak monitoring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees