JPH04258790A - Fast reactor core - Google Patents

Fast reactor core

Info

Publication number
JPH04258790A
JPH04258790A JP3018761A JP1876191A JPH04258790A JP H04258790 A JPH04258790 A JP H04258790A JP 3018761 A JP3018761 A JP 3018761A JP 1876191 A JP1876191 A JP 1876191A JP H04258790 A JPH04258790 A JP H04258790A
Authority
JP
Japan
Prior art keywords
void
reactor core
core
fast reactor
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3018761A
Other languages
Japanese (ja)
Other versions
JP2911058B2 (en
Inventor
Tsugio Yokoyama
次男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3018761A priority Critical patent/JP2911058B2/en
Publication of JPH04258790A publication Critical patent/JPH04258790A/en
Application granted granted Critical
Publication of JP2911058B2 publication Critical patent/JP2911058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To provide a fast reactor core having zero or negative void reactivity of sodium and a large output. CONSTITUTION:A fast reactor core is constituted of a fuel aggregate 2 loaded with a fissionable material and a void channel 1 containing a nearly cylindrical heating material 8 provided with an independent cooling material passage 9 inside and having the ratio of the heat inflow quantity from the heating material 8 against the quantity in the inner passage equal to or higher than the ratio in the fuel aggregate 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は高速炉に係わり、特に炉
心構成要素の流量及び発熱量の配分構成を改良した高速
炉炉心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fast reactors, and more particularly to a fast reactor core with improved flow rate and calorific value distribution structure of core components.

【0002】0002

【従来の技術】一般に高速炉の炉心は、核分裂性物質を
装荷した多数の燃料集合体から構成され、燃料からの熱
除去のための冷却材として主にナトリウムが使用されて
いる。通常、ナトリウムは蒸発してボイド化することは
ないが、万一の事故を想定して、ナトリウムがボイド化
した場合でも炉心が安全に停止することを確認している
2. Description of the Related Art Generally, the core of a fast reactor is composed of a large number of fuel assemblies loaded with fissile material, and sodium is mainly used as a coolant for removing heat from the fuel. Normally, sodium does not evaporate and form voids, but in the unlikely event of an accident, we have confirmed that the reactor core will be able to shut down safely even if sodium becomes voids.

【0003】ナトリウムがボイド化した時の応答として
は炉心が小型の時は中性子の炉心からの漏れが大きいた
め、負の反応度が入り、炉心は安全に停止する。しかし
、炉心が大型になると、中性子の漏れが少なくなり、ナ
トリウムがボイド化したときの反応度は正となり、炉心
が安全に停止するか否かに関しては、他の反応度要因を
も含めた詳細な解析を行い、その安全性を確認する必要
が生じる。従って、ナトリウムのボイド反応度を小さく
できれば、安全設計上非常に価値がある。
[0003] In response to voiding of sodium, when the reactor core is small, the leakage of neutrons from the reactor core is large, so a negative reactivity occurs, and the reactor core is safely stopped. However, as the reactor core becomes larger, the leakage of neutrons decreases, and the reactivity when sodium voids becomes positive.Therefore, whether the core can be safely shut down depends on details including other reactivity factors. It becomes necessary to conduct a detailed analysis and confirm its safety. Therefore, if the void reactivity of sodium can be reduced, it is of great value in terms of safety design.

【0004】0004

【発明が解決しようとする課題】ところで、プラント設
計上、炉心出力を極度に小さくすることは発電コストの
点で好ましくない。一方、ナトリウムがボイド化したと
きの炉心の反応度を負にするには従来設計では炉心出力
を 100MWe程度以下にしなければならなかった。 しかし、大出力にするとナトリウムのボイド反応度は正
になるという問題が生じることとなる。
[Problems to be Solved by the Invention] However, in terms of plant design, it is undesirable to reduce the core output to an extremely low level from the viewpoint of power generation costs. On the other hand, in order to make the reactivity of the reactor core negative when sodium voids, in the conventional design, the core power had to be reduced to about 100 MWe or less. However, when the output is increased, a problem arises in that the void reactivity of sodium becomes positive.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、ナトリウムのボイド反応度が零または負で
、より大きな出力の高速炉炉心を提供する事を目的とす
る。 [発明の構成]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a fast reactor core with zero or negative void reactivity of sodium and higher output. [Structure of the invention]

【0006】[0006]

【課題を解決するための手段】本発明に係る高速炉炉心
は核分裂性物質を装荷した燃料集合体と、内部に独立の
冷却材流路を有する略円筒状の発熱物質を含みその内部
流路内流量に対する発熱物質からの熱流入量の比が燃料
集合体内における当該比以上であるボイドチャンネルと
から構成されて成ることを特徴とする。
[Means for Solving the Problems] A fast reactor core according to the present invention includes a fuel assembly loaded with fissile material and a substantially cylindrical exothermic material having an independent coolant flow path therein. The fuel assembly is characterized in that it is comprised of a void channel in which the ratio of the amount of heat inflow from the exothermic substance to the internal amount is greater than or equal to the ratio in the fuel assembly.

【0007】[0007]

【作用】ナトリウムがボイド化する原因として、冷却材
流量が減少し、ナトリウム温度が上昇、沸騰する場合と
、炉心外で大量の気体が冷却材に混入し炉心に流れ込む
場合が考えられる。
[Operation] Possible causes of voiding of sodium are that the flow rate of the coolant decreases and the sodium temperature rises and boils, or that a large amount of gas mixes with the coolant outside the core and flows into the core.

【0008】上述した本発明に係る高速炉炉心において
は、冷却材流量減少の場合、ボイドチャンネルの内部流
路は熱流入量と流量の比が同等以上であるため最初にボ
イド化する。同時に、又は続いて燃料集合体もボイド化
するが、ボイドチャンネルの内部流路がボイド化してい
るため、燃料集合体で発生した中性子はボイドチャンネ
ルから炉心上下方向に漏洩し、負の反応度となる。炉心
外から気体が流入する場合は、ボイドチャンネルの冷却
材流入孔から気体が燃料集合体よりも前に流入すること
で、冷却材流量減少の場合と同様の作用となる。
In the above-described fast reactor core according to the present invention, when the coolant flow rate decreases, the internal flow path of the void channel is first voided because the ratio of the heat inflow amount to the flow rate is equal to or higher than that. Simultaneously or subsequently, the fuel assembly also becomes voided, but since the internal flow path of the void channel is voided, the neutrons generated in the fuel assembly leak from the void channel in the vertical direction of the core, resulting in negative reactivity. Become. When gas flows in from outside the core, the gas flows in from the coolant inflow holes of the void channels before the fuel assemblies, resulting in the same effect as in the case of a decrease in the coolant flow rate.

【0009】[0009]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は本発明の一実施例を示す縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention.

【0010】高速炉炉心10は、炉心部7に核分裂性物
質を含み、この炉心部7の上下に親物質からなる軸ブラ
ンケット部6及び核分裂ガスを蓄積するガスプレナム部
5を配置した多数の燃料集合体2と、この燃料集合体2
の間隙に配置され内部に発熱物質8を配設した内部流路
9を形成した複数のボイドチャンネル1から構成されて
いる。この高速炉炉心10の周囲には親物質を含むブラ
ンケット集合体3及び中性子しゃへい体4が配設されて
いる。
The fast reactor core 10 includes a reactor core 7 containing fissile material, and a large number of fuel assemblies arranged above and below the core 7, including an axial blanket section 6 made of parent material and a gas plenum section 5 for accumulating fission gas. body 2 and this fuel assembly 2
It is composed of a plurality of void channels 1 which are arranged in gaps and form an internal flow path 9 in which a heating substance 8 is disposed. A blanket assembly 3 containing a parent material and a neutron shield 4 are arranged around the fast reactor core 10.

【0011】発熱物質8は、炉心部7から漏洩する中性
子またはガンマ線と反応して発熱する材料から成り、ス
テンレス、ハフニウム、タンタル等の金属が適当である
。但し、ボイドチャンネル内部流路9の下部から流入す
る冷却材流量に対する発熱物質8からの熱流入量の比が
、燃料集合体2における流量に対する核分裂による熱流
入量の比に比べ同等以上となるようにボイドチャンネル
1の発熱物質8の発熱量及び内部流路の流量は設定され
る。
The exothermic substance 8 is made of a material that generates heat by reacting with neutrons or gamma rays leaking from the reactor core 7, and metals such as stainless steel, hafnium, and tantalum are suitable. However, the ratio of the amount of heat inflow from the heat generating substance 8 to the flow rate of coolant flowing from the lower part of the void channel internal flow path 9 is equal to or higher than the ratio of the amount of heat inflow due to nuclear fission to the flow rate in the fuel assembly 2. The calorific value of the exothermic substance 8 in the void channel 1 and the flow rate of the internal flow path are set as follows.

【0012】以上の構成により、冷却材流量減少の場合
、ボイドチャンネルの内部流路9は熱流入量と流量の比
が同等以上であるため最初にボイド化する。同時に、又
は続いて燃料集合体2もボイド化するが、ボイドチャン
ネルの内部流路9がボイド化しているため、燃料集合体
4で発生した中性子はボイドチャンネル1から炉心上下
方向に漏洩し、負の反応度効果を与える。
With the above configuration, when the coolant flow rate decreases, the internal flow path 9 of the void channel is voided first because the ratio of the heat inflow amount to the flow rate is equal to or higher than that. Simultaneously or subsequently, the fuel assembly 2 also becomes voided, but since the internal flow path 9 of the void channel is voided, the neutrons generated in the fuel assembly 4 leak from the void channel 1 in the vertical direction of the core, resulting in negative gives a reactivity effect.

【0013】次に、図2は炉心外から気体が流入する場
合に対応する一実施例である。ボイドチャンネル11の
冷却材流入孔14は燃料集合体17の冷却材流入孔18
よりも鉛直方向に対し上部に設定される。炉心を支持す
る上部支持板16とこの上部支持板16の下部に配設さ
れる下部支持板18の間に流入した気体は冷却材より軽
いため、上部支持板16の下部に蓄積する。しかし、上
記の構成により、この気体は燃料集合体17に流入する
前にボイドチャンネル11内に流入し、ボイドチャンネ
ル11の内部に配設された内部オリフィス15を通過し
て内部流路13内をボイド化する。また、同時に内部流
路13の周囲に配設された発熱物質12の外側もボイド
化する。続いて、燃料集合体17にも流入するが上記の
冷却材流量減少の場合と同様の作用となる。この結果、
本実施例の炉心のナトリウムボイド反応度はボイドチャ
ンネルの無い炉心に比べ低減でき零または負にできる。
Next, FIG. 2 shows an embodiment corresponding to the case where gas flows in from outside the core. The coolant inflow hole 14 of the void channel 11 is the coolant inflow hole 18 of the fuel assembly 17.
It is set higher than the vertical direction. The gas that has flowed between the upper support plate 16 that supports the core and the lower support plate 18 disposed below the upper support plate 16 is lighter than the coolant, so it accumulates under the upper support plate 16 . However, with the above configuration, this gas flows into the void channel 11 before entering the fuel assembly 17, passes through the internal orifice 15 disposed inside the void channel 11, and flows into the internal flow path 13. Turn into a void. At the same time, the outside of the exothermic substance 12 disposed around the internal flow path 13 is also voided. Subsequently, the coolant also flows into the fuel assembly 17, but the effect is similar to that in the case of the decrease in the coolant flow rate described above. As a result,
The sodium void reactivity of the core of this embodiment can be reduced to zero or negative compared to a core without void channels.

【0014】例えば、炉心高さが60cm、炉心直径が
約340cm の場合、ボンドチャンネルが無い場合の
365日燃焼度の炉心高さ部ナトリウムボイド反応度は
約3$である。そして、ボイドチャンネルを図3の様に
燃料集合体2の内部に複数層のボイドチャンネル1を配
置し、この燃料集合体2群の周囲にブランケット集合体
3、中性子しゃへい体4を配置した場合の同一サイズの
炉心でのナトリウムボイド反応度はボイドチャンネルが
上部軸ブランケット(厚さ35cm)高さまでボイド化
し、燃料集合体が炉心高さまでボイド化した場合には約
−1$、ボイドチャンネルが上部軸ブランケット高さよ
り更に30cm上部までボイド化し、燃料集合体が炉心
高さまでボイド化した場合には約−3$となる。
For example, when the core height is 60 cm and the core diameter is about 340 cm, the sodium void reactivity at the core height at a 365-day burnup without bond channels is about 3 $. Then, as shown in Fig. 3, a plurality of void channels 1 are arranged inside a fuel assembly 2, and a blanket assembly 3 and a neutron shielding body 4 are arranged around this 2 group of fuel assemblies. The sodium void reactivity in a core of the same size is approximately -1$ if the void channels are voided to the height of the upper shaft blanket (35 cm thick) and the fuel assemblies are voided to the height of the core; If voids are formed to 30 cm above the blanket height and the fuel assembly is voided to the core height, the cost will be approximately -3 dollars.

【0015】本発明のボイドチャンネルの配置は上記例
に限られるものでなく、また、ボイドチャンネル内の発
熱物質は上記例の材質、形状に限られるものではない。 即ち、ボイドチャンネルの配置はボイド時にナトリウム
ボイド反応度をほぼ零または負になるよう配置されれば
良く、発熱物質は発熱量が上記作用を満足するように設
定されていれば良い。従って、ボイドチャンネルとして
、従来制御棒チャンネルとして炉心に配置されていたチ
ャンネルを上記作用を有するように変更しても良い。
The arrangement of the void channels of the present invention is not limited to the above example, and the material and shape of the exothermic substance in the void channels are not limited to the above examples. That is, the void channels may be arranged so that the sodium void reactivity becomes approximately zero or negative during voiding, and the exothermic substance may be set such that the calorific value satisfies the above effects. Therefore, a channel conventionally arranged in the reactor core as a control rod channel may be changed to have the above function as a void channel.

【0016】また、ボイドチャンネル内のボイド発生手
段として、ボイドチャンネル内に空洞を持つ概ね円筒状
容器を上下に浮遊する様に配置する。又は、高圧の気体
をボイドチャンネル上部に封入する等の手段により、冷
却材流量減少時に前述のボイドチャンネルの作用と同様
な作用を生じるよう炉心高さ部又は軸ブランケット高さ
部にボイド領域を発生させる方法を用いても良い。
Further, as a void generating means in the void channel, a generally cylindrical container having a cavity is arranged in the void channel so as to float vertically. Alternatively, by sealing high-pressure gas in the upper part of the void channel, etc., a void area is created at the core height or shaft blanket height so that the same effect as that of the void channel described above occurs when the coolant flow rate decreases. You may also use the method of

【0017】[0017]

【発明の効果】本発明により高速炉炉心のナトリウムボ
イド反応度はボイドチャンネルの無い炉心に比べ低減で
き、安全性、許認可性質を大きく向上させることができ
る。
According to the present invention, the sodium void reactivity of a fast reactor core can be reduced compared to a core without void channels, and safety and approval properties can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係る高速炉炉心の縦断面図
FIG. 1 is a longitudinal cross-sectional view of a fast reactor core according to an embodiment of the present invention.

【図2】図1に示したボイドチャンネルと燃料集合体を
示す斜視図。
FIG. 2 is a perspective view showing the void channel and fuel assembly shown in FIG. 1;

【図3】本発明の一実施例に係る高速炉炉心の平面図。FIG. 3 is a plan view of a fast reactor core according to an embodiment of the present invention.

【符号の説明】 1,11…ボイドチャンネル      2,17…燃
料集合体3…ブランケット集合体        4…
中性子しゃへい体5…ガスプレナム         
     6…軸ブランケット7…炉心部      
              8,12…発熱物質9,
13…内部流路
[Explanation of symbols] 1, 11... Void channel 2, 17... Fuel assembly 3... Blanket assembly 4...
Neutron shielding body 5...gas plenum
6...Shaft blanket 7...Reactor core
8,12...pyrogen 9,
13...Internal flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  核分裂性物質を装荷した燃料集合体と
、内部に独立の冷却材流路を有する略円筒状の発熱物質
を含みその内部流路内流量に対する発熱物質からの熱流
入量の比が燃料集合体内における当該比以上であるボイ
ドチャンネルとから構成されて成ることを特徴とする高
速炉炉心。
Claim 1: A fuel assembly loaded with fissile material and a substantially cylindrical exothermic substance having an independent coolant passage therein, the ratio of the amount of heat inflow from the exothermic substance to the flow rate in the internal passage. A fast reactor core characterized in that it is comprised of void channels whose ratio is greater than or equal to the ratio in the fuel assembly.
JP3018761A 1991-02-12 1991-02-12 Fast reactor core Expired - Fee Related JP2911058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018761A JP2911058B2 (en) 1991-02-12 1991-02-12 Fast reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018761A JP2911058B2 (en) 1991-02-12 1991-02-12 Fast reactor core

Publications (2)

Publication Number Publication Date
JPH04258790A true JPH04258790A (en) 1992-09-14
JP2911058B2 JP2911058B2 (en) 1999-06-23

Family

ID=11980627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018761A Expired - Fee Related JP2911058B2 (en) 1991-02-12 1991-02-12 Fast reactor core

Country Status (1)

Country Link
JP (1) JP2911058B2 (en)

Also Published As

Publication number Publication date
JP2911058B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
EP0178604B1 (en) Fast breeder reactor
US3702282A (en) Nuclear reactor fuel elements
JP2911058B2 (en) Fast reactor core
JP3079877B2 (en) Fuel assembly
JP6862261B2 (en) Fast reactor core and fast reactor fuel loading method
JP3221989B2 (en) Fast reactor core
JP2899389B2 (en) Fast reactor core
JP2015059791A (en) Fast reactor core and fast reactor comprising the core
GB1029712A (en) Improvements in or relating to nuclear reactors
JP4028088B2 (en) Fuel assembly
JPS5927287A (en) Fast breeder
US4316770A (en) Liquid-metal-cooled reactor
JP2914801B2 (en) Fast reactor core
JP3155127B2 (en) Fuel assemblies and fast breeder reactor cores made therefrom
JPS60177293A (en) Nuclear reactor
JP2502173B2 (en) Fast reactor core
JPH0244290A (en) Fuel assembly
JP2021135248A (en) Fast reactor core, and operation method of fast reactor
JP2550125B2 (en) Fuel assembly
JPH04301791A (en) Fuel assembly
JP2914805B2 (en) Fast reactor core
JPH07306282A (en) Assembly for annihilation disposal of long life nuclide and core of reactor
JPH04335190A (en) Fast breeder reactor
JPH08201562A (en) Control rod assembly
JPH0350232B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees