JPH04257800A - Direction variable thruster device - Google Patents

Direction variable thruster device

Info

Publication number
JPH04257800A
JPH04257800A JP1991491A JP1991491A JPH04257800A JP H04257800 A JPH04257800 A JP H04257800A JP 1991491 A JP1991491 A JP 1991491A JP 1991491 A JP1991491 A JP 1991491A JP H04257800 A JPH04257800 A JP H04257800A
Authority
JP
Japan
Prior art keywords
gas
module structure
force
solenoid valve
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1991491A
Other languages
Japanese (ja)
Inventor
Katsumi Kito
鬼頭 克巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1991491A priority Critical patent/JPH04257800A/en
Publication of JPH04257800A publication Critical patent/JPH04257800A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simplify equipment, to save space, and to reduce weight by providing a module structure wherein the given number of gas injection nozzles of a plurality of gas injection nozzles are pointed to directions different from each other, a piping through which gas is fed to the module structure, and solenoid valves independently feeding and shutting off gas to a plurality of the respective gas injection nozzles. CONSTITUTION:Gas for a thruster is fed to a module structure 1 through a piping 3 for feeding gas. To generate a force through injection of gas through a plurality of injection nozzles 6, the given number of which is pointed to directions different from each other, of the module structure 1, a solenoid valve 4 is first opened to introduce gas to the interior of the module structure 1. The solenoid valve 2 of the injection nozzle 6 in a direction in which a force generated under above state is exerted is opened for a necessary time to generate a given force by means of which gas is injected. When gas is simultaneously injected through a plurality of the injection nozzles 6, the solenoid valve 2 of the corresponding injection nozzle 6 is opened. An opening and closing signal for the solenoid valve 2 is generated by means of electric wiring.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、宇宙船やロケット等に
適用される力の方向可変なスラスタ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thruster device that is applied to spacecraft, rockets, etc. and is capable of varying the direction of force.

【0002】0002

【従来の技術】宇宙船やロケット等に用いられる従来の
スラスタ装置は、図4に示すようにスラスタノズル等よ
りなるスラスタ構造体と電磁バルブ及びガス供給用配管
からなり、1つの装置で発生できる力は、一方向のみに
限定されていた。なお、図4の(a)は側面図、(b)
は(a)のB矢視図である。
[Prior Art] A conventional thruster device used in a spacecraft, rocket, etc. consists of a thruster structure consisting of a thruster nozzle, etc., an electromagnetic valve, and gas supply piping, as shown in Fig. 4, and can generate gas with one device. The force was limited to one direction only. In addition, (a) of FIG. 4 is a side view, (b)
is a view taken along arrow B in (a).

【0003】0003

【発明が解決しようとする課題】上記従来のスラスタ装
置には解決すべき次の課題があった。
SUMMARY OF THE INVENTION The conventional thruster device described above has the following problems to be solved.

【0004】即ち、従来のスラスタ装置では、1つの装
置で噴射口は1つであり、発生できる力は一方向、すな
わち噴射口の方向のみに限定されるため、宇宙船の運動
を制御するための力を得るには、このスラスタ装置を多
数設置する必要があった。たとえば、三軸の回転運動を
制御するには、少くとも6個のスラスタを取付ける必要
がある。また、回転と並進を同時に制御するためには、
さらに少くとも6個以上のスラスタを追加する必要があ
る。この場合、宇宙船各部に多数のスラスタ装置を必要
とし、これに伴ない、スラスタ装置への配管、配線も多
数発生し、装備が複雑かつ多くの設置スペースを必要と
し、重量的にも不利になるという問題があった。
That is, in conventional thruster devices, each device has one injection port, and the force that can be generated is limited to only one direction, that is, the direction of the injection port. To obtain this power, it was necessary to install a large number of these thruster devices. For example, to control rotational motion in three axes, it is necessary to install at least six thrusters. Also, in order to control rotation and translation at the same time,
Furthermore, it is necessary to add at least six thrusters. In this case, a large number of thruster devices are required for each part of the spacecraft, and this requires a large number of piping and wiring to the thruster devices, making the equipment complex and requiring a large amount of installation space, which is disadvantageous in terms of weight. There was a problem.

【0005】本発明は上記問題点解決のため、1つの装
置に異なった方向の複数の噴射口をもつスラスタ装置を
用いることにより、1つの装置で複数の方向に力を発生
できるようなモジュール化を行ない、これにより、宇宙
船等へのスラスタ取付個数を大幅に低減でき、装備の簡
略化、省スペース、重量低減が可能かつ修理・交換も容
易な方向可変スラスタ装置を提供することを目的とする
[0005] In order to solve the above-mentioned problems, the present invention uses a thruster device having a plurality of injection ports in different directions in one device, thereby creating a module that can generate force in multiple directions with one device. The purpose of this project is to provide a variable-direction thruster device that can significantly reduce the number of thrusters installed on spacecraft, etc., simplify equipment, save space, reduce weight, and is easy to repair and replace. do.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題の解決
手段として、宇宙船、ロケット等の運動を制御するため
の力を、ガスを噴射することにより発生させるスラスタ
装置において、複数個のガス噴射口の所要数を相互に異
なる方向にむけて設けたモジュール構造体と、同モジュ
ール構造体にガスを供給する配管と、同配管から供給さ
れたガスを上記複数個のガス噴射口のそれぞれに独立し
て供給、遮断可能な電磁バルブとを具備してなることを
特徴とする方向可変スラスタ装置を提供しようとするも
のである。
[Means for Solving the Problems] As a means for solving the above problems, the present invention provides a thruster device that generates force for controlling the motion of spacecraft, rockets, etc. by injecting gas. A module structure with the required number of injection ports facing in different directions, piping that supplies gas to the module structure, and gas supplied from the piping to each of the plurality of gas injection ports. It is an object of the present invention to provide a variable direction thruster device characterized by being equipped with an electromagnetic valve that can be supplied and cut off independently.

【0007】[0007]

【作用】本発明は上記のように構成されるので次の作用
を有する。
[Operations] Since the present invention is constructed as described above, it has the following functions.

【0008】即ち、複数個のガス噴射口の所要数を相互
に異なる方向にむけて設けられたモジュール構造体に、
ガスを供給する配管を設け、同配管から供給されるガス
をそれぞれの噴射口に独立して供給、遮断可能に電磁バ
ルブを設けたので発生させたい力を与える方向の噴射口
に設けられた電磁バルブを必要な時間だけ開とすれば、
その噴射口からガスが噴射され、その向きに所要の力を
得る。従って、所望の方向にそれぞれ異なった力を得る
ことができる。たとえば宇宙船の運動を制御するために
同時に複数の噴射口よりガスを噴射させる場合は、対応
する噴射口の各々の電磁バルブを開とする。
That is, in a module structure in which a required number of gas injection ports are provided facing in different directions,
A gas supply pipe is provided, and a solenoid valve is installed so that the gas supplied from the same pipe can be independently supplied to and shut off from each injection port. If you open the valve only for the required amount of time,
Gas is injected from the nozzle and obtains the required force in that direction. Therefore, different forces can be obtained in desired directions. For example, when gas is to be simultaneously injected from a plurality of injection ports to control the motion of a spacecraft, each electromagnetic valve of the corresponding injection port is opened.

【0009】[0009]

【実施例】本発明の第1、第2実施例の方向可変スラス
タ装置及びそれらの使用例を図1〜図3により説明する
。なお、先の実施例と同様の構成部材には同符号を付し
、説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Variable direction thruster devices according to first and second embodiments of the present invention and examples of their use will be explained with reference to FIGS. 1 to 3. Note that the same reference numerals are given to the same constituent members as in the previous embodiment, and the explanation thereof will be omitted.

【0010】先ず、第1実施例を図1により説明する。 図1は本実施例の図で、(a)は側面図、(b)は(a
)のB−B矢視断面図、(c)は(a)のC矢視図であ
る。
First, a first embodiment will be explained with reference to FIG. Figure 1 is a diagram of this embodiment, where (a) is a side view and (b) is a side view.
) is a cross-sectional view taken along line B-B in FIG.

【0011】図1において、1は立方体形状をなし、そ
の6面のうち5面に後述する噴射口6を各1個づつ計5
個備えた標準的なモジュール構造体、2は各噴射口6に
設けられたガス供給、遮断を自由に行なえる電磁バルブ
、3はモジュール構造体1へ噴射用のガスを供給するた
めのガス供給用配管、4はモジュール構造体1とガス供
給用配管3との間に介装され、その開閉によってモジュ
ール構造体1へのガスを供給、遮断するための電磁バル
ブ、5は電磁バルブ4とモジュール構造体1との接続部
、6はモジュール構造体1の6面のうち、ガス供給用配
管3等が接続される1面を除いたすべての面、即ち5面
に1個づつ設けられた噴射による力発生用の噴射口であ
る。なお、モジュール構造体1は立方体形状に限定され
るものではなく、球形、円筒形その他、合目的な如何よ
うな形状であってもよい。
In FIG. 1, 1 has a cubic shape, and five of its six sides are provided with injection ports 6, which will be described later, for a total of five.
2 is an electromagnetic valve provided at each injection port 6 that can freely shut off and supply gas; 3 is a gas supply for supplying gas for injection to the module structure 1; 4 is a solenoid valve that is interposed between the module structure 1 and the gas supply pipe 3 to supply and shut off gas to the module structure 1 by opening and closing the same, 5 is a solenoid valve 4 and the module The connection part 6 with the structure 1 is an injection jet provided on all the six sides of the module structure 1 except for one side to which the gas supply piping 3 etc. is connected, that is, one on each of the five sides. This is an injection port for generating force. Note that the module structure 1 is not limited to a cubic shape, but may be spherical, cylindrical, or any other suitable shape.

【0012】次に上記構成の作用について説明する。図
1において、スラスタ用のガスはガス供給用配管3によ
りモジュール構造体1に供給される。モジュール構造体
1に存在する噴射口6よりガスを噴射して力を発生させ
るためには、まず電磁バルブ4を開としてモジュール構
造体1の内部までガスを導入する。この状態で、発生さ
せたい力を与える方向の噴射口6についている電磁バル
ブ2を必要な時間だけ開とすれば、ガスが噴射され、所
要の力を得る。たとえば本実施例の方向可変スラスタ装
置を装備した宇宙船の運動を制御するために同時に複数
の噴射口6よりガスを噴射させる場合は、対応する噴射
口6の各々の電磁バルブ2を開とする。なお、電磁バル
ブ2の開閉信号は、本実施例の外部より図示しない電気
的配線により与えられる。
Next, the operation of the above structure will be explained. In FIG. 1, gas for the thruster is supplied to the module structure 1 through a gas supply pipe 3. In order to generate force by injecting gas from the injection port 6 present in the module structure 1, the electromagnetic valve 4 is first opened to introduce gas into the module structure 1. In this state, if the electromagnetic valve 2 attached to the injection port 6 in the direction in which the desired force is to be generated is opened for the required time, gas is injected and the required force is obtained. For example, when injecting gas from a plurality of injection ports 6 at the same time to control the motion of a spacecraft equipped with the variable direction thruster device of this embodiment, the electromagnetic valve 2 of each corresponding injection port 6 is opened. . Note that the opening/closing signal for the electromagnetic valve 2 is provided from outside the present embodiment by electrical wiring (not shown).

【0013】もし、モジュール構造体1に何らかの異常
や故障が発生して修理、交換を要する場合は、電磁バル
ブ4を閉として、接続部5の部分において、モジュール
構造体1のみを取り外すことにより容易に行なうことが
できる。
If any abnormality or failure occurs in the module structure 1 and it needs to be repaired or replaced, it can be easily done by closing the electromagnetic valve 4 and removing only the module structure 1 at the connection part 5. can be done.

【0014】次に第2実施例を図2により説明する。図
2は第2実施例の図で、(a)は側面図、(b)は(a
)のB−B矢視断面図、(c)は(a)のC矢視図であ
る。
Next, a second embodiment will be explained with reference to FIG. FIG. 2 is a diagram of the second embodiment, where (a) is a side view and (b) is a side view.
) is a cross-sectional view taken along line B-B in FIG.

【0015】第1実施例は1個のモジュール構造体1に
5個の噴射口6を備えたのに対し、第2実施例ではモジ
ュール構造体1aに10個(各面に2個ずつ組にする)
の噴射口6を備える例である。各構成品は第1実施例と
同様である。本実施例によればモジュール構造体1aの
各面で組になった2個の噴射口6について、電磁バルブ
2の開(作動)個数を0,1,2と変えることにより、
力の大きさも変えることができるという利点がある。本
実施例はモジュール構造体1aの各面に噴射口6を2個
とした例であるが、必要に応じて2個以上の噴射口6を
設けてもよい。その場合は各面における力の大きさを更
に多様化できるという利点がある。
In the first embodiment, one module structure 1 is provided with five injection ports 6, whereas in the second embodiment, the module structure 1a is provided with 10 injection ports (two in groups on each surface). do)
This is an example including the injection port 6. Each component is the same as in the first embodiment. According to this embodiment, by changing the number of open (operated) electromagnetic valves 2 to 0, 1, and 2 for the two injection ports 6 that are paired on each side of the module structure 1a,
It has the advantage that the magnitude of the force can also be changed. Although this embodiment is an example in which two injection ports 6 are provided on each surface of the module structure 1a, two or more injection ports 6 may be provided as necessary. In that case, there is an advantage that the magnitude of the force on each surface can be further diversified.

【0016】図3は、上記第1または第2実施例を参考
例として宇宙船へ装備した場合の説明図で、従来のスラ
スタ装置を計20個装備することにより並進と回転の運
動制御を行なう場合に対して、上記第1または第2実施
例の方向可変スラスタ装置を装備すると、モジュール化
されているため4個で目的を達することができる。この
場合、取付け位置も従来型のスラスタ装置を使う例に比
較して、フレキシブルに選択できるという利点がある。
FIG. 3 is an explanatory diagram of the case where the first or second embodiment described above is installed on a spacecraft as a reference example. Translational and rotational motion control is performed by installing a total of 20 conventional thruster devices. In this case, if the variable direction thruster device of the first or second embodiment is installed, the purpose can be achieved with four pieces because they are modularized. In this case, there is an advantage that the mounting position can be selected flexibly compared to an example using a conventional thruster device.

【0017】以上の通り、第1、第2実施例によれば、
1個のモジュール構造体1,1aに複数個の噴射口6を
、それぞれ向きを変えて取付け、これを1つの方向可変
な力発生の単位として、即ち、モジュール化して宇宙船
等へ用いるので、従来の1方向のみしか力を発生しない
スラスタ装置に比し、スラスタ個数を大幅に削減できる
という利点がある。また、モジュール化されているので
従来であれば、複数回の装備作業を必要としていたのに
対し、1回の装備作業で足りるという利点がある。
As described above, according to the first and second embodiments,
A plurality of injection ports 6 are attached to one module structure 1, 1a in different directions, and this is used as a directionally variable force generation unit, that is, it is modularized and used in a spacecraft, etc. Compared to conventional thruster devices that generate force in only one direction, this has the advantage that the number of thrusters can be significantly reduced. Furthermore, since it is modularized, it has the advantage that only one installation work is required, whereas conventional equipment requires multiple installation work.

【0018】また、モジュール化されているので、従来
必要とした複数個所の装備スペースに対し、1個所のス
ペースで足りるという利点がある。
Furthermore, since it is modularized, there is an advantage that only one space is required for equipment, as opposed to the plurality of equipment spaces that were conventionally required.

【0019】また、モジュール化により複数個の噴射口
6がコンパクトに纏められるで、重量が軽減するという
利点がある。
[0019] Further, by modularization, the plurality of injection ports 6 can be compactly integrated, which has the advantage of reducing weight.

【0020】また、モジュール化により、複数個の噴射
口6を宇宙船等から同時に取外して、点検、修理、交換
等ができるのでメンテナンスが容易という利点がある。
Furthermore, modularization has the advantage that maintenance is easy because a plurality of injection ports 6 can be removed from a spacecraft or the like at the same time for inspection, repair, replacement, etc.

【0021】[0021]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
Effects of the Invention Since the present invention is constructed as described above, it has the following effects.

【0022】(1) 1個のモジュール構造体に設けた
複数の噴射口は、それぞれの電磁バルブを独立に開閉制
御することにより、複数の方向にガスを噴射させ、これ
によって同時に複数の方向に力を発生させることができ
る。
(1) A plurality of injection ports provided in one module structure injects gas in multiple directions by independently controlling the opening and closing of each electromagnetic valve, thereby simultaneously injecting gas in multiple directions. can generate force.

【0023】(2) 複数の噴射口を持つモジュール構
造体として構成するため、宇宙船等へのスラスタ取付け
個数が大幅に低減でき、装備の簡略化、省スペース、重
量低減が果たされる。また取付位置の選択もフレキシブ
ルである。
(2) Since it is constructed as a module structure having a plurality of injection ports, the number of thrusters to be attached to a spacecraft or the like can be significantly reduced, and equipment can be simplified, space saved, and weight reduced. Also, the selection of mounting position is flexible.

【0024】(3) ガス供給用配管の電磁バルブを閉
にして、モジュール構造体を接続部で着脱することによ
り、モジュール単位での修理・交換が容易となる。
(3) By closing the electromagnetic valve of the gas supply piping and attaching and detaching the module structure at the connecting portion, repair and replacement of each module becomes easy.

【0025】(4) 一つのモジュール構造体内に、特
定の方向に複数の噴射口が存在するように配置すれば、
各々の電磁バルブの開個数によってガスの噴出量を調節
し、同一方向での力の大きさのレベルを変化させること
ができる。
(4) If a plurality of injection ports are arranged in a specific direction within one module structure,
The amount of gas ejected can be adjusted by changing the number of openings of each electromagnetic valve, and the level of force in the same direction can be changed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例に係る方向可変スラスタ装
置の図で、(a)は側面図、(b)は(a)のB−B矢
視断面図、(c)は(a)のC矢視図である。
FIG. 1 is a diagram of a directionally variable thruster device according to a first embodiment of the present invention, in which (a) is a side view, (b) is a sectional view taken along line B-B in (a), and (c) is (a). ) is a view taken in the direction of arrow C.

【図2】本発明の第2実施例に係る方向可変スラスタ装
置の図で、(a)は側面図、(b)は(a)のB−B矢
視図、(c)は(a)のC矢視図である。
FIG. 2 is a diagram of a directionally variable thruster device according to a second embodiment of the present invention, in which (a) is a side view, (b) is a view taken along the line B-B in (a), and (c) is a view in (a). FIG.

【図3】上記第1または第2実施例を宇宙船に装備した
場合を参考に示す説明図である。
FIG. 3 is an explanatory diagram showing, for reference, a case in which the first or second embodiment is installed on a spacecraft.

【図4】従来のスラスタ装置の図で、(a)は側面図、
(b)は(a)のB矢視図である。
FIG. 4 is a diagram of a conventional thruster device, in which (a) is a side view;
(b) is a view taken along arrow B in (a).

【符号の説明】[Explanation of symbols]

1,1a  モジュール構造体 2        電磁バルブ 3        ガス供給用配管 4        電磁バルブ 5        接続部 6        噴射口 1, 1a Module structure 2 Solenoid valve 3 Gas supply piping 4 Solenoid valve 5 Connection part 6 Injection port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  宇宙船、ロケット等の運動を制御する
ための力を、ガスを噴射することにより発生させるスラ
スタ装置において、複数個のガス噴射口の所要数を相互
に異なる方向にむけて設けたモジュール構造体と、同モ
ジュール構造体にガスを供給する配管と、同配管から供
給されたガスを上記複数個のガス噴射口のそれぞれに独
立して供給、遮断可能な電磁バルブとを具備してなるこ
とを特徴とする方向可変スラスタ装置。
Claim 1: A thruster device that generates force for controlling the motion of a spacecraft, rocket, etc. by injecting gas, in which a required number of gas injection ports are provided facing in different directions. the module structure, a pipe that supplies gas to the module structure, and an electromagnetic valve that can independently supply and shut off the gas supplied from the pipe to each of the plurality of gas injection ports. A directionally variable thruster device characterized by:
JP1991491A 1991-02-13 1991-02-13 Direction variable thruster device Withdrawn JPH04257800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991491A JPH04257800A (en) 1991-02-13 1991-02-13 Direction variable thruster device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991491A JPH04257800A (en) 1991-02-13 1991-02-13 Direction variable thruster device

Publications (1)

Publication Number Publication Date
JPH04257800A true JPH04257800A (en) 1992-09-11

Family

ID=12012484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991491A Withdrawn JPH04257800A (en) 1991-02-13 1991-02-13 Direction variable thruster device

Country Status (1)

Country Link
JP (1) JPH04257800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456429A (en) * 1993-08-02 1995-10-10 Loral Corp. Thrust maneuver system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456429A (en) * 1993-08-02 1995-10-10 Loral Corp. Thrust maneuver system

Similar Documents

Publication Publication Date Title
JP2007532826A (en) Thrust vector control system for plug-nozzle rocket engine
CN108161990B (en) A kind of modular extendable space manipulator ground tested
CN101907040B (en) Nitrogen cold gas micro propulsion device adopting ring storage tank
CN101907039B (en) Nitrogen cold air micro-propeller adopting three cylindrical propelling agent storage boxes
US4635885A (en) Space maneuvering vehicle control thruster
US4651785A (en) Compressed air supply device for a weaving machine with pneumatic picking of at least two weft threads
US20030056492A1 (en) Electronic engine controller
CN112407337A (en) Propulsion system of satellite simulator and satellite simulator
US20030127144A1 (en) Integrated pneumatic manifold
JPH04257800A (en) Direction variable thruster device
US8727284B2 (en) Turbine powered electromechanical actuation system
CN110043390B (en) Satellite bipropellant parallel storage tank balanced discharge synchronous valve and application thereof
US6289668B1 (en) Arrangement for the selective introduction of fuel and/or water into combustion chamber
CN108910046B (en) Water spray aircraft based on flow control attitude control mode
JP2003206808A (en) Reusable space access launch vehicle system
US5439619A (en) Steam conditioning butterfly valve
CN207858887U (en) Modular extendable space manipulator ground tested
CN107352051B (en) Multidirectional thrust integrated form microthruster and its control method
WO2003057561A3 (en) Variably angled propulsion/steering system
JPH06307402A (en) Valve station
CN115614181A (en) Simplified configuration power system capable of recycling rocket and rocket thereof
KR20030083562A (en) Pressure Water Feeder of Water Jet Loom
US11085464B2 (en) Hydraulic actuator
EP0319342A2 (en) A device for displacing a submerged article
Hoskins et al. NEXT Ion Propulsion System Production Readiness

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514