JPH04257598A - Production of sugar fatty acid ester - Google Patents

Production of sugar fatty acid ester

Info

Publication number
JPH04257598A
JPH04257598A JP1810691A JP1810691A JPH04257598A JP H04257598 A JPH04257598 A JP H04257598A JP 1810691 A JP1810691 A JP 1810691A JP 1810691 A JP1810691 A JP 1810691A JP H04257598 A JPH04257598 A JP H04257598A
Authority
JP
Japan
Prior art keywords
sucrose
fatty acid
organic solvent
acid ester
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1810691A
Other languages
Japanese (ja)
Inventor
Yukio Kasori
加曽利 行雄
Yasushi Yamazaki
康司 山崎
Shigetomi Kawada
川田 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1810691A priority Critical patent/JPH04257598A/en
Publication of JPH04257598A publication Critical patent/JPH04257598A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the subject compounds useful as an edible dispersant, etc., by reacting sugar with a lower alcohol ester of a fatty acid in the presence of an alkali in a specified solvent, then adding an organic solvent and water thereto for extraction separation of the reaction product, recovering unreacted substances from the aqueous phase and recycling them. CONSTITUTION:In production of a sugar fatty acid ester by a reaction of sugar with a lower alcohol ester of a fatty acid in the presence of an alkali in dimethylsulfoxide (DMSO) as the reaction solvent, the reacted mixture is mixed with an organic solvent and water and the organic solvent phase containing the sugar fatty acid ester is separated from the aqueous phase containing unreacted sugar, salts and dimethylsulfoxide. The organic solvent is removed from the organic solvent phase to separate the sugar fatty acid ester as the reaction product. The aqueous phase is treated with an ion-exchange resin to desalt and water is subsequently removed from the treated aqueous solution to recycle the resultant dimethylsulfoxide solution of unreacted sugar into next reaction system. Thus, the objective sugar fatty acid ester (SE) can be efficiently produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ショ糖脂肪酸エステル
(以下、SEと略記する。)の製造方法に係わる。さら
に詳しくは、本発明は溶媒法によって製造された反応混
合物から、SEと未反応ショ糖、溶媒、無機塩および/
または有機酸塩(以下、これらを合わせて塩と略するこ
とがある。)を効率よく分離する方法に係わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing sucrose fatty acid ester (hereinafter abbreviated as SE). More specifically, the present invention combines SE, unreacted sucrose, solvent, inorganic salts and/or
Alternatively, it relates to a method for efficiently separating organic acid salts (hereinafter, these may be collectively abbreviated as salts).

【0002】0002

【従来の技術】SEは可食性の分散剤、乳化剤或は洗浄
剤等として有用な非イオン性界面活性剤である。従来そ
の製造方法としてN,N−ジメチルホルムアミド、ジメ
チルスルホキシド(以下、DMSOと略記する。)等の
溶媒中で、アルカリ触媒の存在下、ショ糖と脂肪酸メチ
ルのような脂肪酸エステルとのエステル交換反応による
方法(特公昭35─13102)等が知られている。
BACKGROUND OF THE INVENTION SE is a nonionic surfactant useful as an edible dispersant, emulsifier, detergent, etc. Conventionally, its production method involves a transesterification reaction between sucrose and a fatty acid ester such as fatty acid methyl in a solvent such as N,N-dimethylformamide or dimethyl sulfoxide (hereinafter abbreviated as DMSO) in the presence of an alkali catalyst. A method such as that described in Japanese Patent Publication No. 35-13102 is known.

【0003】上記方法によって得られた反応混合物は、
SEの他に溶媒、未反応ショ糖およびアルカリ触媒など
を含有している。この混合物からSEを分離するには、
通常、反応混合物に酸を添加して触媒を中和失活させた
後、溶媒を部分的に蒸留し、次いでヘキサン、ブチルア
ルコール、メチルエチルケトン、メチルイソブチルケト
ンのような有機溶媒および水を用いて抽出処理し、主と
してSEを有機溶媒相中に、また主として未反応ショ糖
、反応溶媒および塩を水相中にそれぞれ移行させて分液
し、主としてSEを含有する有機溶媒相から有機溶媒を
蒸留除去しSEを回収する方法が提案されている。 (例えば特公昭48─21927、特公昭48─350
49、特開昭50─29417、特開昭50─1307
12)水相中に回収した未反応ショ糖および反応溶媒は
、水を蒸留除去した後、再びSE製造原料として使用す
ることが工業的製造方法および経済的操業方法として重
要である。しかしながら有機溶媒および水を用いて行な
う抽出処理操作工程において、良好な分液性を得る為に
は有機酸塩等の塩析剤添加が必要であるので(特開昭5
0─130712)、結果として水相中に回収したショ
糖には塩の蓄積がある。水を蒸留除去して回収ショ糖を
そのまま再びSE製造原料として使用した場合、蓄積し
た塩の影響でエステル交換反応速度が遅延する等、当該
方法は経済的操業のための問題点となっている。
The reaction mixture obtained by the above method is
In addition to SE, it contains a solvent, unreacted sucrose, and an alkali catalyst. To separate SE from this mixture,
Typically, an acid is added to the reaction mixture to neutralize and deactivate the catalyst, followed by partial distillation of the solvent, followed by extraction with an organic solvent such as hexane, butyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, and water. The organic solvent is removed by distillation from the organic solvent phase containing mainly SE. A method for recovering SE has been proposed. (For example, Tokuko Sho 48-21927, Tokuko Sho 48-350
49, Japanese Patent Publication No. 50-29417, Japanese Patent Application Publication No. 50-1307
12) It is important as an industrial production method and an economical operation method that the unreacted sucrose and reaction solvent recovered in the aqueous phase are used again as SE production raw materials after removing water by distillation. However, in the extraction process using an organic solvent and water, it is necessary to add a salting-out agent such as an organic acid salt in order to obtain good liquid separation (Japanese Patent Application Laid-Open No.
0-130712), as a result there is salt accumulation in the sucrose recovered in the aqueous phase. If water is removed by distillation and the recovered sucrose is directly used as a raw material for SE production, the rate of transesterification reaction is delayed due to the influence of accumulated salts, and this method poses problems for economical operation. .

【0004】上記問題点を一部解決する手段として、反
応混合物からDMSOを除去した後、SEは溶解するが
ショ糖を溶解しないような析出溶媒を添加し、未反応シ
ョ糖を析出させて回収する方法が提案されている。たと
えば特開昭63─27497およびUSP3,251,
829には、析出溶媒としてメチルエチルケトンを使用
する発明が記載されている。また、特開平2─1529
86にはメチルイソブチルケトンの例が記載されている
。しかしながら、上記の方法ではショ糖と共に塩も全量
析出し、回収ショ糖中の塩を除去する手段が依然として
無いために、結果として回収ショ糖には塩の蓄積が避け
られない。塩が多量に蓄積した濃縮反応混合物からは、
未反応ショ糖を回収するためにケトンを混合しても、シ
ョ糖はペースト状態を呈し析出しないなど、当該方法は
工業的製造方法として問題がある。加えて、該方法では
、ショ糖は固体として析出するため、遠心分離、圧搾等
の固液分離工程が不可欠となり、液体系のみの方法と比
して、連続運転をするのが困難であり、この点において
も工業的製造方法として問題があるものとなっている。
[0004] As a means to partially solve the above problems, after removing DMSO from the reaction mixture, a precipitation solvent that dissolves SE but does not dissolve sucrose is added, and unreacted sucrose is precipitated and recovered. A method has been proposed. For example, JP 63-27497 and USP 3,251,
No. 829 describes an invention in which methyl ethyl ketone is used as a precipitation solvent. Also, JP-A-2-1529
86 describes an example of methyl isobutyl ketone. However, in the above method, a total amount of salt is precipitated along with sucrose, and since there is still no means to remove the salt from the recovered sucrose, as a result, accumulation of salt in the recovered sucrose is unavoidable. From a concentrated reaction mixture with a large accumulation of salts,
Even if a ketone is mixed to recover unreacted sucrose, the sucrose remains in a paste state and does not precipitate, so this method has problems as an industrial production method. In addition, in this method, since sucrose is precipitated as a solid, solid-liquid separation steps such as centrifugation and compression are essential, and continuous operation is difficult compared to methods using only a liquid system. This point also poses a problem as an industrial manufacturing method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、SE製造反
応混合物から塩の蓄積のないショ糖を回収し、再びSE
製造原料として使用する工業的製造方法および連続運転
が容易な経済的操業方法を提供するものである。
Problems to be Solved by the Invention The present invention aims to recover sucrose without salt accumulation from the SE production reaction mixture and to recover it from the SE production reaction mixture.
The object of the present invention is to provide an industrial manufacturing method for use as a manufacturing raw material and an economical operating method that allows easy continuous operation.

【0006】[0006]

【課題を解決するための手段】本発明者らは上述の問題
点を解決するため鋭意検討した結果、有機溶媒および水
を用いた従来の方法で分離した水相を、イオン交換樹脂
で処理することにより塩を分離除去し、塩の混入のない
未反応ショ糖DMSO溶液を次の反応系に再使用するこ
とによって、その目的を達成した。すなわち、本発明は
、アルカリの存在下、ジメチルスルホキシドを反応溶媒
として、ショ糖と脂肪酸低級アルコールエステルを反応
させてショ糖脂肪酸エステルを製造する方法において、
■  反応混合物を有機溶媒および水と混合し、次いで
ショ糖脂肪酸エステルを含む有機溶媒相と、未反応ショ
糖、塩およびジメチルスルホキシドを含む水相とに分離
し、■  ■で得た有機溶媒相から有機溶媒を除去して
ショ糖脂肪酸エステルを回収し、■  ■で得た水相を
イオン交換樹脂で処理し、■■で得た水溶液から水を除
去し、■  ■で得た未反応ショ糖ジメチルスルホキシ
ド溶液を次の反応系に再使用することを特徴とするショ
糖脂肪酸エステルの製造方法である。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the aqueous phase separated by the conventional method using an organic solvent and water is treated with an ion exchange resin. This objective was achieved by separating and removing the salts and reusing the unreacted sucrose DMSO solution free of salt contamination in the next reaction system. That is, the present invention provides a method for producing sucrose fatty acid ester by reacting sucrose and fatty acid lower alcohol ester in the presence of an alkali using dimethyl sulfoxide as a reaction solvent,
■ The reaction mixture is mixed with an organic solvent and water, and then separated into an organic solvent phase containing sucrose fatty acid ester and an aqueous phase containing unreacted sucrose, salt, and dimethyl sulfoxide, and ■ the organic solvent phase obtained in ■ The organic solvent is removed from the sucrose fatty acid ester, the aqueous phase obtained in step 2 is treated with an ion exchange resin, the water is removed from the aqueous solution obtained in step 2, and the unreacted phase obtained in step 2 is recovered. This is a method for producing sucrose fatty acid ester, characterized in that the sugar dimethyl sulfoxide solution is reused in the next reaction system.

【0007】本発明における脂肪酸低級アルコールエス
テルとしては、炭素数6〜30、好ましくは12〜22
の飽和または不飽和脂肪酸(例えばカプロン酸、カプリ
ン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステ
アリン酸、ベヘニン酸などの飽和脂肪酸;リノール酸、
オレイン酸、リノレイン酸、エルカ酸、リシノール酸な
どの不飽和脂肪酸など)と炭素数1〜6の低級アルコー
ル(例えばメタノール、エタノール、プロパノール、ブ
タノールなど)とのエステルが挙げられる。かかる低級
アルコールエステルは、2種以上の混合物として用いて
もよい。脂肪酸低級アルコールエステルは、ショ糖1モ
ルに対して通常0.1〜20モル、好ましくは0.2〜
8モル使用する。
The fatty acid lower alcohol ester in the present invention has 6 to 30 carbon atoms, preferably 12 to 22 carbon atoms.
saturated or unsaturated fatty acids such as caproic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid; linoleic acid,
Examples include esters of unsaturated fatty acids such as oleic acid, linoleic acid, erucic acid, and ricinoleic acid) and lower alcohols having 1 to 6 carbon atoms (for example, methanol, ethanol, propanol, butanol, etc.). Such lower alcohol esters may be used as a mixture of two or more. The fatty acid lower alcohol ester is usually 0.1 to 20 mol, preferably 0.2 to 20 mol, per 1 mol of sucrose.
Use 8 moles.

【0008】本発明における反応溶媒としては、熱的安
定性、ショ糖に対する溶解性および安全性の点からして
、DMSOが用いられる。溶媒の使用量は、ショ糖と脂
肪酸低級アルコールエステルとの合計仕込量に対して、
通常20〜150重量%、好ましくは50〜80重量%
である。本発明におけるアルカリ触媒としては、アルカ
リ金属水素化物、アルカリ金属水酸化物、弱酸のアルカ
リ金属塩等が有効であり、特に炭酸アルカリ金属塩(例
えば炭酸カリウムなど)が好ましい。
DMSO is used as the reaction solvent in the present invention from the viewpoints of thermal stability, solubility in sucrose, and safety. The amount of solvent used is based on the total amount of sucrose and fatty acid lower alcohol ester.
Usually 20-150% by weight, preferably 50-80% by weight
It is. As the alkali catalyst in the present invention, alkali metal hydrides, alkali metal hydroxides, alkali metal salts of weak acids, and the like are effective, and alkali metal carbonates (eg, potassium carbonate) are particularly preferred.

【0009】本発明における触媒の中和失活に用いられ
る酸としては、硝酸、硫酸、塩酸、リン酸などの無機酸
、ギ酸、酢酸、プロピオン酸、シュウ酸、コハク酸、安
息香酸、クエン酸、乳酸、さらに炭素数8〜22の高級
脂肪酸などの有機酸などがあげられる。これらの中、装
置材質への腐食性、水への溶解性、食品用添加物として
の安全性の点から、クエン酸または乳酸が特に好ましい
[0009] Acids used to neutralize and deactivate the catalyst in the present invention include inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, and phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, benzoic acid, and citric acid. , lactic acid, and organic acids such as higher fatty acids having 8 to 22 carbon atoms. Among these, citric acid or lactic acid is particularly preferred from the viewpoint of corrosivity to equipment materials, solubility in water, and safety as a food additive.

【0010】本発明においては、エステル交換反応後の
反応混合物に有機溶媒と水を混合して、液─液抽出を行
う。ここで、必ずしも必須ではないが、液─液抽出前に
反応混合物からDMSOを濃縮除去しておくことが、抽
出に要する有機溶媒と水の使用量削減の点から好ましい
。DMSOの除去は、通常は反応混合物中のDMSO濃
度として5〜60重量%、好ましくは10〜50重量%
まで濃縮除去すればよい。DMSOを除去しすぎると濃
縮混合物の粘度が大きくなり、以後の取扱いに不都合と
なる。
In the present invention, an organic solvent and water are mixed with the reaction mixture after the transesterification reaction, and liquid-liquid extraction is performed. Here, although not necessarily essential, it is preferable to concentrate and remove DMSO from the reaction mixture before liquid-liquid extraction from the viewpoint of reducing the amount of organic solvent and water required for extraction. The removal of DMSO is usually carried out at a concentration of DMSO in the reaction mixture of 5 to 60% by weight, preferably 10 to 50% by weight.
All you have to do is concentrate and remove it. If too much DMSO is removed, the viscosity of the concentrated mixture increases, making it inconvenient for subsequent handling.

【0011】本発明における液─液抽出は二相の比重差
を利用する塔式向流接触装置、あるいはこれに機械的攪
拌とか脈動を与える方式などのほかに、遠心力を利用し
て混合と分離を行うポトビルニヤク遠心式抽出機などの
向流方式、オリフィス塔、エゼクターなどの並流方式か
ら選択される。通常、向流方式が採用され、分配効率お
よび水の使用量の点からして向流多段抽出法が工業的方
法として好ましい。
[0011] The liquid-liquid extraction in the present invention can be performed using a column-type countercurrent contactor that utilizes the difference in specific gravity between two phases, or a method that applies mechanical stirring or pulsation to this, as well as a method that uses centrifugal force to perform mixing. The separation method is selected from countercurrent methods such as the Potvilnyak centrifugal extractor, and cocurrent methods such as orifice towers and ejectors. Usually, a countercurrent method is employed, and a countercurrent multistage extraction method is preferred as an industrial method in terms of distribution efficiency and water usage.

【0012】本発明における反応混合物の液─液抽出に
用いられる有機溶媒としては、通常、ヘキサン、n─ブ
タノール、イソブタノール、メチルエチルケトン、メチ
ルイソブチルケトン等であり、好ましくはn─ブタノー
ル、イソブタノール等が挙げられる。液─液抽出は塩析
剤を添加しなくてもよいが、安定操業上添加することが
好ましい。添加する塩析剤は触媒の中和失活時に生成す
るものと同種が好ましく、食品添加物としての安定性お
よび抽出時の界面形成の点からクエン酸塩また乳酸塩が
好ましい。
The organic solvent used in the liquid-liquid extraction of the reaction mixture in the present invention is usually hexane, n-butanol, isobutanol, methyl ethyl ketone, methyl isobutyl ketone, etc., and preferably n-butanol, isobutanol, etc. can be mentioned. Although it is not necessary to add a salting-out agent in liquid-liquid extraction, it is preferable to add it for stable operation. The salting-out agent to be added is preferably the same type as that produced when the catalyst is neutralized and deactivated, and citrate or lactate is preferred from the viewpoint of stability as a food additive and interface formation during extraction.

【0013】本発明における液─液抽出操作温度は通常
、大気圧下における有機溶媒の沸点以下で行われ、好ま
しくは40〜80℃である。有機溶媒の使用量は、反応
混合物中のSE1重量部に対して、通常0.5〜20重
量部、好ましくは1〜10重量部である。有機溶媒と水
との使用割合は、通常有機溶媒1重量部に対して、水0
.05〜10重量部、好ましくは0.2〜2重量部であ
る。
The liquid-liquid extraction operation temperature in the present invention is usually carried out below the boiling point of the organic solvent at atmospheric pressure, preferably 40 to 80°C. The amount of the organic solvent used is usually 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, per 1 part by weight of SE in the reaction mixture. The ratio of organic solvent and water used is usually 1 part by weight of organic solvent to 0 part by weight of water.
.. 05 to 10 parts by weight, preferably 0.2 to 2 parts by weight.

【0014】本発明における液─液抽出で得た有機溶媒
相からは、有機溶媒を除去してSEを回収する。かくし
て得られたSEはそのまま一般的使用に供することがで
きるが、食品添加物としての用途向けには更に高度に精
製することが好ましい。すなわち、水蒸気処理すること
により微量の有機溶媒を除去することが好ましい。水蒸
気処理後の水を含む粗SEは濃縮・乾固することにより
、精製されたSEが製造できる。
[0014] From the organic solvent phase obtained by liquid-liquid extraction in the present invention, the organic solvent is removed to recover SE. Although the SE thus obtained can be used as is for general use, it is preferable to further refine it for use as a food additive. That is, it is preferable to remove trace amounts of organic solvents by steam treatment. Purified SE can be produced by concentrating and drying the water-containing crude SE after steam treatment.

【0015】本発明における液─液抽出後の水相は、未
反応ショ糖、DMSOおよび塩を含んでいる。この水相
からさらに塩を除去して、未反応ショ糖DMSO溶液を
分離回収する工程へと移行する。本発明では水相をイオ
ン交換樹脂で処理することによって塩の除去を行う。塩
を含む水相を塩基性陰イオン交換樹脂で処理し、塩を相
当する酸に変換して吸着させる。排出された液は未反応
ショ糖およびDMSOの他にアルカリを含むので、次い
で酸性陽イオン交換樹脂で処理してアルカリを吸着させ
て除去する。かくして得られた排出液は塩およびアルカ
リを含まない未反応ショ糖とDMSOを含む水溶液とな
る。アルカリが残留したままだと、次の反応系に再使用
する際に脂肪酸アルコールエステルと反応して石ケンを
生成し反応を阻害するので、陽イオン交換樹脂によるア
ルカリ除去は必要である。また、塩の除去において、陰
イオン交換樹脂と陽イオン交換樹脂による処理順序は、
先に陰イオン交換樹脂による処理を行って酸を除去した
方が、ショ糖の安定性の点から好ましい。
[0015] The aqueous phase after liquid-liquid extraction in the present invention contains unreacted sucrose, DMSO and salt. Salt is further removed from this aqueous phase, and the process moves on to a step of separating and collecting unreacted sucrose DMSO solution. In the present invention, salts are removed by treating the aqueous phase with an ion exchange resin. The aqueous phase containing the salts is treated with a basic anion exchange resin to convert and adsorb the salts to the corresponding acids. Since the discharged liquid contains alkali in addition to unreacted sucrose and DMSO, it is then treated with an acidic cation exchange resin to adsorb and remove the alkali. The thus obtained effluent becomes an aqueous solution containing unreacted sucrose and DMSO, which is free of salt and alkali. If the alkali remains, it will react with the fatty acid alcohol ester to form soap and inhibit the reaction when it is reused in the next reaction system, so it is necessary to remove the alkali using a cation exchange resin. In addition, in removing salts, the processing order using anion exchange resin and cation exchange resin is as follows:
From the viewpoint of stability of sucrose, it is preferable to first perform treatment with an anion exchange resin to remove the acid.

【0016】また、回収ショ糖DMSO溶液の精製をよ
り完全なものとするには、このイオン交換樹脂処理の工
程前あるいは後に脱色剤を用いた脱色処理をすることが
できる。例えば、ショ糖脱色用のイオン交換樹脂に、塩
除去用のものを連続させて用いることが出来る。強塩基
性陰イオン交換樹脂やそのCl型のものなどが、ショ糖
脱色用として知られている。イオン交換樹脂の他にも、
珪そう土、酸性白土、シリカゲル、活性炭などが用いら
れる。脱色剤から、次の反応系に害となる汚染が生じる
おそれのある場合は、脱色処理は、塩除去のためのイオ
ン交換処理の前に施すことが好ましい。
[0016] Furthermore, in order to more completely purify the recovered sucrose DMSO solution, a decoloring treatment using a decolorizing agent can be carried out before or after this ion exchange resin treatment step. For example, an ion exchange resin for removing salt can be used in succession with an ion exchange resin for decolorizing sucrose. Strongly basic anion exchange resins and their Cl type resins are known for decolorizing sucrose. In addition to ion exchange resins,
Diatomaceous earth, acid clay, silica gel, activated carbon, etc. are used. If there is a possibility that the decolorizing agent may cause harmful contamination in the subsequent reaction system, the decoloring treatment is preferably carried out before the ion exchange treatment for removing salts.

【0017】本発明において使用するイオン交換樹脂と
しては、種々の化学構造および物理構造を有するものが
挙げられる。その物理構造はゲル型またはポーラス型の
いずれの樹脂も使用することが出来る。また、その架橋
度は幅広いものが適用される。好ましいイオン交換樹脂
の代表的な例として以下に示すものが挙げられるが、本
発明で使用される樹脂はこれらに限定されるものではな
い。
Ion exchange resins used in the present invention include those having various chemical and physical structures. As for its physical structure, either gel type or porous type resin can be used. Further, a wide range of degrees of crosslinking can be applied. Representative examples of preferred ion exchange resins include those shown below, but the resins used in the present invention are not limited to these.

【0018】陰イオン交換樹脂;三次元に重縮合した高
分子基体に交換基として4級アンモニウム基または1〜
3級アミンを結合させた樹脂であり、具体的な商品とし
て、例えば、三菱化成(株)製のダイヤイオンSA、P
A、WAシリーズ等が挙げられる。本発明においてはポ
ーラス型のスチレン系強塩基性陰イオン交換樹脂である
PAシリーズが交換速度、脱色性、再生効率などの点で
好ましい。陽イオン交換樹脂;三次元に重縮合した高分
子基体に、交換基としてスルホン酸基やカルボン酸基な
どを結合させた樹脂であり、具体な商品として、例えば
、三菱化成(株)製のダイヤイオンSK、PK、WKシ
リーズ等が挙げられる。本発明においてはメタクリルま
たはアクリル系樹脂である弱酸性陽イオン交換樹脂であ
るWKシリーズがショ糖の安定性、交換速度、再生効率
などの点で好ましい。
Anion exchange resin; a three-dimensionally polycondensed polymer base with a quaternary ammonium group or a
It is a resin bound with tertiary amine, and examples of specific products include Diaion SA and P manufactured by Mitsubishi Chemical Corporation.
Examples include the A and WA series. In the present invention, the PA series, which is a porous styrene-based strongly basic anion exchange resin, is preferable in terms of exchange rate, decolorization property, regeneration efficiency, etc. Cation exchange resin: A resin in which sulfonic acid groups, carboxylic acid groups, etc. are bonded as exchange groups to a three-dimensionally polycondensed polymer base. Specific products include, for example, Diamond manufactured by Mitsubishi Chemical Corporation. Examples include Aeon SK, PK, and WK series. In the present invention, the WK series, which is a weakly acidic cation exchange resin such as methacrylic or acrylic resin, is preferable in terms of sucrose stability, exchange rate, regeneration efficiency, etc.

【0019】本発明におけるイオン交換樹脂処理時の水
溶液中の塩濃度は通常0.1〜50重量%、好ましくは
1〜30重量%である。本発明におけるイオン交換樹脂
処理温度として、通常5〜100℃、好ましくは20〜
70℃である。本発明におけるイオン交換樹脂処理速度
は、塩の供給速度として樹脂1リットルあたり毎時、通
常0.1〜60ミリ等量であり、好ましくは1〜30ミ
リ等量である。
The salt concentration in the aqueous solution during treatment with the ion exchange resin in the present invention is usually 0.1 to 50% by weight, preferably 1 to 30% by weight. The ion exchange resin treatment temperature in the present invention is usually 5 to 100°C, preferably 20 to 100°C.
The temperature is 70°C. The processing rate of the ion exchange resin in the present invention is usually 0.1 to 60 milliquivalents, preferably 1 to 30 milliequivalents, per liter of resin per hour as a salt supply rate.

【0020】次いで、本発明では、塩を除去した後の未
反応ショ糖とDMSOを含む水溶液から水をさらに除去
する。水が除去されないまま次の反応系に再使用すると
、水と触媒とが反応して水酸化カリを生成し反応を阻害
することとなるので、触媒と混合以前に水を除去する必
要がある。水溶液から水を除去するには、ショ糖の安定
性の点から、減圧化で蒸留除去するのが好ましく、水の
濃度は未反応ショ糖DMSO溶液中、通常10重量%以
下、好ましくは1重量%以下とする。
Next, in the present invention, water is further removed from the aqueous solution containing unreacted sucrose and DMSO after removing the salt. If the water is reused in the next reaction system without being removed, the water and catalyst will react to produce potassium hydroxide, which will inhibit the reaction, so it is necessary to remove the water before mixing with the catalyst. In order to remove water from an aqueous solution, from the viewpoint of stability of sucrose, it is preferable to distill it off under reduced pressure, and the concentration of water is usually 10% by weight or less, preferably 1% by weight in the unreacted sucrose DMSO solution. % or less.

【0021】また、塩を除去した後の未反応ショ糖とD
MSOを含む水溶液中に、有機溶媒の残留がある場合は
、これも除去することが好ましい。水の場合と同様に減
圧下で蒸留除去し、有機溶媒の濃度は未反応ショ糖DM
SO溶液中、通常10重量%以下、好ましくは1重量%
以下とする。この様にして水及び有機溶媒を除去した未
反応ショ糖DMSO溶液は、通常は新ショ糖と混合して
次の反応系へ再使用される。本発明法による未反応ショ
糖DMSO溶液は塩を含まないものであり、次の反応系
へ繰り返し再使用しても、エステル交換反応が遅延する
ことがないものである。
[0021] Also, unreacted sucrose and D after salt removal
If there is any residual organic solvent in the aqueous solution containing MSO, it is preferable to remove this as well. Distillation is carried out under reduced pressure in the same manner as in the case of water, and the concentration of the organic solvent is equal to that of unreacted sucrose DM.
In SO solution, usually 10% by weight or less, preferably 1% by weight
The following shall apply. The unreacted sucrose DMSO solution from which water and organic solvent have been removed in this manner is usually mixed with fresh sucrose and reused in the next reaction system. The unreacted sucrose DMSO solution obtained by the method of the present invention does not contain salt, and even if it is repeatedly reused in the next reaction system, the transesterification reaction will not be delayed.

【0022】[0022]

【実施例】以下に実施例を挙げて詳述するが、本発明は
その要旨を超えない限りこれらの実施例によって限定さ
れるものではない。 参考例〔従来法・新ショ糖使用〕 反応・濃縮工程 充分に乾燥させた攪拌機付きの30リットル容量の反応
器にショ糖3743g、および溶媒としてDMSO11
.5Kgを仕込み、20mmHgの圧力下で溶媒を沸騰
させ、その溶媒蒸気を冷却して凝縮・還流させ、かつ2
0分後から溶媒の一部を留去し系内を脱水した。DMS
Oの留出量が1Kgに達した点でその留去を止め、系内
液の水分量を測定したところ、その含水量は0.06重
量%であった。
[Examples] The present invention will be described in detail below with reference to Examples, but the present invention is not limited by these Examples unless the gist thereof is exceeded. Reference example [Conventional method/Using new sucrose] Reaction/concentration process 3743 g of sucrose in a sufficiently dried 30 liter reactor equipped with a stirrer and 11 DMSO as a solvent.
.. 5 kg, boil the solvent under a pressure of 20 mmHg, cool the solvent vapor to condense and reflux, and
After 0 minutes, part of the solvent was distilled off to dehydrate the system. DMS
When the distilled amount of O reached 1 kg, the distillation was stopped and the water content of the system liquid was measured, and the water content was 0.06% by weight.

【0023】次いで、これに無水炭酸カリウム12g、
パルミチン酸メチル529.9g、ステアリン酸メチル
227.1gを添加し、20mmHgでDMSOを沸騰
させながら、その蒸気を冷却し、凝縮させて還流すると
ともに、生成するメタノールを反応系外に留出させなが
ら反応させた。反応温度は平均90℃で、脂肪酸メチル
99%転換率の到達時間は2.8時間であった。反応は
3時間行った。
Next, 12 g of anhydrous potassium carbonate,
529.9 g of methyl palmitate and 227.1 g of methyl stearate were added, and while boiling DMSO at 20 mmHg, the vapor was cooled, condensed and refluxed, and the methanol produced was distilled out of the reaction system. Made it react. The reaction temperature was an average of 90°C, and the time required to reach 99% conversion of fatty acid methyl was 2.8 hours. The reaction was carried out for 3 hours.

【0024】反応終了後乳酸の50%水溶液32gを添
加し、触媒を失活させた。反応混合物をゲルパーミエー
ションクロマトグラフィーで分析したところ、SE組成
は、モノエステル80.7%、ジエステル17.0%、
トリエステル2.3%(面積百分率)であり、ガスクロ
マトグラフィーで分析したパルミチン酸メチルおよびス
テアリン酸メチルの残存量から算出した脂肪酸メチルの
転換率は99.6%であることが認められた。反応器か
らとりだした反応混合物の組成は、未反応ショ糖19.
9重量%、SE9.7重量%、塩0.15重量%、DM
SO70.2重量%であった。
After the reaction was completed, 32 g of a 50% aqueous solution of lactic acid was added to deactivate the catalyst. When the reaction mixture was analyzed by gel permeation chromatography, the SE composition was 80.7% monoester, 17.0% diester,
It was found that the triester content was 2.3% (area percentage), and the conversion rate of fatty acid methyl calculated from the remaining amounts of methyl palmitate and methyl stearate analyzed by gas chromatography was 99.6%. The composition of the reaction mixture taken out from the reactor was 19.5% of unreacted sucrose.
9% by weight, SE9.7% by weight, salt 0.15% by weight, DM
The SO content was 70.2% by weight.

【0025】反応器からとりだした反応混合物15Kg
は横形薄膜蒸発器(伝熱面積0.1m2 、株式会社日
立製作所製)を使用し、加熱部スチーム温度110℃、
圧力10mmHgの条件下、7Kg/Hrの供給速度で
通液したところ、排出液量は5.4Kgであった。濃縮
反応混合物の組成分析の結果、ショ糖49.5重量%、
SE24.1重量%、塩0.4重量%、DMSO26.
0重量%であった。 液─液抽出工程 上記の濃縮反応混合物を10%含水イソブタノール15
.5Kgに溶解させた。次に、純水15.5Kgを加え
てSE−イソブタノール溶液中の未反応ショ糖とDMS
Oを2リットル分液ロートを繰り返し使用して水相側に
抽出した。更に、SE─イソブタノール溶液に乳酸カリ
1500ppmを含む純水を加え微量残存する未反応シ
ョ糖とDMSOを回収した。水相側はフラッシュエバポ
レーターを使用して水を除去した後、未反応ショ糖─D
MSO溶液を回収した。回収した未反応ショ糖中の塩濃
度は1.8重量%であった。
15 kg of reaction mixture taken out from the reactor
A horizontal thin film evaporator (heat transfer area 0.1 m2, manufactured by Hitachi, Ltd.) was used, and the steam temperature in the heating part was 110°C.
When the liquid was passed under the condition of a pressure of 10 mmHg and a supply rate of 7 kg/Hr, the amount of liquid discharged was 5.4 kg. As a result of compositional analysis of the concentrated reaction mixture, sucrose was 49.5% by weight;
SE24.1% by weight, salt 0.4% by weight, DMSO26.
It was 0% by weight. Liquid-liquid extraction process The above concentrated reaction mixture was extracted with 10% aqueous isobutanol 15
.. It was dissolved in 5 kg. Next, add 15.5 kg of pure water to mix the unreacted sucrose and DMS in the SE-isobutanol solution.
O was extracted into the aqueous phase using a 2 liter separatory funnel repeatedly. Further, pure water containing 1500 ppm of potassium lactate was added to the SE-isobutanol solution to recover trace amounts of unreacted sucrose and DMSO. After removing water from the aqueous phase using a flash evaporator, unreacted sucrose-D
The MSO solution was collected. The salt concentration in the recovered unreacted sucrose was 1.8% by weight.

【0026】比較例1〜4〔従来法による繰り返し反応
〕 参考例で水相側から回収した未反応ショ糖(2000g
)─DMSO溶液を再使用し、新ショ糖1743gを加
えてショ糖原料とし、参考例と同様の原料仕込み組成と
なるようにして、反応、濃縮、液─液抽出、ショ糖─D
MSO溶液の回収、新ショ糖を加えての再使用を4回繰
り返し、SEを製造し、脂肪酸メチル99%転換率の到
達時間を測定した。その結果を後記の表1に示した。
Comparative Examples 1 to 4 [Repeated reactions by conventional method] Unreacted sucrose (2000 g) recovered from the aqueous phase in the reference example
) - Reusing the DMSO solution, adding 1743 g of new sucrose to make sucrose raw material, and making the raw material preparation composition similar to the reference example, reaction, concentration, liquid-liquid extraction, sucrose-D
Recovery of the MSO solution and reuse with addition of fresh sucrose were repeated four times to produce SE, and the time required to reach 99% fatty acid methyl conversion was measured. The results are shown in Table 1 below.

【0027】実施例1〔未反応ショ糖の回収、塩の除去
〕 比較例の繰り返し反応1回目(比較例1)の液─液抽出
工程後の、ショ糖中の塩濃度が3.0重量%の未反応シ
ョ糖を含む水相側溶液(未反応ショ糖6.9重量%、塩
0.2重量%、DMSO3.6重量%、水80.2重量
%、アルコール9.1重量%)をイオン交換樹脂処理し
た。イオン交換樹脂は内径5cm、高さ80cmのジャ
ケット付きのガラス製カラム充填塔3本に塩素型(Cl
型)イオン交換樹脂PA308、アルカリ型(OH型)
イオン交換樹脂PA308および酸型(COOH型)イ
オン交換樹脂TWK100(いずれも三菱化成株式会社
製)をそれぞれ800ml充填し、40℃に保持した。 水相側溶液は2.4リットル/Hrの速度で上記3本の
樹脂充填塔を順次通液させた。TWK100充填塔から
排出する溶液の色調は微黄色であり、塩除去率は95%
であった。TWK100から排出する水溶液より、ロー
タリーエバポレーターで水及びアルコールを回収するこ
とによって回収ショ糖─DMSO溶液(未反応ショ糖6
5.7重量%、DMSO34.2重量%、塩0.1重量
%)を得た。回収ショ糖中の塩濃度は0.2重量%であ
った。
Example 1 [Recovery of unreacted sucrose, removal of salt] The salt concentration in sucrose after the liquid-liquid extraction step of the first repeated reaction of comparative example (comparative example 1) was 3.0 weight Aqueous phase side solution containing % of unreacted sucrose (6.9% by weight of unreacted sucrose, 0.2% by weight of salt, 3.6% by weight of DMSO, 80.2% by weight of water, 9.1% by weight of alcohol) was treated with ion exchange resin. The ion exchange resin was packed in three jacketed glass columns with an inner diameter of 5 cm and a height of 80 cm.
Type) Ion exchange resin PA308, alkaline type (OH type)
800 ml each of ion exchange resin PA308 and acid type (COOH type) ion exchange resin TWK100 (both manufactured by Mitsubishi Kasei Corporation) were filled and maintained at 40°C. The aqueous phase solution was passed through the three resin-packed towers in sequence at a rate of 2.4 liters/hour. The color of the solution discharged from the TWK100 packed tower is slightly yellow, and the salt removal rate is 95%.
Met. A rotary evaporator is used to recover water and alcohol from the aqueous solution discharged from TWK100.
5.7% by weight, 34.2% by weight of DMSO, and 0.1% by weight of salt). The salt concentration in the recovered sucrose was 0.2% by weight.

【0028】実施例2〔未反応ショ糖の回収、塩の除去
〕 比較例の繰り返し反応4回目(比較例4)の液─液抽出
工程後の、ショ糖の塩濃度が7.2重量%の未反応ショ
糖を含む水相側溶液(未反応ショ糖6.9重量%、塩0
.5重量%、DMSO3.6重量%、水79.9重量%
、アルコール9.1重量%)を使用した以外は実施例1
と同様の方法でイオン交換樹脂処理した。TWK100
充填塔から排出する溶液の色調は微黄色であり、塩除去
率は93%であった。TWK100から排出する水溶液
より、ロータリーエバポレーターで水及びアルコールを
回収することによって回収ショ糖─DMSO溶液(未反
応ショ糖65.5重量%、DMSO34.1重量%、塩
0.4重量%)を得た。回収ショ糖中の塩濃度は0.6
重量%であった。実施例1および2より判るように、本
発明の方法のイオン交換樹脂処理を用いれば反応混合物
中から塩の蓄積の極めて少ない高濃度の未反応ショ糖を
分離・回収することができる。
Example 2 [Recovery of unreacted sucrose, removal of salt] The salt concentration of sucrose after the liquid-liquid extraction step of the fourth repeated reaction of the comparative example (comparative example 4) was 7.2% by weight. Aqueous phase side solution containing unreacted sucrose (6.9% by weight of unreacted sucrose, 0 salt)
.. 5% by weight, DMSO 3.6% by weight, water 79.9% by weight
, alcohol 9.1% by weight) was used.
The sample was treated with ion exchange resin in the same manner as above. TWK100
The color tone of the solution discharged from the packed column was slightly yellow, and the salt removal rate was 93%. A recovered sucrose-DMSO solution (65.5% by weight of unreacted sucrose, 34.1% by weight of DMSO, 0.4% by weight of salt) was obtained by recovering water and alcohol from the aqueous solution discharged from TWK100 using a rotary evaporator. Ta. The salt concentration in recovered sucrose is 0.6
% by weight. As can be seen from Examples 1 and 2, by using the ion exchange resin treatment of the method of the present invention, it is possible to separate and recover unreacted sucrose at a high concentration with extremely little salt accumulation from the reaction mixture.

【0029】実施例3〜6〔本発明法の工程による繰り
返し反応〕 実施例2で回収した未反応ショ糖(2000g)─DM
SO溶液を再使用し、新ショ糖1743gを加えてショ
糖原料とした。当該ショ糖原料を用い、参考例と同様の
原料仕込み組成となるようにして、反応、濃縮、液─液
抽出、イオン交換処理による塩の除去および未反応ショ
糖─DMSO溶液の回収を行った。これに引き続けて、
新ショ糖を加えての再使用を全4回繰り返し、SEを製
造し、脂肪酸メチル99%転換率の到達時間をそれぞれ
測定した。その結果を後記の表2に示した。
Examples 3 to 6 [Repeated reactions according to the steps of the method of the present invention] Unreacted sucrose (2000 g) recovered in Example 2 - DM
The SO solution was reused and 1743 g of fresh sucrose was added to obtain a sucrose raw material. Using the sucrose raw material, reaction, concentration, liquid-liquid extraction, removal of salts by ion exchange treatment, and recovery of unreacted sucrose-DMSO solution were performed with the same raw material preparation composition as in the reference example. . Following this,
Reuse with fresh sucrose was repeated a total of 4 times to produce SE, and the time required to reach 99% fatty acid methyl conversion was measured for each. The results are shown in Table 2 below.

【0030】実施例3〜6より判るように、比較例1〜
4と比して、本発明法は繰り返し未反応回収ショ糖を再
使用しても塩の蓄積は抑えられ、新ショ糖を使用した場
合とほぼ同等な脂肪酸メチル99%転換率の到達時間が
得られる。
As can be seen from Examples 3 to 6, Comparative Examples 1 to 6
4, the method of the present invention suppresses salt accumulation even when unreacted recovered sucrose is repeatedly reused, and takes almost the same amount of time to reach 99% fatty acid methyl conversion rate as when fresh sucrose is used. can get.

【0031】[0031]

【表1】[Table 1]

【0032】[0032]

【表2】[Table 2]

【0033】[0033]

【発明の効果】本発明の方法によれば、反応混合物中か
ら高純度の未反応ショ糖を分離・回収して、反応に再使
用し、繰り返し使用することにより経済的に効率よくシ
ョ糖脂肪酸エステルを製造することができ、再使用して
もエステル交換反応を遅延させることがない。また、液
体系でショ糖の回収がなされる為、連続運転が容易であ
り工業的に優れた方法である。
[Effects of the Invention] According to the method of the present invention, highly pure unreacted sucrose is separated and recovered from the reaction mixture, reused in the reaction, and repeatedly used to economically and efficiently produce sucrose and fatty acids. Esters can be produced and reused without slowing the transesterification reaction. In addition, since sucrose is recovered in a liquid system, continuous operation is easy and it is an industrially excellent method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、本発明の工程の一例を示す簡単なフロ
ー図である。
FIG. 1 is a simple flow diagram illustrating an example of the process of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  アルカリの存在下、ジメチルスルホキ
シドを反応溶媒として、ショ糖と脂肪酸低級アルコール
エステルを反応させてショ糖脂肪酸エステルを製造する
方法において、■  反応混合物を有機溶媒および水と
混合し、次いでショ糖脂肪酸エステルを含む有機溶媒相
と、未反応ショ糖、塩およびジメチルスルホキシドを含
む水相とに分離し、■  ■で得た有機溶媒相から有機
溶媒を除去してショ糖脂肪酸エステルを回収し、■  
■で得た水相をイオン交換樹脂で処理し、■■で得た水
溶液から水を除去し、■  ■で得た未反応ショ糖ジメ
チルスルホキシド溶液を次の反応系に再使用することを
特徴とするショ糖脂肪酸エステルの製造方法。
Claim 1. A method for producing sucrose fatty acid ester by reacting sucrose with fatty acid lower alcohol ester in the presence of an alkali using dimethyl sulfoxide as a reaction solvent, comprising: (1) mixing the reaction mixture with an organic solvent and water; Next, the organic solvent phase containing the sucrose fatty acid ester and the aqueous phase containing unreacted sucrose, salt, and dimethyl sulfoxide are separated, and the organic solvent is removed from the organic solvent phase obtained in step 2 to remove the sucrose fatty acid ester. Collect and ■
The aqueous phase obtained in step (2) is treated with an ion exchange resin, water is removed from the aqueous solution obtained in step (2), and the unreacted sucrose dimethyl sulfoxide solution obtained in step (2) is reused in the next reaction system. A method for producing a sucrose fatty acid ester.
【請求項2】  水相のイオン交換樹脂処理において、
■  水相として得られた水溶液を陰イオン交換樹脂で
処理することにより、塩に相当する酸を吸着させて除去
し、■  ■で得た水溶液を陽イオン交換樹脂で処理す
ることにより、アルカリを吸着させて除去し、未反応シ
ョ糖およびジメチルスルホキシドを含む水溶液を回収す
ることを特徴とする請求項1記載の製造方法。
Claim 2: In the ion exchange resin treatment of the aqueous phase,
■ By treating the aqueous solution obtained as the aqueous phase with an anion exchange resin, the acid corresponding to the salt is adsorbed and removed, and ■ By treating the aqueous solution obtained in ■ with a cation exchange resin, the alkali is removed. 2. The manufacturing method according to claim 1, wherein the aqueous solution containing unreacted sucrose and dimethyl sulfoxide is recovered by adsorption and removal.
JP1810691A 1991-02-08 1991-02-08 Production of sugar fatty acid ester Pending JPH04257598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1810691A JPH04257598A (en) 1991-02-08 1991-02-08 Production of sugar fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1810691A JPH04257598A (en) 1991-02-08 1991-02-08 Production of sugar fatty acid ester

Publications (1)

Publication Number Publication Date
JPH04257598A true JPH04257598A (en) 1992-09-11

Family

ID=11962374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1810691A Pending JPH04257598A (en) 1991-02-08 1991-02-08 Production of sugar fatty acid ester

Country Status (1)

Country Link
JP (1) JPH04257598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113586A (en) * 1994-10-17 1996-05-07 Mitsubishi Chem Corp Transportation of dimethyl sulfoxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113586A (en) * 1994-10-17 1996-05-07 Mitsubishi Chem Corp Transportation of dimethyl sulfoxide

Similar Documents

Publication Publication Date Title
JP5013879B2 (en) Organic acid recovery
US4954621A (en) Process for producing sucrose fatty acid polyester
AU2003298422B2 (en) Continuous method for preparing ethyl lactate
KR20140030255A (en) Method for recovering acetic acid
JP4036482B2 (en) Simultaneous production of esters
JP2956504B2 (en) Method for producing sucrose fatty acid ester
JP3999926B2 (en) Method for purifying methacrylate ester
WO2014010510A1 (en) Method for producing bisphenol a
JP2003507444A (en) Non-corrosive catalytic hydrolysis of fatty acid esters to fatty acids
CN112739675A (en) Method for recovering high-quality 3-methyl-but-3-en-1-ol
JP3013451B2 (en) Method for producing sucrose fatty acid ester
JPH04257598A (en) Production of sugar fatty acid ester
WO2001056970A1 (en) PROCESS FOR PRODUCTION OF HIGH-PURITY BIS-β-HYDROXYETHYL TEREPHTHALATE
US20130331601A1 (en) Method for recovery of organic acid from dilute aqueous solution
US4360695A (en) Continuous preparation of adiptic acid
JP3617064B2 (en) Method for producing sucrose fatty acid ester
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone
JPH04243890A (en) Production of sucrose fatty acid ester
JP2016141668A (en) Method for producing sucrose fatty acid ester
JP2003267904A (en) Method for producing ditrimethylolpropane
JPH0417169B2 (en)
JPH01106838A (en) Method for purifying p-hydroxybenzaldehyde
JPS61167633A (en) Purification of allyl alcohol
JP2001011020A (en) Recovery of component
WO2009026774A1 (en) The process of producing formic acid with phosphoric acid extracted and sodium formate