JPH04257544A - Glycerol derivative - Google Patents

Glycerol derivative

Info

Publication number
JPH04257544A
JPH04257544A JP1887391A JP1887391A JPH04257544A JP H04257544 A JPH04257544 A JP H04257544A JP 1887391 A JP1887391 A JP 1887391A JP 1887391 A JP1887391 A JP 1887391A JP H04257544 A JPH04257544 A JP H04257544A
Authority
JP
Japan
Prior art keywords
phospholipids
fatty acids
membrane
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1887391A
Other languages
Japanese (ja)
Other versions
JP2670908B2 (en
Inventor
Hideto Mori
英登 森
Naoyuki Nishikawa
尚之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3018873A priority Critical patent/JP2670908B2/en
Priority to US07/833,559 priority patent/US5221796A/en
Publication of JPH04257544A publication Critical patent/JPH04257544A/en
Application granted granted Critical
Publication of JP2670908B2 publication Critical patent/JP2670908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a new glycerol derivative effective in synthesizing isoprenoid type phospholipids, excellent in biocompatibility, good in membrane fluidity, having a high barrier ability of the membrane and improved in dispersion and chemical stabilities. CONSTITUTION:A compound expressed by formula I [(n) is 1, 2 or 3; the molecule may be either an optically active substance or a racemic modification as to the stereochemistry of asymmetric carbon atoms present therein], e.g. a compound expressed by formula II. The aforementioned compound can be produced by successively passing wholly naturally occurring (7R,11R)-phytol which is a diterpene, farnesol that is a sesquiterpene or geraniol which is a monoterpene through respective steps for hydrogenation, oxidation of the alcohol into a carboxylic acid, conversion into an acid chloride, esterification and removal of benzyl group by hydrolysis. Furthermore, if the above-mentioned compound is used, isoprenoid type phospholipids, having excellent properties which cannot be achieved by conventional phospholipids and useful in the field of medicines, pharmacy or cosmetics can be readily synthesized from the easily available raw materials.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は新規なリン脂質合成の重
要中間体となる、グリセロール誘導体に関するものであ
る。 【0002】 【従来技術】一般にリン脂質のような両親媒性分子を水
に分散すると、ある特別な形態の分子集合体状態をとる
ことが知られている。このうちリポソームとは脂質2分
子膜から形成される閉鎖小胞体であり、その内部に水層
を有するため近年、医学、薬学の分野においてこのリポ
ソームに水溶性物質を保持させて薬物運搬体や診断薬と
して利用しようとする試みが多数なされている(例えば
、砂本ら、バイオサイエンスとインダストリー、第47
巻、475 頁、1989年)。また更にリポソームが
持つ保水、保湿効果を利用した化粧品等への利用も試み
られている。 【0003】このようにリン脂質を水に分散させてリポ
ソームや乳液として利用する際最も重要なことは、それ
らが容易に分散し均一な分散液を得ることができるか、
また得られた分散液が安定であるかどうかということで
ある。従って、分散性、安定性の良好な素材を用いるこ
とがきわめて重要であるのは言をまたない。例えばリポ
ソームを例にとって考えてみると、リポソーム脂質2分
子膜は温度によって流動性が大きく変化する(ゲルー液
晶相転移)。ゲル状態と液晶状態での2分子膜中の分子
の動きやすさは側方拡散、フリップーフロップ、交換い
ずれにおいても液晶状態の方がずっと大きいことが知ら
れている。一般に疎水性脂肪酸残基の炭素数の少ないも
のや、不飽和度のたかい脂質で構成されたリポソームは
膜流動性が高く、反対に飽和で炭素数の比較的多いもの
では膜流動性が低く、相転移温度もおおむね高い。従っ
て、用いる脂質の脂肪酸残基の鎖長や不飽和度を変える
ことにより、リポソームの膜流動性およびそれと密接に
関連した脂質の分散性、膜のバリアー能を調節すること
ができる。 【0004】例えば卵黄ホスファチジルコリンのように
不飽和脂肪酸を有する脂質は相転移温度が低いため常温
以上では液晶状態にあり、やわらかい膜を形成する。生
体にとって不飽和脂肪酸を持つ脂質は液晶状態の生体膜
がバリアーとして働くために不可欠のものであり、生物
の膜がこのような性質を獲得したのも、温度などの環境
要因の急激な変化に対して緩衝的に膜物性が変るという
利点があったからと考えられる。このような現象はリポ
ソームを薬物担体として用いる場合にも重要で、例えば
疎水性の薬物をリポソーム膜に組込む際には、飽和脂肪
酸のみからなるリポソームよりも不飽和脂肪酸を含む卵
黄ホスファチジルコリン等の方が分散性が良く、内包効
率の高い場合が多い。 【0005】しかし卵黄ホスファチジルコリンに含まれ
る多価不飽和脂肪酸は酸素によって過酸化反応を受けや
すく、保存安定性が悪いことが大きな欠点である。従っ
て安定性を考慮するなら、酸素の攻撃を受けにくい飽和
脂肪酸のみからなるリン脂質を用いるのが有利である。 しかし例えば天然に存在する飽和リン脂質であるジミリ
ストイルホスファチジルコリンを膜成分としてリポソー
ムを調製しても、相転移温度以上ではグルコースをリポ
ソーム内に保持しておくことが極めて難しい。またジパ
ルミトイルホスファチジルコリンのみからなるリポソー
ムを調製しても不安定であり、すぐに凝集、沈殿してし
まうことが知られている。一般に飽和脂肪酸のみを含む
リン脂質では特に相転移温度以下では配列が密であり、
融通が利かず異種分子を排除、相分離してしまう傾向が
強いため、これらだけでリポソームを調製することは非
現実的である。 【0006】このように生体適合性に優れ、かつ膜流動
性が良好であり、さらに分散性、安定性に優れた性質と
いうのは根本的に相反する性質であり、従来用いられて
きた飽和脂肪酸のみからなるリン脂質でも、不飽和脂肪
酸を有するリン脂質でもこれらの要求を全て満足する素
材はなかったのである。 【0007】そこで我々はこれらの性質を全て満足でき
る素材を探索すべく検討を行った結果、細菌類の生体膜
にその素材を求めた。細菌類は動物や植物と異なり、多
価不飽和脂肪酸を通常生体膜に含んでいない。分岐脂肪
酸(イソ酸とアンチイソ酸)が細菌脂質の主要脂肪酸と
して存在することが日本の研究者によって最初に発見さ
れて30年になる(S. Akashi and K.
 Saito, J. Biochem., 47 巻
、222 頁、1960年)。現在では分岐脂肪酸を生
体脂質の主要脂肪酸としてもつ細菌の種類は数百以上知
られている(T. Kaneda, Bacterio
l. Rev., 41巻、391 頁、1977 年
)。 【0008】そこでこれをモデルとして最近種々の分岐
脂肪酸をもつジアシルホスファチジルコリンが合成され
、相転移温度が測定された。その結果、直鎖酸を有する
リン脂質より分岐脂肪酸を有する脂質の方が相転移温度
が低く、約16〜28℃くらいの差があることが明らか
となった。つまり分岐脂肪酸は相当する直鎖酸より最近
の生体膜の流動性を高めるのに貢献しているのである(
金田敏、バイオサイエンスとインダストリー、48巻、
229 頁、1990 年)。これら分岐脂肪酸は多価
不飽和脂肪酸と異なり酸素の攻撃も受けにくく、化学的
にも安定であるため望ましい素材であると考えられる。 しかしイソ酸やアンチイソ酸は自然界に普遍的に存在す
るものではなく、またこれらは通常疎水部の構造の異な
る混合物であるため分離精製が非常に困難である。残る
手段は化学合成であるが、容易に入手可能な原料が限ら
れており、そこからの炭素鎖伸張に工程数がかかりすぎ
るため大量合成に不向きなのが大きな欠点と考えられる
。 【0009】このような問題を解決するため、近年古細
菌類の生体膜が注目されている。古細菌とは1977年
にWoese らにより多くの生物の16s rRNA
の塩基配列の比較により提唱された概念であり、現在で
は高度好塩菌、イオウ依存性高度好熱菌及びメタン生成
菌の3群が知られている(成書として、古賀洋介著、古
細菌、東京大学出版会、1988年)。古細菌の極性脂
質はこれまで知られているかぎりすべてエーテル結合を
もつグリセロ脂質であり、炭化水素鎖が炭素数20また
は40の飽和イソプレノイドであることが最も大きな特
徴となっている。飽和イソプレノイドもやはり酸素の攻
撃を受けにくく、化学的にも安定であるため、このよう
な脂質をモデルとして人工脂質を設計、合成すれば特異
な性質を有する素材が得られると期待できる。 【0010】鎖状イソプレノイドはイソ酸やアンチイソ
酸と比較して比較的入手が容易であるため、これらを疎
水部に組込んだ脂質の研究が最近報告されるようになっ
てきた(K. Yamauchi et al, Bi
ochim. Biophys. Acta 1003
巻,151 頁,1989年、K.Yamauchi 
et al, J. Am. Chem. Soc.,
 112巻,3188頁,1990年、L.C. St
ewartet al, Chem. Phys. L
ipids 54巻,115 頁,1990年、山内ら
,平成2年度日本化学会春季年会講演予稿集,1793
頁、同1794頁、戸田ら,平成2年度日本化学会春季
年会講演予稿集,1793頁)。その結果、イソプレノ
イド型脂質から形成される脂質2分子膜は低い相転移温
度を有し、かつ高い膜のバリアー能を有することが見出
された。しかしながらこれまでに報告されているイソプ
レノイド型人工脂質の分子設計では、グリセロール部と
炭化水素鎖の連結方法を古細菌の生体膜と同じエーテル
型としているため合成方法に汎用性が乏しく、また大量
合成に不向きなのが大きな欠点となっていた。 【0011】 【発明が解決しようとする課題】上述のように、従来用
いられてきた飽和脂肪酸のみからなるリン脂質でも、不
飽和脂肪酸を有するリン脂質でも我々の要求を全て満足
する素材はなかったのである。特にイソ酸、アンチイソ
酸といった分岐脂肪酸や鎖状イソプレノイド骨格を有す
るリン脂質は有望な性質を有するものと期待されるが、
これらは天然から単離精製するのも、また化学合成する
のも非常に困難であった。そこで本発明の目的は、従来
用いられてきた飽和脂肪酸のみからなるリン脂質や不飽
和脂肪酸を有するリン脂質では達成できない性質、すな
わち生体適合性に優れ、膜流動性が良好かつその膜のバ
リアー能が高く、さらに分散性、化学的安定性に優れた
性質を有するイソプレノイド型リン脂質の合成が容易に
行えるような、汎用性ある重要合成中間体を供給するこ
とにある。 【0012】 【課題を解決するための手段】上記課題は、下記一般式
(I)で表わされるグリセロール誘導体を見出したこと
により達成された。 一般式(I) 【0013】 【化2】 【0014】すなわち本発明は、イソプレノイド骨格を
有する疎水部とグリセロール部との連結方法を、従来知
られていたエーテル結合ではなくエステル結合としたこ
とを特徴とするものである。式中nは1〜3の整数を表
わす。すなわち、n=1の場合は疎水部の炭素骨格がモ
ノテルペン、n=2の場合がセスキテルペン、n=3の
場合がジテルペンということになるが、リポソームのよ
うな脂質2分子膜状態でリン脂質を用いる場合にはn=
3、ミセルとしてリン脂質を用いる場合にはn=1また
は2であることが好ましい。また分子内に存在する不斉
炭素原子の立体化学に関しては、ラセミ体でも光学活性
体でも良い。これらは原料の入手の容易さを考慮して適
宜選択することが可能であるが、イソプレノイド疎水部
の分岐メチル基の立体化学に関しては(R)の絶対立体
配置のものが好ましい。その様な光学活性イソプレノイ
ドは、天然に存在するテルペンを原料として用いても、
また野依らの方法(J.Org. Chem., 53
巻、708 頁、1988年、J. Am. Chem
. Soc., 109巻、1596頁、1987年)
に従い不斉水素添加を行って調製することも可能である
。以下に本発明の化合物の具体例を示すが、本発明はこ
れらに限定されるものではない。 【0015】 【化3】 【0016】次に本発明の化合物の合成方法について、
I−1を例にとって示す。ただしその合成方法は以下の
経路に限定されるものではなく、更にさまざまな方法も
可能である。 【0017】 【化4】 【0018】 【実施例】実施例1  I−1の合成 1)  中間体1の合成 天然ジテルペンである(7R,11R)− フィトール
(200 g )をエタノール(1000 ml )に
溶解し、酸化白金(1 g )を加えたのち反応混合物
を水素雰囲気下6時間室温で撹拌した。反応終了後不溶
性物質をセライト濾過して除き、濾液を減圧濃縮して中
間体1((3RS,7R,11R)− フィタノール)
を油状物として201 g 得た。 IR  νmax (film) 3340 (br 
s), 2960 (s), 2930 (s), 2
870 (s), 1465 (s), 1380 (
s), 1370 (m), 1060 (s), 7
35 (w) cm−1 【0019】2)  中間体2の合成 中間体1(40 g)を四塩化炭素:アセトニトリル:
水=2:2:3の混合溶媒(700 ml)に溶解し、
このものに三塩化ルテニウムn水和物(500 mg)
とメタ過ヨウ素酸ナトリウム(70 g)を加え反応混
合物を室温で四時間激しく撹拌した。反応終了後不溶性
物質をセライト濾過して除き、濾液を塩化メチレンで希
釈し、有機層を分取した後水層を塩化メチレンで抽出し
た。有機層をあわせて水で1回洗浄後無水硫酸ナトリウ
ムで乾燥した。硫酸ナトリウムを濾過して除き、濾液を
減圧濃縮して中間体2((3RS,7R,11R)− 
フィタン酸)を油状物として29 g得た。 IR  νmax (film) 3600−2400
 (br m), 2960 (s), 2930 (
s), 2870 (s), 1715 (s),14
65 (m), 1380 (m), 1370 (w
), 1300 (m), 940 (w) cm−1
【0020】3)  中間体3の合成 中間体2(30 g)のトルエン(150 ml)溶液
に塩化チオニル(18 g)を加え、反応混合物を40
時間撹拌した。ガスの発生が止り反応が終了したのち、
溶媒と過剰の塩化チオニルを常圧で留去した。残渣を減
圧下乾燥し、目的とする中間体3((3RS,7R,1
1R)− フィタノイルクロリド)を油状物として32
 g得た。 IR  νmax (film)  2960 (s)
, 2930 (s), 2870 (s), 180
0 (s), 1465 (s), 1380(s),
 1370 (m), 990 (m), 825 (
s)cm−1 【0021】4)  中間体4の合成 3ーベンジルー sn− グリセロール(5.4 g,
  文献[Synthesis 503 頁,1985
年]記載の方法により調製)とジイソプロピルエチルア
ミン(10 g)の塩化メチレン(100 ml)溶液
に、中間体3(22.1 g)の塩化メチレン(50 
ml)溶液を加え、反応混合物を触媒量の4−N,N−
ジメチルアミノピリジンの存在下室温で20時間撹拌し
た。反応混合物を水、飽和塩化ナトリウム水溶液で洗浄
後無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾
過して除き、濾液を減圧濃縮した。残渣をシリカゲルク
ロマトグラフィー(溶出液  ヘキサン/酢酸エチル=
20/1)で精製し、中間体4を油状物質として19 
g  得た。 IR  νmax (film) 3030 (w),
 2960 (s), 2930 (s), 2870
 (s), 1745 (s), 1500 (w),
 1460 (s), 1380 (s), 1370
 (m), 1245 (m), 1165 (s),
 1120 (s), 1110 (sh), 730
 (m), 695 (s)cm−1【0022】5)
  I−1の合成 中間体4(10 g)の酢酸エチル(200 ml)溶
液に5 % パラジウム−炭素(1 g)を加え、反応
混合物を水素雰囲気下6時間室温で撹拌した。反応終了
後不溶性物質をセライト濾過して除き、濾液を減圧濃縮
して目的とするI−1を油状物として8.6 g 得た
。 IR  νmax (film) 3460 (br 
m), 2950 (s), 2920 (s), 2
870 (s), 1745 (s), 1465 (
s), 1380 (s), 1370 (sh), 
1240 (m), 1165 (s), 1130 
(m), 1100 (w),1045 (m)cm−
1 TLC(Merck Art 5715プレート使用、
展開溶媒:ヘキサン/酢酸エチル=3/1)Rf 0.
51 元素分析  計算値: C43H84O5: C
, 75.88; H, 12.35 %. 実測値:
 C, 75.82; H, 12.30 %. 【0
023】実施例2  I−2の合成天然に存在するセス
キテルペンであるファルネソールを出発原料とし、実施
例1と同様の方法により水素添加、アルコールのカルボ
ン酸への酸化、酸塩化物への変換、エステル化、加水素
分解によるベンジル基の除去をこの順に行い、化合物I
−2を油状物として得た。 IR  νmax (film) 3450 (br 
m), 2960 (s), 2930 (s), 2
870 (s), 1745 (s), 1465 (
s), 1380 (s), 1370 (m), 1
240(m), 1165 (s), 1045 (m
)cm−1TLC(Merck Art 5715プレ
ート使用、展開溶媒:ヘキサン/酢酸エチル=3/1)
Rf 0.45 元素分析  計算値: C33H64
O5: C, 73.33; H, 11.85 %.
 実測値: C, 73.06; H, 12.04 
%. 【0024】実施例3  I−3の合成天然に存
在するモノテルペンであるゲラニオールを出発原料とし
、実施例1と同様の方法により水素添加、アルコールの
カルボン酸への酸化、酸塩化物への変換、エステル化、
加水素分解によるベンジル基の除去をこの順に行い、化
合物I−3を油状物として得た。 IR  νmax (film) 3450 (br 
s), 2960 (s), 2930 (s), 2
870 (s), 1745 (s), 1460 (
s), 1380 (m), 1370 (sh), 
1240 (s), 1165 (s), 1045 
(s) cm−1TLC(Merck Art 571
5プレート使用、展開溶媒:ヘキサン/酢酸エチル=3
/1)Rf 0.40 元素分析  計算値: C23
H44O5: C, 69.00; H, 11.00
 %. 実測値: C, 68.69; H, 11.
23 %. 【0025】 【発明の効果】本発明の化合物を用いることにより、以
下のような顕著な効果を得ることができる。 (1)  グリセロール部と炭化水素鎖の連結方法を古
細菌の生体膜脂質にみられるエーテル型ではなく、エス
テル結合としているため合成が容易であり、特に大量合
成に非常に有利である。 (2)原料となる鎖状イソプレノイドは、イソ酸やアン
チイソ酸と比較して構造や立体化学の確実なものが容易
に入手できる。 (3)本発明の化合物は、イソプレノイド型リン脂質の
合成が容易に行えるような重要中間体である。このよう
なリン脂質は従来用いられてきた飽和脂肪酸のみからな
るリン脂質や不飽和脂肪酸を有するリン脂質では達成で
きない性質、すなわち生体適合性に優れ、膜流動性が良
好かつその膜のバリアー能が高く、さらに分散性、化学
的安定性に特に優れた性質を有するものであると考えら
れる。
Description: [0001] The present invention relates to glycerol derivatives, which are important intermediates for novel phospholipid synthesis. BACKGROUND OF THE INVENTION It is generally known that when amphipathic molecules such as phospholipids are dispersed in water, they form a special form of molecular assembly. Among these, liposomes are closed endoplasmic reticulum formed from a lipid bilayer membrane, and have a water layer inside. In recent years, liposomes have been used in the medical and pharmaceutical fields to hold water-soluble substances and to use them as drug carriers and diagnostic agents. Many attempts have been made to use it as a medicine (for example, Sunamoto et al., Bioscience and Industry, Vol. 47).
Vol. 475, 1989). Furthermore, attempts are being made to utilize liposomes in cosmetics and the like by taking advantage of their water-retaining and moisturizing effects. [0003] When dispersing phospholipids in water and using them as liposomes or emulsions, the most important thing is whether they can be easily dispersed and a uniform dispersion can be obtained.
Another issue is whether the resulting dispersion is stable. Therefore, it goes without saying that it is extremely important to use a material with good dispersibility and stability. Taking liposomes as an example, the fluidity of the liposomal lipid bilayer membrane changes significantly depending on temperature (gel-liquid crystal phase transition). It is known that the ease of movement of molecules in a bilayer film in the gel state and in the liquid crystal state is much greater in the liquid crystal state, regardless of lateral diffusion, flip-flop, or exchange. In general, liposomes composed of hydrophobic fatty acid residues with a small number of carbon atoms or highly unsaturated lipids have high membrane fluidity, whereas liposomes that are saturated and have a relatively large number of carbon atoms have low membrane fluidity. The phase transition temperature is also generally high. Therefore, by changing the chain length and degree of unsaturation of the fatty acid residues of the lipid used, the membrane fluidity of the liposome and the closely related lipid dispersibility and membrane barrier ability can be adjusted. [0004] For example, lipids containing unsaturated fatty acids such as egg yolk phosphatidylcholine have a low phase transition temperature, so they are in a liquid crystal state above room temperature and form a soft film. Lipids containing unsaturated fatty acids are essential for living organisms in order for biological membranes in a liquid crystal state to function as barriers, and biological membranes have acquired this property due to sudden changes in environmental factors such as temperature. This is thought to be due to the advantage that the physical properties of the film change in a buffering manner. This phenomenon is also important when liposomes are used as drug carriers; for example, when incorporating hydrophobic drugs into liposome membranes, it is better to use egg yolk phosphatidylcholine containing unsaturated fatty acids than liposomes made only of saturated fatty acids. It often has good dispersibility and high inclusion efficiency. [0005] However, the polyunsaturated fatty acids contained in egg yolk phosphatidylcholine are susceptible to peroxidation reactions due to oxygen and have poor storage stability, which is a major drawback. Therefore, in consideration of stability, it is advantageous to use phospholipids consisting only of saturated fatty acids that are less susceptible to oxygen attack. However, even if liposomes are prepared using dimyristoyl phosphatidylcholine, a naturally occurring saturated phospholipid, as a membrane component, it is extremely difficult to retain glucose within the liposomes at temperatures above the phase transition temperature. Furthermore, it is known that even if liposomes made only of dipalmitoylphosphatidylcholine are prepared, they are unstable and readily aggregate and precipitate. In general, phospholipids containing only saturated fatty acids have a dense arrangement, especially below the phase transition temperature.
It is unrealistic to prepare liposomes using these alone because they are inflexible and tend to exclude foreign molecules and cause phase separation. [0006] As described above, excellent biocompatibility, good membrane fluidity, and excellent dispersibility and stability are fundamentally contradictory properties, and conventionally used saturated fatty acids There has been no material that satisfies all of these requirements, whether it is a phospholipid consisting solely of phospholipids or a phospholipid containing unsaturated fatty acids. [0007] Therefore, we conducted an investigation to find a material that satisfies all of these properties, and as a result, we found the material in the biomembranes of bacteria. Bacteria, unlike animals and plants, do not normally contain polyunsaturated fatty acids in their biological membranes. It has been 30 years since Japanese researchers first discovered that branched fatty acids (isoacids and antiisoacids) exist as the main fatty acids in bacterial lipids (S. Akashi and K.
Saito, J. Biochem. , vol. 47, p. 222, 1960). At present, more than several hundred types of bacteria are known that have branched fatty acids as the main fatty acids in biological lipids (T. Kaneda, Bacterio
l. Rev. , vol. 41, p. 391, 1977). Using this as a model, diacylphosphatidylcholines with various branched fatty acids were recently synthesized, and their phase transition temperatures were measured. As a result, it was revealed that the phase transition temperature of lipids having branched fatty acids is lower than that of phospholipids having straight chain acids, and there is a difference of about 16 to 28°C. In other words, branched fatty acids contribute more to the fluidity of modern biological membranes than their straight-chain counterparts (
Satoshi Kaneda, Bioscience and Industry, vol. 48,
229, 1990). These branched fatty acids are considered to be desirable materials because, unlike polyunsaturated fatty acids, they are less susceptible to oxygen attack and are chemically stable. However, isoacids and antiisoacids are not universally present in nature, and since they are usually mixtures with different hydrophobic structures, it is very difficult to separate and purify them. The remaining method is chemical synthesis, but the major drawbacks are that easily available raw materials are limited and carbon chain extension from there requires too many steps, making it unsuitable for mass synthesis. [0009] In order to solve these problems, biomembranes of archaea have recently attracted attention. In 1977, Woese et al.
This concept was proposed by comparing the base sequences of , University of Tokyo Press, 1988). All archaeal polar lipids known so far are glycerolipids with ether bonds, and their most significant feature is that their hydrocarbon chains are saturated isoprenoids with 20 or 40 carbon atoms. Saturated isoprenoids are also less susceptible to oxygen attack and are chemically stable, so if artificial lipids are designed and synthesized using these lipids as models, it is expected that materials with unique properties will be obtained. Since chain isoprenoids are relatively easy to obtain compared to isoacids and antiisoacids, research on lipids incorporating these into the hydrophobic part has recently been reported (K. Yamauchi et al, Bi
ochim. Biophys. Acta 1003
Volume, 151 pages, 1989, K. Yamauchi
et al, J. Am. Chem. Soc. ,
Volume 112, page 3188, 1990, L. C. St
ewarte al, Chem. Phys. L
ipids vol. 54, p. 115, 1990, Yamauchi et al., Proceedings of the 1990 Spring Annual Meeting of the Chemical Society of Japan, 1793
p. 1794; Toda et al., Proceedings of the 1990 Spring Annual Meeting of the Chemical Society of Japan, p. 1793). As a result, it was found that a lipid bilayer membrane formed from isoprenoid type lipids has a low phase transition temperature and a high membrane barrier ability. However, in the molecular design of isoprenoid-type artificial lipids that have been reported so far, the method of linking the glycerol moiety and the hydrocarbon chain is an ether type, which is the same as in archaeal biomembranes, so the synthesis method is not versatile, and it is difficult to synthesize it in large quantities. A major drawback was that it was unsuitable for [0011] Problems to be Solved by the Invention As mentioned above, there has been no material that satisfies all of our requirements, neither the conventionally used phospholipids consisting only of saturated fatty acids nor the phospholipids containing unsaturated fatty acids. It is. In particular, phospholipids with branched fatty acids such as isoacids and antiisoacids and chain isoprenoid skeletons are expected to have promising properties.
It has been extremely difficult to isolate and purify these from nature and to chemically synthesize them. Therefore, the purpose of the present invention is to provide properties that cannot be achieved with the conventionally used phospholipids consisting only of saturated fatty acids or phospholipids containing unsaturated fatty acids, that is, excellent biocompatibility, good membrane fluidity, and barrier performance of the membrane. The purpose of the present invention is to provide a versatile and important synthetic intermediate that can easily synthesize isoprenoid-type phospholipids that have high dispersibility, excellent dispersibility, and chemical stability. [Means for Solving the Problems] The above objects have been achieved by discovering a glycerol derivative represented by the following general formula (I). General formula (I) ##STR2## That is, the present invention uses an ester bond instead of the conventionally known ether bond as the linking method between the hydrophobic portion having an isoprenoid skeleton and the glycerol portion. This is a characteristic feature. In the formula, n represents an integer of 1 to 3. In other words, when n = 1, the carbon skeleton of the hydrophobic part is a monoterpene, when n = 2, it is a sesquiterpene, and when n = 3, it is a diterpene. When using lipids, n=
3. When using phospholipids as micelles, it is preferable that n=1 or 2. Furthermore, regarding the stereochemistry of the asymmetric carbon atoms present in the molecule, it may be a racemic form or an optically active form. These can be appropriately selected in consideration of the ease of obtaining the raw materials, but with regard to the stereochemistry of the branched methyl group of the isoprenoid hydrophobic part, those having the absolute configuration (R) are preferable. Such optically active isoprenoids can be produced using naturally occurring terpenes as raw materials.
In addition, the method of Noyori et al. (J. Org. Chem., 53
Vol. 708, 1988, J. Am. Chem
.. Soc. , vol. 109, p. 1596, 1987)
It is also possible to prepare by asymmetric hydrogenation according to the following. Specific examples of the compounds of the present invention are shown below, but the present invention is not limited thereto. ##STR3## Next, regarding the method for synthesizing the compound of the present invention,
I-1 will be shown as an example. However, the synthesis method is not limited to the following route, and various other methods are also possible. [Example] Example 1 Synthesis of I-1 1) Synthesis of Intermediate 1 (7R,11R)-phytol (200 g), which is a natural diterpene, was mixed with ethanol (1000 ml). After addition of platinum oxide (1 g), the reaction mixture was stirred at room temperature under hydrogen atmosphere for 6 hours. After the reaction, insoluble substances were removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain intermediate 1 ((3RS,7R,11R)-phytanol).
201 g of was obtained as an oil. IR νmax (film) 3340 (br
s), 2960 (s), 2930 (s), 2
870 (s), 1465 (s), 1380 (
s), 1370 (m), 1060 (s), 7
35 (w) cm-1 2) Synthesis of Intermediate 2 Intermediate 1 (40 g) was mixed with carbon tetrachloride:acetonitrile:
Dissolved in a mixed solvent (700 ml) of water = 2:2:3,
Ruthenium trichloride n-hydrate (500 mg)
and sodium metaperiodate (70 g) were added, and the reaction mixture was vigorously stirred at room temperature for 4 hours. After the reaction was completed, insoluble substances were removed by filtration through Celite, the filtrate was diluted with methylene chloride, the organic layer was separated, and the aqueous layer was extracted with methylene chloride. The organic layers were combined, washed once with water, and then dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain intermediate 2 ((3RS,7R,11R)-
29 g of phytanic acid) was obtained as an oil. IR νmax (film) 3600-2400
(br m), 2960 (s), 2930 (
s), 2870 (s), 1715 (s), 14
65 (m), 1380 (m), 1370 (w
), 1300 (m), 940 (w) cm-1
3) Synthesis of Intermediate 3 Thionyl chloride (18 g) was added to a solution of Intermediate 2 (30 g) in toluene (150 ml), and the reaction mixture was heated to 40 g.
Stir for hours. After gas generation has stopped and the reaction has finished,
The solvent and excess thionyl chloride were distilled off at normal pressure. The residue was dried under reduced pressure to obtain the desired intermediate 3 ((3RS,7R,1
1R)-phytanoyl chloride) as an oil 32
I got g. IR νmax (film) 2960 (s)
, 2930 (s), 2870 (s), 180
0 (s), 1465 (s), 1380 (s),
1370 (m), 990 (m), 825 (
s) cm-1 4) Synthesis of Intermediate 4 3-benzy-sn-glycerol (5.4 g,
Literature [Synthesis 503 pages, 1985
Intermediate 3 (22.1 g) was added to a solution of intermediate 3 (22.1 g) in methylene chloride (100 ml) and diisopropylethylamine (10 g) in methylene chloride (100 ml).
ml) solution and the reaction mixture was diluted with a catalytic amount of 4-N,N-
Stirred at room temperature for 20 hours in the presence of dimethylaminopyridine. The reaction mixture was washed with water and a saturated aqueous sodium chloride solution, and then dried over anhydrous sodium sulfate. The sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was subjected to silica gel chromatography (eluent: hexane/ethyl acetate =
20/1) to produce intermediate 4 as an oily substance, 19
g got it. IR νmax (film) 3030 (w),
2960 (s), 2930 (s), 2870
(s), 1745 (s), 1500 (w),
1460 (s), 1380 (s), 1370
(m), 1245 (m), 1165 (s),
1120 (s), 1110 (sh), 730
(m), 695 (s) cm-1 5)
5% palladium-carbon (1 g) was added to a solution of synthetic intermediate 4 (10 g) of I-1 in ethyl acetate (200 ml), and the reaction mixture was stirred at room temperature under a hydrogen atmosphere for 6 hours. After the reaction was completed, insoluble substances were removed by filtration through Celite, and the filtrate was concentrated under reduced pressure to obtain 8.6 g of the desired I-1 as an oil. IR νmax (film) 3460 (br
m), 2950 (s), 2920 (s), 2
870 (s), 1745 (s), 1465 (
s), 1380 (s), 1370 (sh),
1240 (m), 1165 (s), 1130
(m), 1100 (w), 1045 (m) cm-
1 TLC (using Merck Art 5715 plate,
Developing solvent: hexane/ethyl acetate = 3/1) Rf 0.
51 Elemental analysis Calculated value: C43H84O5: C
, 75.88; H, 12.35%. Actual value:
C, 75.82; H, 12.30%. 0
Example 2 Synthesis of I-2 Using farnesol, a naturally occurring sesquiterpene, as a starting material, hydrogenation, oxidation of alcohol to carboxylic acid, conversion to acid chloride, Esterification and removal of the benzyl group by hydrolysis were performed in this order to obtain compound I.
-2 was obtained as an oil. IR νmax (film) 3450 (br
m), 2960 (s), 2930 (s), 2
870 (s), 1745 (s), 1465 (
s), 1380 (s), 1370 (m), 1
240 (m), 1165 (s), 1045 (m
) cm-1 TLC (Merck Art 5715 plate used, developing solvent: hexane/ethyl acetate = 3/1)
Rf 0.45 Elemental analysis Calculated value: C33H64
O5: C, 73.33; H, 11.85%.
Actual value: C, 73.06; H, 12.04
%. Example 3 Synthesis of I-3 Using geraniol, a naturally occurring monoterpene, as a starting material, hydrogenation, oxidation of alcohol to carboxylic acid, and conversion to acid chloride were carried out in the same manner as in Example 1. , esterification,
The benzyl group was removed by hydrolysis in this order to obtain compound I-3 as an oil. IR νmax (film) 3450 (br
s), 2960 (s), 2930 (s), 2
870 (s), 1745 (s), 1460 (
s), 1380 (m), 1370 (sh),
1240 (s), 1165 (s), 1045
(s) cm-1TLC (Merck Art 571
5 plates used, developing solvent: hexane/ethyl acetate = 3
/1) Rf 0.40 Elemental analysis calculated value: C23
H44O5: C, 69.00; H, 11.00
%. Actual value: C, 68.69; H, 11.
23%. Effects of the Invention By using the compound of the present invention, the following remarkable effects can be obtained. (1) Synthesis is easy because the glycerol moiety and the hydrocarbon chain are linked by an ester bond rather than the ether type found in archaeal biomembrane lipids, which is particularly advantageous for large-scale synthesis. (2) Chain isoprenoids that serve as raw materials can be easily obtained with reliable structure and stereochemistry compared to isoacids and antiisoacids. (3) The compound of the present invention is an important intermediate that facilitates the synthesis of isoprenoid-type phospholipids. These phospholipids have properties that cannot be achieved with conventionally used phospholipids consisting only of saturated fatty acids or phospholipids containing unsaturated fatty acids, namely, excellent biocompatibility, good membrane fluidity, and membrane barrier ability. Furthermore, it is considered to have particularly excellent properties in terms of dispersibility and chemical stability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  下記一般式(I)で表わされるグリセ
ロール誘導体。 一般式(I) 【化1】 式中nは1〜3の整数を表わす。また分子内に存在する
不斉炭素原子の立体化学に関しては、光学活性体でもラ
セミ体でも良い。
1. A glycerol derivative represented by the following general formula (I). General Formula (I) embedded image In the formula, n represents an integer of 1 to 3. Furthermore, regarding the stereochemistry of the asymmetric carbon atoms present in the molecule, it may be an optically active form or a racemic form.
JP3018873A 1991-02-12 1991-02-12 Glycerol derivatives Expired - Fee Related JP2670908B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3018873A JP2670908B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives
US07/833,559 US5221796A (en) 1991-02-12 1992-02-11 Glycerol derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018873A JP2670908B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives

Publications (2)

Publication Number Publication Date
JPH04257544A true JPH04257544A (en) 1992-09-11
JP2670908B2 JP2670908B2 (en) 1997-10-29

Family

ID=11983665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018873A Expired - Fee Related JP2670908B2 (en) 1991-02-12 1991-02-12 Glycerol derivatives

Country Status (1)

Country Link
JP (1) JP2670908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124318A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Branched chain type glycero compound
JP2007291023A (en) * 2006-04-26 2007-11-08 Cosmos Technical Center:Kk Skin care preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIOCHIMICA BIOPHYSICA ACTA,233-1=1971 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124318A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Branched chain type glycero compound
JP4518910B2 (en) * 2004-10-28 2010-08-04 独立行政法人産業技術総合研究所 Branched glycero compounds
JP2007291023A (en) * 2006-04-26 2007-11-08 Cosmos Technical Center:Kk Skin care preparation

Also Published As

Publication number Publication date
JP2670908B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
RU2509071C2 (en) Novel lipid compounds
Bhattacharya et al. Vesicle and tubular microstructure formation from synthetic sugar-linked amphiphiles. Evidence of vesicle formation from single-chain amphiphiles bearing a disaccharide headgroup
EP1202714A1 (en) Vinyl ether lipids with cleavable hydrophilic headgroups
JPH0482893A (en) Peptide-derived phospholipid compound and production of polypeptide liposome using the same
EP1177217B1 (en) Amphiphile cyclodextrins, preparation and use thereof for solubilising organised systems and incorporating hydrophobic molecules
Srisiri et al. Syntheses of Polymerizable Monoacylglycerols and 1, 2-Diacyl-sn-glycerols
JPH04257544A (en) Glycerol derivative
US5221796A (en) Glycerol derivatives
JP2618759B2 (en) Glycerol derivatives
JP2665630B2 (en) Glycerol derivatives
JP2665633B2 (en) Glycerol derivative
FR2878846A1 (en) ANALOGUE COMPOUNDS OF MEMBRANE LIPIDS OF ARCHAEBACTERIA AND LIPOSOMIAL COMPOSITIONS INCORPORATING SUCH COMPOUNDS
JPH09278726A (en) New liposome
JPS638391A (en) Polymerizable beta-glycerophospholipid and production thereof
JPH04266849A (en) Glycerol derivative
JPH0523576A (en) Liposome vesicle
JPH11180929A (en) Ester derivative
JP2661639B2 (en) 1,3-bisphytanyl glyceryl ether type oligosaccharide glycolipid
JPH05320152A (en) Glabridin derivative
JPS63139186A (en) Triple-chain phospholipid compound and production thereof
JP2022171296A (en) Compound having azobenzene structure, vesicle and method for controlling vesicle structure
JPS5940839B2 (en) Method for producing mixed acid type 1,2-diacyl-3-glycerylphosphorylcholines
PT98539B (en) DIFENYL- (1,8-DISSUBSTITUIDE-OCTA-2,3,5-TRI-EN-7-INO) PHOSPHENE OXIDES OF PHARMACEUTICAL COMPOSITIONS AND DNA CLIVING
Yamauchi et al. Archaebacterial Lipids: Stable Anionic Membranes from 1, 2-Bis (dihydrophytyl) glycero-3-phosphate.
JPS62132808A (en) Hair-forming, hair-growing agent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees