JPH04256867A - Three-axis acceleration detecting apparatus - Google Patents

Three-axis acceleration detecting apparatus

Info

Publication number
JPH04256867A
JPH04256867A JP3017616A JP1761691A JPH04256867A JP H04256867 A JPH04256867 A JP H04256867A JP 3017616 A JP3017616 A JP 3017616A JP 1761691 A JP1761691 A JP 1761691A JP H04256867 A JPH04256867 A JP H04256867A
Authority
JP
Japan
Prior art keywords
sphere
inertial sphere
inertial
axis
electromagnetic means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017616A
Other languages
Japanese (ja)
Inventor
Hideo Hiruma
日出男 晝馬
Kazuo Kurasawa
一男 倉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP3017616A priority Critical patent/JPH04256867A/en
Publication of JPH04256867A publication Critical patent/JPH04256867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to detect acceleration accurately with a simple constitution by detecting the position and the size of the shadow of inertial sphere, which is held in a space only with the electromagnetic forces from three-axis electromagnetic means and gravity, caused by the light from a light source. CONSTITUTION:An inertial sphere 2 is a sphere comprising a magnetic body and floated with three-axis electromagnetic means. The sphere can be held at the position of an specified original point, i.e., the intersecting position of the axes of X, Y and Z. Part of the light from a light emitting diode 4 is screened with the inertial sphere 2. Thus, the shadows are formed on light receiving surfaces 51-54 of a photodiode 5 which is divided into four parts. At the time of stop, only the magnetic force of a permanent magnet 1z2 is applied on the inertial sphere 2. Therefore, the inertial sphere 2 is attracted with the magnet and accommodated in the center of the recessed surface. The inertial sphere 2 is the perfect sphere. Therefore, when the sphere is deflected from the original position into the directions of X, Y and Z, the amounts of incident light on the light receiving surfaces 51-54 of the photodiode 5 are changed. Thus, the deflection of the inertial sphere from the original position can be computed based on the relationship among the photocurrertt outputs.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は三軸加速度検出装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-axis acceleration detection device.

【0002】0002

【従来の技術】従来、このような分野の技術として、例
えば特開昭63−118668号公報に示されるものが
知られている。この従来装置では、コイルを巻回した慣
性体がフレキシブルな棒材および板材に保持され、この
慣性体の慣性力による偏位を光学的に検出するようにな
っている。そして、偏位検出量にもとづいてコイルの通
電量をコントロールし、このコントロール量から加速度
を検出するようになっている。
2. Description of the Related Art Conventionally, as a technique in this field, for example, the technique disclosed in Japanese Patent Application Laid-open No. 118668/1983 is known. In this conventional device, an inertial body around which a coil is wound is held by a flexible bar or plate, and the deflection of this inertial body due to inertial force is optically detected. Then, the amount of current applied to the coil is controlled based on the detected amount of deviation, and the acceleration is detected from this controlled amount.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来装置では、フレキシブルな部材によって慣性体を支持
しながら、電磁力による制御を行なっているため、特に
物理的、機械的支持のための構造が複雑になる。また、
物理的、機械的に支持するため慣性力と慣性体の偏位が
完全には対応せず、正確な加速度検出ができない。さら
に、上記公報に開示された方式では、慣性体の偏位はX
,Y,Zの各軸方向に個々にセンサを設けて検出しなけ
ればならず、構成が複雑になる。そしてこれらのために
、加速度の検出精度を上げるのが難しい欠点があった。
[Problems to be Solved by the Invention] However, in the conventional device described above, the inertial body is supported by a flexible member while being controlled by electromagnetic force, so the structure for physical and mechanical support is particularly complicated. become. Also,
Because of the physical and mechanical support, the inertial force and the displacement of the inertial body do not correspond perfectly, making accurate acceleration detection impossible. Furthermore, in the method disclosed in the above publication, the deflection of the inertial body is
, Y, and Z axes for detection, which makes the configuration complicated. For these reasons, it has been difficult to increase the accuracy of acceleration detection.

【0004】そこで、本発明は、簡単な構成によって精
度よく加速度を検出することが可能な三軸加速度検出装
置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a triaxial acceleration detection device that can accurately detect acceleration with a simple configuration.

【0005】[0005]

【課題を解決するための手段】本発明に係る三軸加速度
検出装置は、互いに直交する三軸(X,Y,Z軸)にお
いて、それぞれ同極性の磁極が対応するよに配置された
三軸の電磁手段と、三軸の電磁手段による磁力と重力が
釣り合う位置で空間的に保持されうる磁性体からなる慣
性球体と、慣性球体が空間的に保持される位置を照明す
る点光源と、慣性球体が空間的に保持される位置を挟ん
で前記点光源とは反対の位置に配設され、慣性球体の影
の位置および大きさ検出する光検出手段と、光検出手段
の出力にもとづいて慣性球体の空間的位置を演算し、こ
れにもとづき三軸の電磁手段のそれぞれへの通電量を増
減することにより慣性球体が所定の空間位置に静止する
よう制御する制御手段と、制御手段による三軸の電磁手
段のそれぞれへの制御量にもとづき加速度を検出する検
出手段とを備える。
[Means for Solving the Problems] The three-axis acceleration detection device according to the present invention has three axes (X, Y, and Z axes) that are orthogonal to each other and are arranged so that magnetic poles of the same polarity correspond to each other. an inertial sphere made of a magnetic material that can be held spatially at a position where the magnetic force and gravity of the three-axis electromagnetic means are balanced; a point light source that illuminates the position where the inertial sphere is held spatially; A light detection means is disposed at a position opposite to the point light source across the position where the sphere is spatially held, and detects the position and size of the shadow of the inertial sphere; A control means that calculates the spatial position of the sphere and controls the inertial sphere to remain at a predetermined spatial position by increasing/decreasing the amount of electricity supplied to each of the three axes of electromagnetic means based on the calculated spatial position; and detection means for detecting acceleration based on the control amount to each of the electromagnetic means.

【0006】[0006]

【作用】本発明によれば、慣性体は磁性体からなる球体
をなしているので、三軸の電磁手段による電磁力と重力
のみにより空間的に保持される。また、単一の光学検出
系を設けるにあたり、光源からの光による慣性球体の影
の位置および大きさを検出する素子(例えば4分割ホト
ダイオート)を用いることで、慣性球体の位置を三次元
的に把握できる。このため、加速度による慣性球体の偏
位の検出方向および量にもとづき三軸の電磁手段の通電
量を個別にコントロールすることで、慣性球体を原点位
置(所定の位置)に保持しながら、上記コントロール量
により加速度が求められる。
According to the present invention, since the inertial body is a spherical body made of magnetic material, it is spatially held only by the electromagnetic force and gravity of the three-axis electromagnetic means. In addition, when installing a single optical detection system, the position of the inertial sphere can be detected three-dimensionally by using an element (for example, a 4-segment photodiode) that detects the position and size of the shadow of the inertial sphere caused by the light from the light source. I can understand it. Therefore, by individually controlling the amount of energization of the three-axis electromagnetic means based on the detection direction and amount of displacement of the inertial sphere due to acceleration, the above-mentioned control can be performed while holding the inertial sphere at the origin position (predetermined position). Acceleration is determined by the amount.

【0007】[0007]

【実施例】以下、添付図面を参照して本発明の実施例を
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0008】図1は実施例に係る三軸加速度検出装置の
要部の構成を、斜視図にて概念的に示している。図示の
通り、X,Y,Z軸の三軸電磁手段は、X軸で対向配置
された電磁石1X1,1X2と、Y軸で対向配置された
電磁石1Y1,1Y2と、Z軸で対向配置された電磁石
1Z1および永久磁石1Z2で構成される。ここで、各
軸において電磁石1X1,1X2,1Y1,1Y2,1
Z1と永久磁石1Z2の磁極は、同極が互いに対応する
ようになっており、かつ永久磁石1Z2は慣性球体2を
収容し得るように磁極面が凹面3に形成されている。そ
して、Y軸上には慣性球体2を挟むように、発光ダイオ
ード4と4分割ホトダイオード5が配設されている。こ
こで、4分割ホトダイオード5の受光面51〜54の中
心は、発光ダイオード4と慣性球体2の中心を結ぶY軸
と交差するようになっている。
FIG. 1 conceptually shows, in a perspective view, the configuration of the main parts of a three-axis acceleration detection device according to an embodiment. As shown in the figure, the three-axis electromagnetic means for X, Y, and Z axes includes electromagnets 1X1 and 1X2 facing each other along the X axis, electromagnets 1Y1 and 1Y2 facing each other along the Y axis, and electromagnets 1Y1 and 1Y2 facing each other along the Z axis. It is composed of an electromagnet 1Z1 and a permanent magnet 1Z2. Here, in each axis, electromagnets 1X1, 1X2, 1Y1, 1Y2, 1
The magnetic poles of Z1 and permanent magnet 1Z2 correspond to each other, and the permanent magnet 1Z2 has a magnetic pole surface formed into a concave surface 3 so as to accommodate the inertial sphere 2. A light emitting diode 4 and a four-part photodiode 5 are arranged on the Y-axis so that the inertial sphere 2 is sandwiched therebetween. Here, the centers of the light receiving surfaces 51 to 54 of the four-part photodiode 5 intersect with the Y axis connecting the centers of the light emitting diode 4 and the inertial sphere 2.

【0009】図2は、上記三軸加速度検出装置のY−Z
平面での断面図を、動作時(同図(a))と停止時(同
図(b))について示している。慣性球体2は球体であ
って磁性体からなっているので、三軸の電磁手段によっ
て浮上させ、所定の原点位置すなわちX,Y,Zの各軸
の交差位置に保持できる。ここで、発光ダイオード4か
らの光は一部が慣性球体2によって遮られ、これにより
4分割ホトダイオード5の受光面51〜54に影が形成
される。停止時には慣性球体2に加わる磁力は永久磁石
1Z2のみとなるので、慣性球体2はこれに引き寄せら
れて凹面3の中心に収容される(同図(b)図示)。な
お、図中の符号10はハウジングを示している。
FIG. 2 shows the Y-Z axis of the above three-axis acceleration detection device.
Planar sectional views are shown during operation ((a) in the same figure) and when stopped ((b) in the same figure). Since the inertial sphere 2 is a spherical body made of a magnetic material, it can be levitated by three-axis electromagnetic means and held at a predetermined origin position, that is, at the intersection of the X, Y, and Z axes. Here, a portion of the light from the light emitting diode 4 is blocked by the inertial sphere 2, thereby forming a shadow on the light receiving surfaces 51 to 54 of the four-part photodiode 5. When stopped, the only magnetic force applied to the inertial sphere 2 is the permanent magnet 1Z2, so the inertial sphere 2 is attracted by the permanent magnet 1Z2 and housed in the center of the concave surface 3 (as shown in FIG. 2(b)). Note that the reference numeral 10 in the figure indicates a housing.

【0010】上記の慣性球体2が原点位置にあるとき、
およびこれから偏位したときの影の位置および大きさ、
図3に点線で示す。同図(a)が慣性球体2が原点位置
にあるときで、同図(b)は原点位置より右側に偏位し
たときを示す。また、同図(c)は原点位置より左下側
に偏位したときを示し、同図(d)は原点位置より発光
ダイオード4側に偏位したときを示す。このように、慣
性球体2は完全な球体であるため、これが原点位置から
X,Y,Z方向に偏位すると、それぞれ4分割ホトダイ
オード5の各受光面51〜54における入射光量が変わ
るので、各々の光電流出力の関係により、慣性球体2の
原点位置からの偏位が計算できる。
When the above-mentioned inertial sphere 2 is at the origin position,
and the position and size of the shadow when deviated from this,
It is shown in FIG. 3 by a dotted line. FIG. 5(a) shows when the inertial sphere 2 is at the origin position, and FIG. 2(b) shows when it is deviated to the right from the origin position. Moreover, the same figure (c) shows the case where it deviates to the lower left side from the original position, and the same figure (d) shows the case when the same figure deviates from the original position to the light emitting diode 4 side. In this way, since the inertial sphere 2 is a perfect sphere, when it deviates from the origin position in the X, Y, and Z directions, the amount of incident light on each of the light receiving surfaces 51 to 54 of the 4-split photodiode 5 changes. The deviation of the inertial sphere 2 from the origin position can be calculated from the relationship of the photocurrent output.

【0011】図4は上記の作用を実現する回路系の構成
を示している。4分割ホトダイオード5の各々の光電流
出力をI1 〜I4 とすると、これらの加算および減
算を行うことにより、慣性球体2の偏位の方向と大きさ
、すなわち装置の加速度を知ることができる。すなわち
、光電流I1 〜I4 をそれぞれアンプA1 〜A4
 で増幅し、加算器614で光電流I1 とI4 の加
算、加算器623で光電流I2 とI3 の加算、加算
器634で光電流I3 とI4 の加算、加算器612
で光電流I1 とI2 の加算をする。 そして、加算器612の出力と加算器634の出力の差
分を減算器7X で求めることにより、X軸の偏位量と
方向を求め、加算器614と加算器623の出力の差分
を減算器7Z で求めることにより、Z軸の偏位量と方
向を求め、Y軸についてはアンプA1 〜A4 の出力
の全ての和を加算器6Y で求め、この加算器6Y の
出力とY軸の中心位置を設定するレベルVREとの差動
出力を、差動回路8で求めることにより得る。
FIG. 4 shows the configuration of a circuit system that realizes the above operation. Assuming that the photocurrent output of each of the four-divided photodiodes 5 is I1 to I4, the direction and magnitude of the deflection of the inertial sphere 2, that is, the acceleration of the device, can be determined by adding and subtracting these. That is, the photocurrents I1 to I4 are transferred to amplifiers A1 to A4, respectively.
adder 614 adds photocurrents I1 and I4, adder 623 adds photocurrents I2 and I3, adder 634 adds photocurrents I3 and I4, adder 612
The photocurrents I1 and I2 are added together. Then, by calculating the difference between the output of the adder 612 and the output of the adder 634 in the subtracter 7X, the deviation amount and direction of the X axis are calculated, and the difference between the outputs of the adder 614 and the adder 623 is calculated in the subtracter 7Z. The deviation amount and direction of the Z-axis are determined by calculating the deviation amount and direction of the Z-axis.For the Y-axis, the sum of all the outputs of amplifiers A1 to A4 is determined by an adder 6Y, and the output of this adder 6Y and the center position of the Y-axis are determined by A differential output with respect to the level to be set VRE is obtained by obtaining the differential output with the differential circuit 8.

【0012】上記のように求められた偏位量および方向
を示す出力は、アンプAX 〜AZ で増幅され、制御
電流としてX,Y,Z軸の電磁手段の各コイルに与えら
れる。このフィードバック制御により、慣性球体2の位
置が原点位置になるようコントロールされることになる
が、この制御電流は抵抗Rによって検出され、検出信号
SX ,SY ,SZ として取り出される。したがっ
て、この検出信号Sにより、X,Y,Zの三軸での慣性
球体2の偏位と方向、すなわち装置に加わっている加速
度を求めることができる。
The outputs indicating the amount and direction of deviation determined as described above are amplified by amplifiers AX to AZ, and are applied as control currents to the respective coils of the electromagnetic means on the X, Y, and Z axes. Through this feedback control, the position of the inertial sphere 2 is controlled to be at the origin position, and this control current is detected by the resistor R and taken out as detection signals SX, SY, and SZ. Therefore, from this detection signal S, it is possible to determine the deflection and direction of the inertial sphere 2 in the three axes of X, Y, and Z, that is, the acceleration applied to the device.

【0013】本発明については、種々の変形が可能であ
る。まず、慣性球体2についてはハウジング10の内面
に衝突することがあるので、テフロンなどのコーティン
グを施すことが望ましい。また、ハウジング10につい
ては、外部磁場がハウジング10の内部に及ぶのを防止
するため、磁気シールドを施すのが好ましい。また、空
気による慣性球体2のダンピングを防止するため、ハウ
ジング10の内部は1torr程度の真空にしておくこ
とが望ましい。さらに、慣性球体2内部に生じる渦電流
による検出誤差を防止するため、慣性球体2は磁性粉を
焼結して形成することが望ましい。
Various modifications are possible to the present invention. First, since the inertial sphere 2 may collide with the inner surface of the housing 10, it is desirable to coat it with Teflon or the like. Further, the housing 10 is preferably provided with a magnetic shield to prevent external magnetic fields from reaching the inside of the housing 10. Further, in order to prevent damping of the inertial sphere 2 due to air, it is desirable to keep the inside of the housing 10 at a vacuum of about 1 torr. Furthermore, in order to prevent detection errors due to eddy currents generated inside the inertial sphere 2, it is desirable that the inertial sphere 2 be formed by sintering magnetic powder.

【0014】[0014]

【発明の効果】以上、詳細に説明した通り、本発明によ
れば、慣性体は磁性体からなる球体をなしているので、
三軸の電磁手段による電磁力と重力のみにより空間的に
保持される。また、単一の光学検出系を設け、光源から
の光による慣性球体の影の位置および大きさを検出する
素子(例えば4分割ホトダイオート)を用いることで、
慣性球体の位置を三次元的に把握できる。このため、加
速度による慣性球体の偏位の検出方向および量にもとづ
き三軸の電磁手段の通電量を個別にコントロールするこ
とで、慣性球体を原点位置(所定の位置)に保持しなが
ら、上記コントロール量により加速度が求められる。こ
のため、簡単な構成によって精度よく加速度を検出する
ことが可能な三軸加速度検出装置を提供できる。
[Effects of the Invention] As explained in detail above, according to the present invention, since the inertial body is a sphere made of magnetic material,
It is spatially held only by electromagnetic force and gravity by three-axis electromagnetic means. In addition, by providing a single optical detection system and using an element (for example, a 4-segment photodiode) that detects the position and size of the shadow of the inertial sphere caused by the light from the light source,
The position of the inertial sphere can be grasped three-dimensionally. Therefore, by individually controlling the amount of energization of the three-axis electromagnetic means based on the detection direction and amount of displacement of the inertial sphere due to acceleration, the above-mentioned control can be performed while holding the inertial sphere at the origin position (predetermined position). Acceleration is determined by the amount. Therefore, it is possible to provide a triaxial acceleration detection device that can accurately detect acceleration with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る三軸加速度検出装置の要
部構成を概念的に示す斜視図である。
FIG. 1 is a perspective view conceptually showing the configuration of main parts of a three-axis acceleration detection device according to an embodiment of the present invention.

【図2】図1の三軸加速度検出装置をY−Z平面で切断
した断面図である。
FIG. 2 is a cross-sectional view of the three-axis acceleration detection device of FIG. 1 taken along the Y-Z plane.

【図3】4分割ホトダイオード5と慣性球体2の影の位
置関係を示す図である。
FIG. 3 is a diagram showing the positional relationship between the shadows of the four-part photodiode 5 and the inertial sphere 2. FIG.

【図4】実施例に係る三軸加速度検出装置の回路図であ
る。
FIG. 4 is a circuit diagram of a three-axis acceleration detection device according to an embodiment.

【符号の説明】[Explanation of symbols]

1X1,1X2,1Y1,1Y2,1Z1…電磁石1Z
2…永久磁石 2…慣性球体 4…発光ダイオード 5…4分割ホトダイオード 10…ハウジング
1X1, 1X2, 1Y1, 1Y2, 1Z1...Electromagnet 1Z
2... Permanent magnet 2... Inertial sphere 4... Light emitting diode 5... Quadrant photodiode 10... Housing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  互いに直交する三軸において、それぞ
れ同極性の磁極が対向するように配置された三軸の電磁
手段と、前記三軸の電磁手段による磁力と重力が釣り合
う位置で空間的に保持されうる磁性体からなる慣性球体
と、前記慣性球体が空間的に保持される位置を照明する
点光源と、前記慣性球体が空間的に保持される位置を挟
んで前記点光源とは反対の位置に配設され、前記慣性球
体の影の位置および大きさを検出する光検出手段と、前
記光検出手段の出力にもとづいて前記慣性球体の空間的
位置を演算し、これにもとづき前記三軸の電磁手段のそ
れぞれへの通電量を増減することにより前記慣性球体が
所定の空間位置に静止するよう制御する制御手段と、前
記制御手段による前記三軸の電磁手段のそれぞれへの制
御量にもとづき加速度を検出する検出手段とを備える三
軸加速度検出装置。
1. Three axes of electromagnetic means arranged such that magnetic poles of the same polarity face each other in three axes orthogonal to each other, and spatially held at a position where the magnetic force and gravity of the three axes of electromagnetic means are balanced. an inertial sphere made of a magnetic material that can be held, a point light source illuminating a position where the inertial sphere is spatially held, and a position opposite to the point light source across the position where the inertial sphere is spatially held; and a light detection means for detecting the position and size of the shadow of the inertial sphere, and calculates the spatial position of the inertial sphere based on the output of the light detection means, and based on this, calculates the spatial position of the inertial sphere. a control means for controlling the inertial sphere to stand still at a predetermined spatial position by increasing or decreasing the amount of electricity supplied to each of the electromagnetic means; and an acceleration based on the amount of control of the three-axis electromagnetic means by the control means. A three-axis acceleration detection device comprising a detection means for detecting.
【請求項2】  前記三軸の電磁手段のいずれかの一軸
の電磁手段による一方の磁極が永久磁石により構成され
、当該磁極の表面には前記三軸の電磁手段への通電を停
止したときの前記慣性球体を収容する凹部が形成されて
いる請求項1記載の三軸加速度検出装置。
2. One magnetic pole of any one of the three-axis electromagnetic means is constituted by a permanent magnet, and the surface of the magnetic pole has a magnetic pole that is formed when the electricity to the three-axis electromagnetic means is stopped. 2. The triaxial acceleration detection device according to claim 1, further comprising a recess for accommodating said inertial sphere.
JP3017616A 1991-02-08 1991-02-08 Three-axis acceleration detecting apparatus Pending JPH04256867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017616A JPH04256867A (en) 1991-02-08 1991-02-08 Three-axis acceleration detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017616A JPH04256867A (en) 1991-02-08 1991-02-08 Three-axis acceleration detecting apparatus

Publications (1)

Publication Number Publication Date
JPH04256867A true JPH04256867A (en) 1992-09-11

Family

ID=11948814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017616A Pending JPH04256867A (en) 1991-02-08 1991-02-08 Three-axis acceleration detecting apparatus

Country Status (1)

Country Link
JP (1) JPH04256867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151923A (en) * 2003-11-10 2009-07-09 Panasonic Corp Integrated circuit
RU2654977C1 (en) * 2017-01-11 2018-05-23 Федеральное государственное военное казённое образовательное учреждение высшего профессионального образования "Военная академия материально - технического обеспечения имени генерала армии А.В. Хрулева" Photoelectric accelerator sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036184A (en) * 1973-07-09 1975-04-05
JPS5443783A (en) * 1977-09-13 1979-04-06 Japan Aviation Electron Accelerometer
JPS6255563A (en) * 1985-09-04 1987-03-11 Canon Inc Acceleration meter
JPS62266485A (en) * 1986-03-03 1987-11-19 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectron engineering acceleration measuring device
JPH01167675A (en) * 1987-12-23 1989-07-03 Sharp Corp Magnetically supported acceleration sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036184A (en) * 1973-07-09 1975-04-05
JPS5443783A (en) * 1977-09-13 1979-04-06 Japan Aviation Electron Accelerometer
JPS6255563A (en) * 1985-09-04 1987-03-11 Canon Inc Acceleration meter
JPS62266485A (en) * 1986-03-03 1987-11-19 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectron engineering acceleration measuring device
JPH01167675A (en) * 1987-12-23 1989-07-03 Sharp Corp Magnetically supported acceleration sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151923A (en) * 2003-11-10 2009-07-09 Panasonic Corp Integrated circuit
JP4709908B2 (en) * 2003-11-10 2011-06-29 パナソニック株式会社 Integrated circuit.
RU2654977C1 (en) * 2017-01-11 2018-05-23 Федеральное государственное военное казённое образовательное учреждение высшего профессионального образования "Военная академия материально - технического обеспечения имени генерала армии А.В. Хрулева" Photoelectric accelerator sensor

Similar Documents

Publication Publication Date Title
JP4892189B2 (en) Diamagnetic levitation system
US4882837A (en) Precision automatic assembly apparatus including face to face magnets and an air core coil therebetween
US4711125A (en) Inertial measurement unit
US6040675A (en) Supporting apparatus using magnetic power
US4316394A (en) Magnetically suspended free rotor gyroscope
US4285552A (en) Torquer apparatus for magnetically suspended members
US3815963A (en) Pseudo-diamagnetic suspension and pseudo-diadielectronic suspension
US4414848A (en) Three-axis accelerometer
US4513507A (en) Contact sensing probe for a measuring apparatus
JP6143443B2 (en) Sensor
US8952684B2 (en) Magnetic force sensor sensing magnetic flux to calculate forces
CN110221100A (en) A kind of quiet magnetic suspension accelerometer of high-precision using multiple quadrupole coil independence rehabilitation control technology
JPH04256867A (en) Three-axis acceleration detecting apparatus
US5357339A (en) Multi-axis fiber-optic gyroscope assembly in which each gyroscope comprises 1/3 of a specific shape
US3370472A (en) Simplified particle containment device
GB2052047A (en) Accelerometer
JP2626055B2 (en) Acceleration sensor
JPS63118668A (en) Three-axis acceleration detector
JPH074905A (en) Moving-amount detector
JPS6091021A (en) Magnetic control table
US5740082A (en) Collocated sensor actuator
JPH03177617A (en) Vertical movable bearing system and vertical movable stage system using the same
JP2020008378A (en) Angle detection system and stabilizer for cameras
JPH0668500B2 (en) Accelerometer
JPH10104535A (en) Supporting method of tilting device and tilting device therefor