JPH0425669A - Polymeric composite material - Google Patents

Polymeric composite material

Info

Publication number
JPH0425669A
JPH0425669A JP2127387A JP12738790A JPH0425669A JP H0425669 A JPH0425669 A JP H0425669A JP 2127387 A JP2127387 A JP 2127387A JP 12738790 A JP12738790 A JP 12738790A JP H0425669 A JPH0425669 A JP H0425669A
Authority
JP
Japan
Prior art keywords
resin
composite material
activated
thermosetting resin
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2127387A
Other languages
Japanese (ja)
Other versions
JPH0721318B2 (en
Inventor
Yasukazu Tanishita
谷下 保亟
Hitoshi Kanzaki
神崎 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2127387A priority Critical patent/JPH0721318B2/en
Publication of JPH0425669A publication Critical patent/JPH0425669A/en
Publication of JPH0721318B2 publication Critical patent/JPH0721318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a friction factor sharply as well as to improve a sliding characteristic conspicuously without lowering a physical property of composites so largely by charging a PTFE short fiber, whose surface is activated, in thermosetting resin. CONSTITUTION:A PTFE short fiber, whose surface is activated, is made up of charging it in thermosetting resin such as thermosetting polyurethane, phenol resin, polyimide, polyamideimido, ephoxy resin, unsaturated polyester, etc., at a rate of 0.5-5vol.%. In this PTFE short finer, a fluorine atom of a fiber surface is extracted by its activation and replaced with an active functional group, and it is charged in the thermosetting resin, whereby a partial chemical coupling is produced in a gap with this resin. In consequence, a friction factor is sharply reducible without lowering a physical property of composite material so largely, and if it is used for sliding members such as packing, a bearing or the like, a sliding characteristic is remarkably improvable.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば、バッキングやベアリング等の摺動
部材として用いられるような高分子複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polymer composite material used, for example, as a sliding member such as a backing or a bearing.

(従来の技術) 従来、上述例のバッキング、ベアリング等の摺動部材と
して用いられる高分子複合材料としては、高分子材料に
対して、表面の摩擦係数を低減して、摺動特性の向上を
図る目的で、テフロン繊維[Teflon  year
nl (CF2−CF2)n。
(Prior art) Conventionally, polymer composite materials used as sliding members such as backings and bearings as described above have been designed to improve sliding characteristics by reducing the coefficient of friction on the surface of the polymer material. For the purpose of
nl (CF2-CF2)n.

アメリカのデュポン社製で、ポリ四フッ化エチレン系合
成樹脂繊維の商品名]を充填する手段がある。
There is a method for filling with polytetrafluoroethylene synthetic resin fiber manufactured by DuPont in the United States.

しかし、上述のテフロン繊維は他の材料と親和性が悪く
、化学的に安定であるため、マトリックスとなる高分子
材料とテフロンの間には化学的な結合が生成されず、高
分子材料にこのテフロン繊維を充填することにより、材
料の引張り強度、耐摩耗性などの物理的性質が大幅に低
下し、摺動部材としての使用が困難となる問題点があっ
た。
However, the above-mentioned Teflon fiber has poor affinity with other materials and is chemically stable, so no chemical bond is formed between the matrix polymer material and Teflon. When filled with Teflon fibers, physical properties such as tensile strength and abrasion resistance of the material are significantly reduced, making it difficult to use as a sliding member.

(発明の目的) この発明は、複合材料の物理的性質を大きく低下させる
ことなく、摩擦係数の大幅な低減を図ることができて、
摺動特性を著しく向上させることができる高分子複合材
料の提供を目的とする。
(Objective of the Invention) The present invention is capable of significantly reducing the coefficient of friction without significantly reducing the physical properties of a composite material.
The purpose of the present invention is to provide a polymer composite material that can significantly improve sliding properties.

(発明の構成) この発明は、繊維表面が活性化処理されたPTFE短繊
維を、熱硬化性ポリウレタン、フェノール樹脂、ポリイ
ミド、ポリアミドイミド、エポキシ樹脂、不飽和ポリエ
ステルなどの熱硬化性樹脂に対して0.5〜5マOI%
の割合で充填した高分子複合材料であることを特徴とす
る。
(Structure of the Invention) This invention uses PTFE short fibers whose fiber surfaces have been activated to be used with thermosetting resins such as thermosetting polyurethane, phenol resin, polyimide, polyamideimide, epoxy resin, and unsaturated polyester. 0.5~5ma OI%
It is characterized by being a polymer composite material filled with a proportion of .

(発明の効果) この発明によれば、PTFE短繊維の繊維表面を活性化
処理することにより、繊維表面のフッ素原子が引き抜か
れて、カルボキシル基(ca+boBHronp 、 
−COOH) 、水酸基(byd+oBl  grou
p 、 −0H) 、アルキル基(alk71 rad
IcsCa+H2ffi+l、但しm≧1、略してR)
等の活性な官能基で置換される。
(Effects of the Invention) According to the present invention, by activating the fiber surface of PTFE short fibers, fluorine atoms on the fiber surface are extracted and carboxyl groups (ca+boBHronp,
-COOH), hydroxyl group (byd+oBl group
p, -0H), alkyl group (alk71 rad
IcsCa+H2ffi+l, where m≧1, abbreviated as R)
Substituted with active functional groups such as

そして、この繊維表面が活性化処理されたPTFE短繊
維を上述の熱硬化性樹脂に充填するとでマトリックス樹
脂との間に一部化学的な結合ができる。
Then, by filling the above-mentioned thermosetting resin with the PTFE short fibers whose fiber surfaces have been activated, a partial chemical bond is formed with the matrix resin.

この結果、複合材料の物理的性質を大きく低下させるこ
となく、摩擦係数の大幅な低減を図ることができて、摺
動特性を著しく向上させることができる効果がある。
As a result, the coefficient of friction can be significantly reduced without significantly deteriorating the physical properties of the composite material, and the sliding properties can be significantly improved.

(実施例) この発明の一実施例を以下に詳述する。(Example) An embodiment of this invention will be described in detail below.

繊維表面が活性化処理されたPTFE短繊維としてアク
ロン(米国アクトン社のフッ素樹脂短繊維の商品名)を
用い、また熱硬化性樹脂としてTI) I−ポリエステ
ル系ウレタンプレポリマーを用いる。
Akron (trade name of fluororesin short fibers manufactured by Acton, Inc., USA) is used as the PTFE short fibers whose fiber surfaces have been activated, and TI) I-polyester urethane prepolymer is used as the thermosetting resin.

上述のアクロンは、PTFE短繊維をフロロエッチ安全
溶剤(エツチング溶剤)でエツチングして、PTFE短
繊維の繊維表面を活性化処理したもので、このようにP
TFE短繊維を活性化処理することにより、繊維表面の
フッ素原子か引き抜かれて、カルボキシル基(−COO
H) 、水酸基(−OH) 、アルキル基(R)等の化
学的に活性な官能基(lunc+1onal grou
p、有機化合物の化学的特性を与える原子または原子団
)が生成されたものである。
The above-mentioned Akron is made by etching PTFE short fibers with a fluoro-etching safety solvent (etching solvent) to activate the fiber surface of the PTFE short fibers.
By activating TFE short fibers, fluorine atoms on the fiber surface are extracted and carboxyl groups (-COO
H), hydroxyl group (-OH), alkyl group (R), etc.
p, an atom or atomic group that gives the chemical properties of an organic compound) is produced.

長さ200〜5008m1径10〜50μmのアクロン
(繊維表面が活性化処理されたPTFE短繊維)を、T
DI−ポリエステル系ウレタンプレポリマーに対して2
,5VO1%の割合で充填して、実施例の高分子複合材
料を得た。
Akron (PTFE short fibers whose fiber surface has been activated) with a length of 200 to 5008 m and a diameter of 10 to 50 μm is
2 for DI-polyester urethane prepolymer
, 5VO was filled at a ratio of 1% to obtain a polymer composite material of an example.

なお、混合に際しては、TDI−ポリエステル系ウレタ
ンプレポリマーへの気泡の混入を避けるために、真空ポ
ンプで排気しながら混合した。
In addition, during mixing, in order to avoid mixing air bubbles into the TDI-polyester-based urethane prepolymer, the mixture was mixed while being evacuated using a vacuum pump.

このようにして得られた実施例の高分子複合材料と、比
較例として他の材料を一切混合しない未充填のもの(比
較例1) 、PTFE再生粉を2゜5重量部充填したも
の(比較例2)、PTFE再生粉に表面処理が施された
ものを2.5重量部充填したもの(比較例3)とについ
て、それぞれ伸び(%)、引裂き強度(kgf/an)
、静止摩擦係数、動摩擦係数を実測し、これらの結果を
次表に示す。
The polymer composite material of the example thus obtained, as a comparative example, an unfilled material containing no other materials (Comparative Example 1), and a material filled with 2.5 parts by weight of recycled PTFE powder (comparative example). Example 2) and PTFE recycled powder filled with 2.5 parts by weight of surface-treated material (Comparative Example 3), elongation (%) and tear strength (kgf/an), respectively.
, static friction coefficient, and dynamic friction coefficient were actually measured, and the results are shown in the table below.

(以下次頁に続く) この実施例の高分子複合材料は、上述のアクロン(繊維
表面か活性化処理されたPTFE短繊維)をマトリック
ス樹脂としてのTDI−ポリエステル系ウレタンプレポ
リマーに充填したので、官能基かこのウレタンプレポリ
マーの感応基と反応して、マトリックス樹脂との間に次
に示すような化学的な結合ができる。
(Continued on next page) The polymer composite material of this example was made by filling the TDI-polyester urethane prepolymer as a matrix resin with the above-mentioned Akron (PTFE short fibers whose fiber surfaces were activated). The functional group reacts with the sensitive group of this urethane prepolymer to form the following chemical bond with the matrix resin.

(以下次頁に続く) OHH −CC−C− F              FF このため、この実施例の高分子複合材料は上表からも明
らかなように、未充填のもの(比較例1参照)と比較し
て物理的性質を大きく低下させることなく、PTFE 
(ポリ・テトラ・フルオロ俸エチレン、4弗化樹脂)の
特質が生かされることにより、摩擦係数の大幅な低減を
図ることができ、特に動摩擦係数は0.06という低い
値を得ることができた。
(Continued on next page) OHH -CC-C- FFF Therefore, as is clear from the table above, the polymer composite material of this example has a higher PTFE without significantly reducing its physical properties.
By taking advantage of the characteristics of (polytetrafluoroethylene, tetrafluorinated resin), we were able to significantly reduce the coefficient of friction, and in particular, we were able to obtain a low coefficient of kinetic friction of 0.06. .

Claims (1)

【特許請求の範囲】[Claims] (1)繊維表面が活性化処理されたPTFE短繊維を、
熱硬化性樹脂に対して0.5〜5v ol%の割合で充填したことを特徴とする 高分子複合材料。
(1) PTFE short fibers whose fiber surfaces have been activated,
A polymer composite material characterized by being filled with a thermosetting resin at a ratio of 0.5 to 5 vol%.
JP2127387A 1990-05-16 1990-05-16 Polymer composite material Expired - Lifetime JPH0721318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127387A JPH0721318B2 (en) 1990-05-16 1990-05-16 Polymer composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127387A JPH0721318B2 (en) 1990-05-16 1990-05-16 Polymer composite material

Publications (2)

Publication Number Publication Date
JPH0425669A true JPH0425669A (en) 1992-01-29
JPH0721318B2 JPH0721318B2 (en) 1995-03-08

Family

ID=14958735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127387A Expired - Lifetime JPH0721318B2 (en) 1990-05-16 1990-05-16 Polymer composite material

Country Status (1)

Country Link
JP (1) JPH0721318B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210510A (en) * 1995-02-01 1996-08-20 Honda Motor Co Ltd Gasket for intake manifold
JP2005187617A (en) * 2003-12-25 2005-07-14 Taiho Kogyo Co Ltd Sliding material
JP2009541687A (en) * 2006-07-04 2009-11-26 ゲブリューダー、ラインフルト、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディートゲゼルシャフト Roll bearing cage
US8962143B2 (en) 2008-10-27 2015-02-24 Taiho Kogyo Co., Ltd. PTFE-based sliding material, bearing, and method for producing PTFE-based sliding material
JP2015140869A (en) * 2014-01-29 2015-08-03 ニッタ株式会社 seal material and seal mechanism
WO2016009124A1 (en) 2014-07-16 2016-01-21 H.E.F. Self-lubricating composite friction part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337761A (en) * 1976-09-18 1978-04-07 Hoechst Ag Sealing material on basis of polytetrafluoroethylene fiber
JPS55108485A (en) * 1979-02-14 1980-08-20 Riken Corp Sealant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337761A (en) * 1976-09-18 1978-04-07 Hoechst Ag Sealing material on basis of polytetrafluoroethylene fiber
JPS55108485A (en) * 1979-02-14 1980-08-20 Riken Corp Sealant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210510A (en) * 1995-02-01 1996-08-20 Honda Motor Co Ltd Gasket for intake manifold
JP2005187617A (en) * 2003-12-25 2005-07-14 Taiho Kogyo Co Ltd Sliding material
JP4583750B2 (en) * 2003-12-25 2010-11-17 大豊工業株式会社 Sliding material
JP2009541687A (en) * 2006-07-04 2009-11-26 ゲブリューダー、ラインフルト、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディートゲゼルシャフト Roll bearing cage
US8962143B2 (en) 2008-10-27 2015-02-24 Taiho Kogyo Co., Ltd. PTFE-based sliding material, bearing, and method for producing PTFE-based sliding material
JP2015140869A (en) * 2014-01-29 2015-08-03 ニッタ株式会社 seal material and seal mechanism
WO2016009124A1 (en) 2014-07-16 2016-01-21 H.E.F. Self-lubricating composite friction part
US10900522B2 (en) 2014-07-16 2021-01-26 Hydromecanique Et Frottement Self-lubricating composite friction part
US11781594B2 (en) 2014-07-16 2023-10-10 Hydromecanique Et Frottement Self-lubricating composite friction part

Also Published As

Publication number Publication date
JPH0721318B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
KR100347286B1 (en) Epoxy Resin Composition for FRP, Prepreg, and Tubular Molded Article Obtained by Use Thereof
KR101425334B1 (en) Prepreg and fiber reinforced composite material
US3342667A (en) Dry fluorocarbon bearing material
JP2008231395A5 (en)
JP2007126637A (en) Resin composition, cured product of resin, prepreg and fiber-reinforced composite material
US3198691A (en) Bearing materials and product
JPH0425669A (en) Polymeric composite material
Giltrow et al. Paper 18: Carbon-Fibre Reinforced Polymers as Self-Lubricating Materials
Ziegel et al. Modulus reinforcement in elastomer composites. II. Polymeric fillers
Jang et al. Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites
WO1993014136A1 (en) Epoxy resin composition and uses thereof, particularly in composite structures
JP4306241B2 (en) SLIP MEMBER, METHOD FOR PRODUCING THE SLIP MEMBER, AND SLIP SEISMIC ISOLATION DEVICE USING THE SLIP MEMBER
Straub et al. A study of the effects of time and temperature on the fiber/matrix interface strength using the microbond test
US5151471A (en) Epoxy matrix resin formulations with improved storage stability containing powdered diamine dispersions
JP4720452B2 (en) SLIP MEMBER, MANUFACTURING METHOD OF THE SLIP MEMBER, AND SLIP SEISMIC ISOLATION DEVICE USING THE SLIP MEMBER
US5244719A (en) Prepreg with improved room temperature storage stability
Syed et al. Mechanical and abrasive wear behavior of coleus spent filled unsaturated polyester/polymethyl methacrylate semi interpenetrating polymer network composites
George et al. Viscoelastic and mechanical characterization of graphene decorated with graphene quantum dots reinforced epoxy composites
JP2017524785A (en) Conductive sheet molding compound
Annappa et al. Effect of soapstone filler on dry sliding wear behaviour of fiber reinforced polymeric composite
JP2021147406A (en) Molding material and method for manufacturing the same
US20230159753A1 (en) Polyrotaxane additives for rigid polymers
Papaspyrides et al. Transition properties of pretreated asbestos-filled epoxy polymers
Lekakou et al. Liquid composite moulding of fibre nanocomposites
Shivakumar et al. Dynamic mechanical properties of graphene and carbon fabric‐reinforced epoxy nanocomposites