JPH04256405A - Improved method for clarifying suspension - Google Patents

Improved method for clarifying suspension

Info

Publication number
JPH04256405A
JPH04256405A JP3035037A JP3503791A JPH04256405A JP H04256405 A JPH04256405 A JP H04256405A JP 3035037 A JP3035037 A JP 3035037A JP 3503791 A JP3503791 A JP 3503791A JP H04256405 A JPH04256405 A JP H04256405A
Authority
JP
Japan
Prior art keywords
suspension
pressure
separation
clarification
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035037A
Other languages
Japanese (ja)
Other versions
JP3157528B2 (en
Inventor
Seiichiro Aoe
誠一郎 青江
Hiroshi Oda
小田 泰士
Kiyoshi Tatsumi
巽 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP03503791A priority Critical patent/JP3157528B2/en
Publication of JPH04256405A publication Critical patent/JPH04256405A/en
Application granted granted Critical
Publication of JP3157528B2 publication Critical patent/JP3157528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To improve efficiency in liq.-solid separation and to enhance the clarification degree of a soln. by treating a suspension at the high pressure of >=300 MPa before the suspension, especially the suspension of an insoluble salt complex, is clarified by liq.-solid separation. CONSTITUTION:The suspended matter is separated from the suspension of an insoluble salt complex by filtration or precipitation to clarify the suspension. In this case, the suspension is treated under high pressure before or during the separation of the suspended matter. An org. extract such as a polysaccharide extract, fungus extract or their neutralized liq. or a microbe culture soln. are exemplified as the insoluble salt complex. The appropriate range of the pressure in the high-pressure treatment is easily set as desired because its critical condition is essential for the separation efficiency in clarification, and the pressure is preferably set at >=300 MPa (hydrostatic pressure). The high-pressure treating time is appropriately set in conformity to the extractant similarly to the pressure and is preferably controlled to about 10-30 min.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、懸濁液中の懸濁物を分
離し清澄化する方法において、その効率を向上させる方
法に関する。本技術は食品分野、医薬品分野、さらに化
学工業分野における溶液清澄化操作に適用できるもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the efficiency of a method for separating and clarifying suspended matter in a suspension. This technology can be applied to solution clarification operations in the food field, pharmaceutical field, and chemical industry field.

【0002】0002

【従来の技術】従来より、分離操作は製品の分離、有用
成分の回収、不用有害成分の除去などを目的として実施
されており、重要な操作の1つである。一般に分離操作
には蒸留などの相変化を併うものも含まれるが、ここで
は流体と粉体との分離について述べる。
BACKGROUND OF THE INVENTION Separation operations have heretofore been carried out for the purpose of separating products, recovering useful components, removing unnecessary harmful components, etc., and are one of the important operations. Separation operations generally include those involving phase changes such as distillation, but here we will discuss separation between a fluid and a powder.

【0003】液固分離には、大きく分けて、ろ過による
ものと沈降分離によるものがあり、後者には遠心分離も
含まれる。その中で取り扱われる粉体の種類、濃度、粒
度、等の条件は非常に広範囲に及んでおり、使用される
装置の種類、構造も極めて多種多様である。
[0003] Liquid-solid separation can be roughly divided into filtration and sedimentation, the latter of which also includes centrifugation. Conditions such as the type, concentration, particle size, etc. of the powder handled therein are extremely wide-ranging, and the types and structures of the equipment used are also extremely diverse.

【0004】具体例を挙げれば、ろ過には定圧ろ過、定
速ろ過、変圧変速ろ過、連続ろ過、遠心ろ過等、沈降に
は重力式湿式分級、遠心分級、沈降濃縮等がある。いず
れも粒子群の粒径及び沈降速度に基づいて液体から分離
するものである。
[0004] To give specific examples, filtration includes constant pressure filtration, constant speed filtration, variable pressure variable speed filtration, continuous filtration, centrifugal filtration, etc., and sedimentation includes gravity wet classification, centrifugal classification, sedimentation concentration, etc. In either case, particles are separated from a liquid based on their particle size and sedimentation velocity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、懸濁物
(粒子)の性状によっては上述の手段を用いても分離が
困難又は不充分な場合がある。即ち、分離工程は、通常
は一連の操作の中の一工程として採用されていることが
多く、系自体が単純系でなく複雑な系である場合である
。例えば抽料から溶剤を用いて抽質を抽出し得られた抽
出液を更に清澄化するには、多くの場合、抽出液には抽
出剤や中和剤によって生成した微細な不溶性塩類が懸濁
しているので通常の清澄化手段では分離が不充分であっ
た。これは、このような不溶性塩類は微細なだけでなく
、水和状態を呈しており沈殿速度が遅いことによる。
However, depending on the nature of the suspended matter (particles), separation may be difficult or insufficient even using the above-mentioned means. That is, the separation step is usually employed as one step in a series of operations, and this is the case when the system itself is not a simple system but a complex system. For example, in order to further clarify the extract obtained by extracting the extract from the extract using a solvent, in many cases fine insoluble salts generated by the extractant or neutralizing agent are suspended in the extract. Because of this, conventional clarification methods were insufficient for separation. This is because such insoluble salts are not only fine but also in a hydrated state and have a slow precipitation rate.

【0006】本発明は、上記従来技術の問題点に鑑み、
懸濁物を液体から効率よく分離するための清澄化改良法
を提供するものである。
[0006] In view of the problems of the prior art described above, the present invention
An improved method of clarification is provided for efficiently separating suspended solids from liquids.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために研究を重ねたところ、不溶性化合物
を懸濁する液体を清澄化処理前あるいは処理中に高圧処
理すると、不溶性塩類複合物等が解離、再結合または凝
集して、沈澱物を生じやすくなるため、液固分離が容易
になり、溶液が高度に清澄化しうることを見出して本発
明を完成するに至った。
[Means for Solving the Problems] The present inventors have conducted extensive research to solve the above problems, and have found that when a liquid in which an insoluble compound is suspended is subjected to high pressure treatment before or during clarification treatment, the insoluble compound becomes The present invention was completed based on the discovery that salt complexes and the like tend to dissociate, recombine, or aggregate to form precipitates, which facilitates liquid-solid separation and makes the solution highly clear.

【0008】即ち、本発明は、不溶性化合物の懸濁液か
らろ過または沈降分離により懸濁物を分離する懸濁液の
清澄化処理において、懸濁物分離前あるいは分離中に懸
濁液を高圧処理することにより分離効率を向上させるこ
とを特徴とする懸濁液清澄化改良法である。  本発明
によれば、従来技術では極めて分離しにくかった微細な
不溶性化合物を効率良く分離回収又は除去可能となる。 従って、固体又は液体の有用物質の回収、濃縮、精製等
を効果的に実施し得る。
That is, the present invention provides a suspension clarification process in which a suspended substance is separated from a suspension of an insoluble compound by filtration or sedimentation, in which the suspension is subjected to high pressure before or during the separation of the suspended substance. This is an improved suspension clarification method characterized by improving separation efficiency through processing. According to the present invention, it becomes possible to efficiently separate, recover, or remove fine insoluble compounds that were extremely difficult to separate using conventional techniques. Therefore, recovery, concentration, purification, etc. of solid or liquid useful substances can be effectively carried out.

【0009】以下、本発明を詳述する。The present invention will be explained in detail below.

【0010】本発明において、処理の対象とする「不溶
性化合物の懸濁液」とは、懸濁性を有する液体分散媒中
に微細な不溶性化合物が懸濁している懸濁液をいい、液
体を回収目的とするものと固体を回収目的とするものの
両者を含む。又、この懸濁液は製品製造工程中のどの段
階で得られるものであってもよく、又その製品製造工程
のいかんを問わない。例えば、動植物体等からの特定成
分抽出後の中和液、蛋白質等の加水分解後の中和液、糖
のアルカリ異性化後の中和液、乳ホエーの中和液等、目
的成分含有の各種中和液、この他、各種排水、更に一度
分級、分離処理が施された各種処理液、微生物菌体破砕
液等を挙げることができる。
[0010] In the present invention, the "suspension of an insoluble compound" to be treated refers to a suspension in which a fine insoluble compound is suspended in a liquid dispersion medium having suspending properties. This includes both those for the purpose of recovery and those for the purpose of recovering solids. Further, this suspension may be obtained at any stage during the product manufacturing process, and it does not matter what the product manufacturing process is. For example, neutralized liquid after extraction of specific components from animals and plants, neutralized liquid after hydrolysis of proteins, etc., neutralized liquid after alkaline isomerization of sugar, neutralized liquid of milk whey, etc. Other examples include various neutralizing liquids, various wastewaters, various treated liquids that have been subjected to classification and separation treatment, microbial cell disruption liquids, and the like.

【0011】ここに「不溶性化合物」とは、懸濁質とし
て液中に分散する一種以上の固体化合物である。分散状
態を呈する固体化合物であれば形状、大きさ、形態等は
基本的に限定されないが、本発明の目的を鑑みれば、微
細なものであってかつ沈降速度の小さい、従来技術では
充分、分離し得ないものが好適である。
The term "insoluble compound" herein refers to one or more solid compounds that are dispersed in a liquid as a suspension. As long as it is a solid compound that exhibits a dispersed state, its shape, size, form, etc. are basically not limited, but considering the purpose of the present invention, it is fine and has a low sedimentation rate, and conventional techniques are sufficient to separate it. Preferably, it is impossible to do so.

【0012】更に、本発明において有効な分離効果が認
められる懸濁質は、ある構造性を有するものである。本
発明による分離効果は後述する高圧処理の作用によりも
たらされるが、懸濁質の種類により高圧下での挙動に差
異があり、同一の効果を奏さないことが判明した。これ
は、懸濁質の粒径や形状という特性で規定されるよりは
、高圧下で活性化し得る化学構造か否かで規定されるよ
うである。即ち、高圧下で懸濁質である粒子が解離、再
結合又は凝集等の挙動を示すものは、それにより粒径や
沈降速度が変化するため、その後の分離を容易化し得る
。どのような構造が関与しているのかは明らかではない
。本発明者らによれば、特に不溶性塩類複合物に対して
は高圧処理による分離効果が大であった。但し、通常、
分散系は多様な成分により構成される複雑な系であるこ
とが多く、高圧処理による効果も複数成分間の相互作用
等によるところも無視できないため、懸濁質を不溶性塩
類複合物のみに限定するものではない。換言すれば、高
圧下で解離、再結合又は凝集し得る微粒子群を含有する
懸濁質に対して、本発明を適用できる。
[0012] Furthermore, the suspended solids that exhibit an effective separation effect in the present invention have certain structural properties. Although the separation effect of the present invention is brought about by the action of high-pressure treatment, which will be described later, it has been found that the behavior under high pressure differs depending on the type of suspended solids, and that the same effects are not achieved. This seems to be determined by whether or not the suspended solids have a chemical structure that can be activated under high pressure, rather than by the characteristics such as particle size or shape. That is, when particles in suspension exhibit behaviors such as dissociation, recombination, or aggregation under high pressure, the particle size and sedimentation rate change accordingly, which can facilitate subsequent separation. It is not clear what structures are involved. According to the present inventors, the separation effect of high pressure treatment was particularly great for insoluble salt complexes. However, usually
Dispersed systems are often complex systems composed of various components, and the effects of high-pressure treatment and interactions between multiple components cannot be ignored, so the suspended solids are limited to insoluble salt complexes only. It's not a thing. In other words, the present invention can be applied to a suspension containing a group of fine particles that can be dissociated, recombined, or aggregated under high pressure.

【0013】高圧下で溶解性が変化する不溶性塩として
クエン酸カルシウム、乳酸カルシウム、リン酸カルシウ
ム等を挙げることができる。一方、有機物の抽出液を中
和した場合等、系自体が複雑な場合は、中和により生ず
る不溶性塩類は複合体を形成しており、その挙動も一様
ではないが、高圧下で解離、再結合又は凝集を起す性質
があることを見い出した。この理由は、明らかではない
が水の構造の変化のためと考えられる。上記複合体は微
細である上、水和しているため沈降速度が小さく、この
ため従来の機械的分離操作だけでは分離が不充分になら
ざるを得なかったものである。
Examples of insoluble salts whose solubility changes under high pressure include calcium citrate, calcium lactate, and calcium phosphate. On the other hand, when the system itself is complex, such as when an organic extract is neutralized, the insoluble salts produced by neutralization form a complex, and although their behavior is not uniform, they dissociate under high pressure. It was discovered that it has the property of causing recombination or aggregation. The reason for this is not clear, but it is thought to be due to a change in the structure of water. Since the above-mentioned composite is fine and hydrated, the sedimentation rate is low, and therefore, conventional mechanical separation operations alone are insufficient to separate it.

【0014】上記不溶性塩類複合体は、広く、塩生成が
介在する不溶性化合物を意味する。例えば、多糖類抽出
液や菌体抽出液又はその中和液等の有機物の抽出液やそ
の中和液、微生物培養液等を挙げることができる。更に
具体例を挙げれば、植物体からヘミセルロース、ペクチ
ン、カラギーナン等の水溶性繊維やその他の水溶性物質
の抽出液、その中和液、あるいはそれらの濃縮、脱塩液
等である。これらは中和塩と蛋白質、糖類、その他金属
イオン等による複合体を懸濁質として含有している。複
合体は高圧処理により互いに結合し凝集し、又は解離し
更に再結合する。この過程で、他に存在する不溶性物質
を一緒に取り込み結合、凝集するため、懸濁液中には複
合体以外に多様な不溶性物質が共存していてもよい。
[0014] The above-mentioned insoluble salt complex broadly means an insoluble compound in which salt formation is mediated. Examples include extracts of organic matter such as polysaccharide extracts, bacterial cell extracts, or neutralized liquids thereof, microbial culture liquids, and the like. More specific examples include extracts of water-soluble fibers such as hemicellulose, pectin, and carrageenan and other water-soluble substances from plants, neutralized solutions thereof, and concentrated and desalted solutions thereof. These contain complexes of neutralized salts, proteins, sugars, other metal ions, etc. as suspended solids. The complexes are bonded to each other and aggregated or dissociated and recombined by high pressure treatment. In this process, other insoluble substances present are taken together, bonded, and aggregated, so that various insoluble substances other than the complex may coexist in the suspension.

【0015】懸濁液中の懸濁質の濃度は特に限定されな
い。
[0015] The concentration of suspended solids in the suspension is not particularly limited.

【0016】又、高圧下において複合体の成長等が起る
ため、懸濁液に成長核となるべき塩類等を新たに添加し
、懸濁液中にある分離目的物質と複合体を形成させ、分
離を促進させることもできる。従って、pHが酸性側又
はアルカリ側にある懸濁液を中和させる操作や、すでに
存在する塩類に別の塩を添加しイオン交換を行う操作等
が包含される。
[0016] Furthermore, since the growth of complexes occurs under high pressure, salts, etc., which are to serve as growth nuclei, are newly added to the suspension to form a complex with the substance to be separated in the suspension. , can also promote separation. Therefore, it includes operations such as neutralizing a suspension whose pH is on the acidic or alkaline side, and adding another salt to already existing salts to perform ion exchange.

【0017】懸濁液のpH等は分離目的とする不溶性化
合物に応じて適宜設定すればよい。次に、本発明におい
て「ろ過または沈降分離」とは、多孔性物質により固形
分を物理的に捕捉するもの及び重力場または遠心力場に
おける粒子の沈澱現象を利用するものを含む公知の液固
分離操作のすべてを意味する。従って、本発明はすべて
の液固分離装置において適用し得る。具体的装置名を挙
げれば、クラリファイアー、セパレーター、プレスフィ
ルター、ミクロフィルター等の装置を例示し得る。これ
ら装置は天然植物や微生物より多糖類を抽出した水溶液
等を清澄化する手段として用いられる。
The pH etc. of the suspension may be appropriately set depending on the insoluble compound to be separated. Next, in the present invention, "filtration or sedimentation separation" refers to known liquid-solid separation methods, including those that physically capture solids with porous materials and those that utilize the sedimentation phenomenon of particles in a gravitational field or centrifugal field. It means all separation operations. Therefore, the present invention can be applied to all liquid-solid separation devices. Specific device names include devices such as a clarifier, separator, press filter, and microfilter. These devices are used as a means for clarifying aqueous solutions etc. in which polysaccharides are extracted from natural plants or microorganisms.

【0018】本発明においては、清澄化処理前あるいは
処理中に、懸濁液を高圧処理することを特徴とする。但
し、高圧処理前に副次的に清澄化処理を実施したり、そ
の他の工程を介在させ、あるいは高圧処理後に固液分離
等の処理をする等、必要によりその他の工程を取り入れ
ることができる。例えば、植物体から抽出した多糖類抽
出液を清澄化する場合は、抽出時に高圧処理を施し、得
られた液を濃縮、脱塩したものを、本発明の対象とする
と清澄化の効果は更に向上する。
The present invention is characterized in that the suspension is subjected to high pressure treatment before or during the clarification treatment. However, other steps may be incorporated as necessary, such as secondary clarification or intervening other steps before high-pressure treatment, or solid-liquid separation or other treatment after high-pressure treatment. For example, when clarifying a polysaccharide extract extracted from a plant body, if the subject of the present invention is to apply high-pressure treatment during extraction, concentrate and desalinate the obtained liquid, the clarification effect will be further improved. improves.

【0019】「高圧処理」とは、所定の圧力を被処理物
に対し付与することを主目的とする処理をいうが、圧力
の大きさは分散媒、懸濁質の種類、目的とする分離成分
により異なるので、事前の試験により設定しておく。高
圧処理の圧力条件は通常、清澄化処理における分離効率
に対して臨界条件的意義があるので、目的に応じて適正
範囲を容易に設定できる。通常、300MPa (静水
圧)以上の圧力が好ましい。更に好ましくは500MP
a 以上である。300MPa より小さい圧力では複
合物の解離、再結合、凝集化が充分に起らず清澄化処理
において分離効率の向上が充分に図れない。一方、圧力
の上限は効果の点からは明確に定めることを要しないが
、装置の構造等を考慮すれば1000MPa 以上の圧
力とすることにあまり実用性はない。
[0019] "High-pressure treatment" refers to treatment whose main purpose is to apply a predetermined pressure to the object to be treated, but the magnitude of the pressure depends on the dispersion medium, the type of suspended solids, and the intended separation. Since it varies depending on the ingredients, it should be set through prior testing. Since the pressure conditions of high-pressure treatment usually have critical significance for the separation efficiency in clarification treatment, an appropriate range can be easily set depending on the purpose. Usually, a pressure of 300 MPa (hydrostatic pressure) or higher is preferred. More preferably 500MP
That's all a. At a pressure lower than 300 MPa, the dissociation, recombination, and agglomeration of the composite do not occur sufficiently, and separation efficiency cannot be sufficiently improved in the clarification process. On the other hand, although it is not necessary to clearly define the upper limit of the pressure from the viewpoint of effectiveness, it is not very practical to set the pressure to 1000 MPa or more when considering the structure of the apparatus.

【0020】高圧処理時間は圧力と同様、抽質等により
適宜設定されるものであるが、概ね10〜30分間程度
が好ましい。ここで処理時間とは所定の圧力に達して後
、その圧力が維持される時間をいう。時間が短ければ効
果が充分でなく、又長すぎても効果の向上は認められな
い。高圧処理を行う具体的手段としては高圧が達成でき
るものであればその形状、方式も問わないが、例えば、
冷間等方圧加圧装置などによって行い得る。又、高圧処
理時の懸濁液の温度は比較的高い方がよいが、通常概ね
40〜60℃程度である。
[0020] Like the pressure, the high-pressure treatment time is appropriately set depending on the extraction and the like, but it is preferably about 10 to 30 minutes. Here, the processing time refers to the time during which the pressure is maintained after reaching a predetermined pressure. If the time is too short, the effect will not be sufficient, and if the time is too long, no improvement in the effect will be observed. The specific means for performing high-pressure treatment may be any shape or method as long as it can achieve high pressure, but for example,
This can be performed using a cold isostatic pressure device or the like. Further, the temperature of the suspension during high-pressure treatment should be relatively high, but it is usually about 40 to 60°C.

【0021】以上説明した高圧処理を介在させる清澄化
処理によれば、懸濁質の分離効率を高圧処理を実施しな
い従来法に比べ大幅に向上させることができる。更に、
目的物質の物性上の損失はまったく認められない。ここ
に向上させるとは、相対評価において向上することを意
味する。又、分離効率とは、一般に固液分離の場合、固
体が沈澱層に移行する割合で定義される値であるが、本
発明においては懸濁液を処理対象としているため、分離
効率の一つの指標として液の濁度により表示することが
可能である。具体的処理対象、処理条件等により異なる
が、本発明によれば、液の濁度は1/5〜1/2程度に
低減する。なお、液の濁度は、例えば白濁液の場合には
660nmにおける吸光度等により測定し得る。又、懸
濁質分離除去後の溶液の灰分含量によっても評価するこ
とができる。不溶性灰分は、溶液の濁りの原因の1つで
あり、この溶解、あるいは解離・再結合・凝集作用によ
り分離効率の上昇等の効果を評価できるからである。
[0021] According to the above-described clarification treatment involving high-pressure treatment, the efficiency of separating suspended solids can be greatly improved compared to conventional methods that do not involve high-pressure treatment. Furthermore,
No loss of physical properties of the target substance is observed. Here, improving means improving in relative evaluation. Furthermore, in the case of solid-liquid separation, separation efficiency is generally defined as the rate at which solids migrate to the sedimentation layer, but in the present invention, since a suspension is treated, it is one of the separation efficiency values. It is possible to display the turbidity of the liquid as an index. According to the present invention, the turbidity of the liquid is reduced to about 1/5 to 1/2, although it varies depending on the specific object to be treated, treatment conditions, etc. In addition, the turbidity of a liquid can be measured, for example, by absorbance at 660 nm in the case of a cloudy liquid. It can also be evaluated by the ash content of the solution after the suspended solids have been separated and removed. This is because insoluble ash is one of the causes of solution turbidity, and effects such as an increase in separation efficiency can be evaluated by its dissolution or dissociation, recombination, and aggregation effects.

【0022】[0022]

【実施例】以下、実施例により本発明をさらに説明する
。 実施例1 脱脂米ヌカより、2%水酸化カルシウムを用いて抽出し
、濃縮、脱塩して得られたアラビノキシラン抽出液を塩
酸にて中和した中和液(固形分量3.5 %、乾燥重量
当り灰分16.9%)100gを、耐圧容器に収納し冷
間等方圧加圧装置(三菱重工業製、MCT−150S)
にかけ、800MPa で60分間(50℃)高圧処理
を施したところ、沈澱物が生じ、清澄な溶液と2層に分
離した。 本処理液を3000rpm で20分間遠心分離したと
ころ上澄液は清澄化し、これを回収し清澄液98gを得
た。 又、比較例として、上記高圧処理を施さないものの清澄
液を得た。
[Examples] The present invention will be further explained below with reference to Examples. Example 1 A neutralized solution (solid content 3.5%, dry 100 g of ash (16.9% by weight) was stored in a pressure container and placed in a cold isostatic pressurizer (Mitsubishi Heavy Industries, MCT-150S).
When the mixture was subjected to high pressure treatment at 800 MPa for 60 minutes (50°C), a precipitate was formed and separated into a clear solution and two layers. The treated solution was centrifuged at 3000 rpm for 20 minutes to clarify the supernatant, which was collected to obtain 98 g of a clear solution. In addition, as a comparative example, a clarified liquid was obtained that was not subjected to the above-mentioned high-pressure treatment.

【0023】得られた清澄液中のアラビノキシラン濃度
はブリックス度と相関が高いことが判っているので、便
宜上、抽出液のブリックス度を測定し、これをアラビノ
キシランの指標とした。ブリックス度1%はアラビノキ
シラン0.9%に相当する。清澄の程度は660nmに
おける吸光度で表した。又、製品中の灰分を清澄液を凍
結乾燥し測定した(乾物重量基準)。これらの測定結果
を表1に示す。
Since it is known that the arabinoxylan concentration in the obtained clarified liquid has a high correlation with the Brix degree, for convenience, the Brix degree of the extract was measured and used as an index of arabinoxylan. A Brix degree of 1% corresponds to 0.9% arabinoxylan. The degree of clarification was expressed by absorbance at 660 nm. In addition, the ash content in the product was measured by freeze-drying the clear liquid (based on dry weight). The results of these measurements are shown in Table 1.

【0024】[0024]

【表  1】 表1から明らかなように、高圧処理により、遠心後の上
澄は固形分量はほとんど変化しないが清澄化し、製品中
の灰分も減少した。即ち、遠心分離除去しにくい不溶性
の塩類は、高圧処理により解離・再結合・凝集をおこし
、遠心分離が容易となった。一方、高圧処理しないもの
は白濁していた。 実施例2 多糖類を生産するケフィール粒(乳酸菌と酵母の混合菌
塊)を脱脂乳培地にて24時間培養後、ケフィール粒を
分取し、1%水酸化カルシウムで微生物多糖類を抽出分
離し酢酸で中和し中和液100gを得た(固形分量2g
)。水溶液を実施例1の要領で700MPa で30分
間高圧処理したところ、抽出液が沈澱部と清澄液の2層
に分離し、これを5000rpm で10分間遠心分離
したところ、上澄液は清澄化した。上澄液90gを回収
し660nmの吸光度で表した濁度は 0.78であっ
た。
[Table 1] As is clear from Table 1, the supernatant after centrifugation was clarified by the high-pressure treatment, although the solid content hardly changed, and the ash content in the product was also reduced. That is, insoluble salts that are difficult to remove by centrifugation are dissociated, recombined, and aggregated by high-pressure treatment, making centrifugation easier. On the other hand, those that were not subjected to high pressure treatment were cloudy. Example 2 After culturing kefir grains (mixed bacterial mass of lactic acid bacteria and yeast) that produce polysaccharides in a skim milk medium for 24 hours, the kefir grains were separated, and microbial polysaccharides were extracted and separated with 1% calcium hydroxide. Neutralized with acetic acid to obtain 100 g of neutralized liquid (solid content: 2 g)
). When the aqueous solution was subjected to high pressure treatment at 700 MPa for 30 minutes as in Example 1, the extract was separated into two layers: a precipitate and a clear liquid. When this was centrifuged at 5000 rpm for 10 minutes, the supernatant liquid became clear. . 90 g of supernatant liquid was collected and the turbidity expressed as absorbance at 660 nm was 0.78.

【0025】一方、上記高圧処理を施さないで得た上澄
液は、乳酸、培地成分、中和塩の錯塩等で白濁し、この
濁度は 2.35 であり、高圧処理液では濁度が約1
/3になっていた。 実施例3 培地である米ヌカとバガスを含むシイタケの人工培養物
より2%水酸化カルシウムで多糖類を抽出し、酢酸にて
pH4にし、可溶性蛋白質を酸沈澱させた。沈澱物を除
去後、水酸化ナトリウムでpHを7に調整し溶液100
gを得た(固形分10g)。実施例1の要領で本溶液を
800MPa で30分間高圧処理したところ、抽出液
が沈澱部と清澄液の2層に分離し、これを3000rp
m で20分間遠心分離したところ上澄液は清澄化した
。上澄液85gを回収し660nmの吸光度で表した濁
度は 0.88 であった。
On the other hand, the supernatant obtained without the above high-pressure treatment becomes cloudy due to lactic acid, medium components, complex salts of neutralized salts, etc., and the turbidity is 2.35. is about 1
/3. Example 3 Polysaccharides were extracted from an artificial culture of shiitake mushrooms containing rice bran and bagasse as a medium using 2% calcium hydroxide, the pH was adjusted to 4 with acetic acid, and soluble proteins were acid precipitated. After removing the precipitate, adjust the pH to 7 with sodium hydroxide and make the solution 100%
(solid content: 10 g). When this solution was subjected to high pressure treatment at 800 MPa for 30 minutes in the same manner as in Example 1, the extract was separated into two layers, a precipitate and a clear liquid.
The supernatant was clarified by centrifugation at m for 20 minutes. 85 g of supernatant liquid was collected, and the turbidity expressed as absorbance at 660 nm was 0.88.

【0026】一方、上記高圧処理を施さないで得た上澄
液は、不溶性蛋白質、培地成分、中和塩の複合体等で白
濁し、この濁度は 2.83 であり、高圧処理液では
濁度が約1/3になっていた。 実施例4 脱脂乳20kgに、0.5M乳酸溶液約4.5kgを攪
拌しながら添加し、pH4.5になるまで調整した後、
55℃で15分間静置した。次に、ろ紙(ワットマンろ
紙NO.41)にてカードとホエーとに分け、酸性ホエ
ー約16kgを得た。次に、酸性ホエーを20%水酸化
ナトリウム溶液にて、pH7.0に調整した。酸性ホエ
ーの中和液は、不溶性の塩類(主にリン酸カルシウム)
で白濁していた。この中和液500gを、実施例1の要
領で500MPa で30分間処理したところ、中和液
が沈澱部と清澄液の2層に分離した。これを、5000
rpm で20分間遠心分離したところ、不溶性塩類含
水物が約10g回収できた。
On the other hand, the supernatant obtained without the above-mentioned high-pressure treatment becomes cloudy due to complexes of insoluble proteins, medium components, neutralized salts, etc., and this turbidity is 2.83. The turbidity was reduced to about 1/3. Example 4 Approximately 4.5 kg of a 0.5M lactic acid solution was added to 20 kg of skim milk with stirring, and the pH was adjusted to 4.5.
It was left standing at 55°C for 15 minutes. Next, the curd and whey were separated using filter paper (Whatman filter paper No. 41) to obtain about 16 kg of acidic whey. Next, the acidic whey was adjusted to pH 7.0 with a 20% sodium hydroxide solution. Acidic whey neutralization solution consists of insoluble salts (mainly calcium phosphate)
It was cloudy. When 500 g of this neutralized liquid was treated at 500 MPa for 30 minutes in the same manner as in Example 1, the neutralized liquid was separated into two layers: a precipitate and a clear liquid. This is 5000
After centrifugation at rpm for 20 minutes, about 10 g of insoluble salt water was recovered.

【0027】一方、高圧処理を実施しなかった酸性ホエ
ーの中和液を同様に遠心分離したところ、沈澱部は約6
gしか回収できず上澄は濁っていた。
On the other hand, when a neutralized solution of acidic whey that had not been subjected to high pressure treatment was similarly centrifuged, the precipitate was approximately 6.
Only g was recovered and the supernatant was cloudy.

【0028】[0028]

【発明の効果】以上説明したように、高圧処理を施すこ
とにより、懸濁液、特に不溶性塩類複合物を懸濁する有
用物質を清澄化する際の効率を向上させることができる
。本発明の処理法は、特に天然植物や微生物等より多糖
類を抽出し、粗抽出液を遠心分離もしくはフィルター濾
過する清澄化工程に用いられ、分離しにくい微細な塩類
懸濁物質を解離、再結合または凝集させ得るので、分離
効率を向上させ清澄化することができる。
Effects of the Invention As explained above, by applying high pressure treatment, it is possible to improve the efficiency in clarifying a suspension, particularly a useful substance suspended in an insoluble salt complex. The treatment method of the present invention is particularly used in the clarification process in which polysaccharides are extracted from natural plants and microorganisms, and the crude extract is centrifuged or filtered to dissociate and recycle fine suspended salt substances that are difficult to separate. Since they can be bound or aggregated, separation efficiency can be improved and clarification can be achieved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  不溶性化合物の懸濁液からろ過または
沈降分離により懸濁物を分離する懸濁液の清澄化処理に
おいて、懸濁物分離前あるいは分離中に懸濁液を高圧処
理することにより分離効率を向上させることを特徴とす
る懸濁液清澄化改良法。
Claim 1: In a suspension clarification process in which a suspended substance is separated from a suspension of an insoluble compound by filtration or sedimentation, the suspension is subjected to high pressure treatment before or during suspension separation. An improved suspension clarification method characterized by improving separation efficiency.
【請求項2】  高圧処理の圧力が300MPa 以上
である請求項1に記載の清澄化改良法。
2. The improved clarification method according to claim 1, wherein the pressure of the high-pressure treatment is 300 MPa or more.
【請求項3】  懸濁液が、多糖類抽出物、菌体抽出物
あるいは乳ホエーである請求項1に記載の清澄化改良法
3. The improved clarification method according to claim 1, wherein the suspension is a polysaccharide extract, a bacterial cell extract, or milk whey.
JP03503791A 1991-02-06 1991-02-06 Improved suspension clarification Expired - Fee Related JP3157528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03503791A JP3157528B2 (en) 1991-02-06 1991-02-06 Improved suspension clarification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03503791A JP3157528B2 (en) 1991-02-06 1991-02-06 Improved suspension clarification

Publications (2)

Publication Number Publication Date
JPH04256405A true JPH04256405A (en) 1992-09-11
JP3157528B2 JP3157528B2 (en) 2001-04-16

Family

ID=12430856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03503791A Expired - Fee Related JP3157528B2 (en) 1991-02-06 1991-02-06 Improved suspension clarification

Country Status (1)

Country Link
JP (1) JP3157528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327601A (en) * 2002-05-07 2003-11-19 Wolff Cellulosics Gmbh & Co Kg Continuous process of manufacture and after-treatment of polysaccharide derivative
US7264828B2 (en) * 2001-12-30 2007-09-04 Shouqin Zhang Process of extracting small molecular ingredients from biological materials under super high pressure
CN104479042A (en) * 2014-12-19 2015-04-01 桂林市和胤祥新型材料有限公司 Method for extracting laminarin from kelp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264828B2 (en) * 2001-12-30 2007-09-04 Shouqin Zhang Process of extracting small molecular ingredients from biological materials under super high pressure
JP2003327601A (en) * 2002-05-07 2003-11-19 Wolff Cellulosics Gmbh & Co Kg Continuous process of manufacture and after-treatment of polysaccharide derivative
CN104479042A (en) * 2014-12-19 2015-04-01 桂林市和胤祥新型材料有限公司 Method for extracting laminarin from kelp

Also Published As

Publication number Publication date
JP3157528B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
CN102596800A (en) Fractionation of a waste liquor stream from nanocrystalline cellulose production
TWI630241B (en) Modulation method of phycocyanin
CN109081478B (en) Treatment process of fermentation wastewater
CN108570115A (en) The recovery method of polysaccharide in a kind of extracellular polymeric
CN101089021B (en) Process of separating and extracting hyaluronic acid from microbial fermented liquid
JPH0633396B2 (en) Extraction method of cane lipid component
JP3157528B2 (en) Improved suspension clarification
US11679371B2 (en) Method for producing functionally improved carbolime
EP0244999B1 (en) Use of charged particles in the membrane filtration of liquid cell culture media
US4461890A (en) Method for the treatment of waste fluids from orange canneries and process for recovering pectic substance therefrom
CN102532256B (en) Method for using ethanol two-aqueous-phase method for extracting seaweed phycobiliprotein
DE1966427C3 (en) Process for the preparation of 6-aminopeniculanic acid
CN1563109A (en) Method for preparing hyaluronic acid
US4532321A (en) Microcrystalline chitin and method of manufacture
JP2920382B2 (en) Separation method of components such as fruit juice, separated useful ingredient substance, and method of producing separated useful ingredient substance
JP2543892B2 (en) Hollow fiber membrane filter backwash water treatment method
CN1062870C (en) Method for purifying sun-flower seed low-ester pectine
US3846244A (en) Microorganism recovery process
RU2256668C2 (en) Arabinogalactan preparation method
US3848812A (en) Process for extracting protein from microorganisms
RU2271675C1 (en) Method for producing of pectin
JPS60160900A (en) Treatment of impure sugar solution
JP4087529B2 (en) Method for producing thickener and method for producing food
WO1999015023A2 (en) Recovery process
JPH1075769A (en) Separation of bacterial cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees