JPH04255799A - Extraction of volatile effective component - Google Patents
Extraction of volatile effective componentInfo
- Publication number
- JPH04255799A JPH04255799A JP1669591A JP1669591A JPH04255799A JP H04255799 A JPH04255799 A JP H04255799A JP 1669591 A JP1669591 A JP 1669591A JP 1669591 A JP1669591 A JP 1669591A JP H04255799 A JPH04255799 A JP H04255799A
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- carbon dioxide
- extracted
- components
- active ingredients
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000605 extraction Methods 0.000 title claims description 82
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 141
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 69
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000004480 active ingredient Substances 0.000 claims description 50
- 239000000284 extract Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 20
- 239000004615 ingredient Substances 0.000 claims description 7
- 239000003205 fragrance Substances 0.000 claims description 4
- 206010020649 Hyperkeratosis Diseases 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- 241000218657 Picea Species 0.000 description 18
- 238000000926 separation method Methods 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 238000004817 gas chromatography Methods 0.000 description 10
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 8
- 241000207965 Acanthaceae Species 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 210000004748 cultured cell Anatomy 0.000 description 6
- 238000001256 steam distillation Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 235000011089 carbon dioxide Nutrition 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- -1 Fatty acid isobutyl ester Chemical class 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 235000008124 Picea excelsa Nutrition 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 101000878457 Macrocallista nimbosa FMRFamide Proteins 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- VSMOENVRRABVKN-UHFFFAOYSA-N oct-1-en-3-ol Chemical compound CCCCCC(O)C=C VSMOENVRRABVKN-UHFFFAOYSA-N 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- VSMOENVRRABVKN-MRVPVSSYSA-N 1-Octen-3-ol Natural products CCCCC[C@H](O)C=C VSMOENVRRABVKN-MRVPVSSYSA-N 0.000 description 1
- SQAINHDHICKHLX-UHFFFAOYSA-N 1-naphthaldehyde Chemical compound C1=CC=C2C(C=O)=CC=CC2=C1 SQAINHDHICKHLX-UHFFFAOYSA-N 0.000 description 1
- YDXQPTHHAPCTPP-UHFFFAOYSA-N 3-Octen-1-ol Natural products CCCCC=CCCO YDXQPTHHAPCTPP-UHFFFAOYSA-N 0.000 description 1
- JRHHJNMASOIRDS-UHFFFAOYSA-N 4-ethoxybenzaldehyde Chemical compound CCOC1=CC=C(C=O)C=C1 JRHHJNMASOIRDS-UHFFFAOYSA-N 0.000 description 1
- MKHZDGVXPRRIDI-UHFFFAOYSA-N C(C)(=O)OCC.C1=CC=CC2=CC=CC=C12 Chemical compound C(C)(=O)OCC.C1=CC=CC2=CC=CC=C12 MKHZDGVXPRRIDI-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 241000887162 Picea glehnii Species 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012259 ether extract Substances 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QVDTXNVYSHVCGW-ONEGZZNKSA-N isopentenol Chemical compound CC(C)\C=C\O QVDTXNVYSHVCGW-ONEGZZNKSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は揮発性有効成分の抽出方
法に関し、さらに詳しくは被抽出物から揮発性有効成分
、例えば植物の花、つぼみ、果実、種子、枝葉、樹皮、
幹、根茎等に含まれている香気成分などの揮発性有効成
分を、超臨界二酸化炭素または超臨界状態近傍の二酸化
炭素を用いて抽出、分離する方法に関する。[Field of Industrial Application] The present invention relates to a method for extracting volatile active ingredients, and more specifically, extracts volatile active ingredients from a material to be extracted, such as flowers, buds, fruits, seeds, foliage, bark, etc. of plants.
This invention relates to a method for extracting and separating volatile active ingredients such as aroma ingredients contained in stems, rhizomes, etc. using supercritical carbon dioxide or carbon dioxide in a near supercritical state.
【0002】0002
【従来の技術】植物の花、つぼみ、果実、種子、枝葉、
樹皮、幹、根茎またはそれらの培養細胞中には、医薬品
、食品、香料等の有効成分が含有されている。これらの
有効成分は揮発性で、かつ含有量が微量である場合が多
い。従来、これらの揮発性有効成分は水蒸気蒸留法や溶
剤抽出法等の抽出法により抽出されている。[Prior art] Flowers, buds, fruits, seeds, branches and leaves of plants,
The bark, stem, rhizome, or cultured cells thereof contain active ingredients such as pharmaceuticals, foods, and fragrances. These active ingredients are volatile and often contained in trace amounts. Conventionally, these volatile active ingredients have been extracted by extraction methods such as steam distillation and solvent extraction.
【0003】しかし水蒸気蒸留法により揮発性有効成分
を抽出する場合、蒸留が高温で行われるため、熱に不安
定な成分は蒸留中に変質し、植物が元来含有している有
効成分とは異質の成分を抽出してしまうという問題点が
ある。また水溶性の物質は水層に溶解し、収率の低下を
もたらすか、または水層に溶解した成分を回収する場合
は回収操作が必要となり、煩雑さを伴うとともに、回収
操作の途上で揮発性有効成分の逸散による収率の低下を
もたらすという問題点がある。さらに水蒸気蒸留後、油
層と水層とを分離する操作を必要とするが、この分離操
作の工程でも揮発性有効成分が逸散し、収率の低下をも
たらすという問題点がある。[0003] However, when volatile active ingredients are extracted by steam distillation, the distillation is carried out at high temperatures, so the heat-labile ingredients change in quality during distillation, and the active ingredients originally contained in plants are There is a problem in that foreign components are extracted. In addition, water-soluble substances dissolve in the aqueous layer, resulting in a decrease in yield, or when recovering components dissolved in the aqueous layer, a recovery operation is required, which is complicated and evaporates during the recovery operation. There is a problem in that the yield decreases due to the escape of active ingredients. Further, after steam distillation, it is necessary to separate an oil layer and an aqueous layer, but this separation process also causes the problem that volatile active ingredients escape, resulting in a decrease in yield.
【0004】一方、有機溶剤を用いて揮発性有効成分を
抽出する場合、揮発性有効成分が有機溶剤により変質す
る場合がある。また抽出後に、揮発性有効成分と有機溶
剤との分離を行う必要があるが、揮発性有効成分と有機
溶剤との分離は、通常熱エネルギーを加えて揮発性有効
成分と有機溶剤との沸点差により分離する場合が多い。
この場合、熱に不安定な揮発性有効成分は変質し、また
逸散により収率が低下するという問題点がある。このよ
うに、有機溶剤を用いて揮発性有効成分を抽出する場合
は、揮発性有効成分の品質の低下や収率の低下をもたら
す。On the other hand, when volatile active ingredients are extracted using an organic solvent, the volatile active ingredients may be deteriorated by the organic solvent. Furthermore, after extraction, it is necessary to separate the volatile active ingredient and the organic solvent, but this is usually done by adding thermal energy to the boiling point difference between the volatile active ingredient and the organic solvent. They are often separated by In this case, there is a problem that the thermally unstable volatile active ingredient changes in quality and also evaporates, resulting in a decrease in yield. As described above, when volatile active ingredients are extracted using an organic solvent, the quality of the volatile active ingredients and the yield of the volatile active ingredients are lowered.
【0005】揮発性有効成分の中でも、特に液体培養細
胞中の香気成分は、極性、沸点の異なる多種類の揮発性
および水溶性成分から成り、それらの混合物が特有の香
気を放っている。また各成分の含有量は微量であり、か
つ多量の水分と共存している。微量の揮発性成分は高温
下では逸散し易く、また水溶性成分は共存する多量の水
分中に溶存しているため、有機溶剤による抽出方法では
効率が悪い。従って、このような香気成分を上記水蒸気
蒸留法または有機溶剤による抽出方法により、その香気
の特徴を損うことなく一律に抽出、分離することは困難
である。[0005] Among volatile active ingredients, the aromatic components in liquid cultured cells in particular consist of a wide variety of volatile and water-soluble components with different polarities and boiling points, and a mixture of these components gives off a unique aroma. Further, the content of each component is small and coexists with a large amount of water. Since trace amounts of volatile components are easily dissipated at high temperatures, and water-soluble components are dissolved in a large amount of coexisting water, extraction methods using organic solvents are inefficient. Therefore, it is difficult to uniformly extract and separate such aroma components by the above-mentioned steam distillation method or extraction method using an organic solvent without impairing the characteristics of the aroma.
【0006】また少量の原料中の微量の揮発性有効成分
を検索する場合、その成分を変質させることなく抽出す
ることおよび抽出物を逸散させることなく捕集すること
は重要である。しかし上記の従来の抽出法は、抽出工程
中に変質や収率の低下をもたらすので、原料中の真の含
有成分を検索するための抽出方法として採用するには適
当でないという問題点もある。[0006] Furthermore, when searching for trace amounts of volatile active ingredients in a small amount of raw materials, it is important to extract the ingredients without altering their quality and to collect the extract without escaping it. However, the above-mentioned conventional extraction methods cause deterioration and a decrease in yield during the extraction process, so there is a problem that they are not suitable for use as an extraction method for searching for the true ingredients contained in raw materials.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決するため、被抽出物から揮発性有効成分を
変質させることなく、高収率で、かつ効率よく抽出、分
離することができ、このため揮発性有効成分が微量であ
っても抽出、分離することができ、しかも揮発性有効成
分が微量の香気成分であっても、その香気の特徴を損な
うことなく抽出、分離することができる揮発性有効成分
の抽出方法を提案することである。[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, it is an object of the present invention to efficiently extract and separate volatile active ingredients from a material to be extracted in a high yield without altering their quality. Therefore, it is possible to extract and separate even trace amounts of volatile active ingredients, and even if the volatile active ingredients are aroma components in trace amounts, they can be extracted and separated without impairing the characteristics of the aroma. The purpose of this study is to propose a method for extracting volatile active ingredients.
【0008】[0008]
【課題を解決するための手段】本発明は次の揮発性有効
成分の抽出方法である。[Means for Solving the Problems] The present invention provides the following method for extracting volatile active ingredients.
【0009】(1) 被抽出物から揮発性有効成分を
抽出するに際し、抽出剤として温度20〜80℃、圧力
70〜400kgf/cm2ゲージの超臨界二酸化炭素
または超臨界状態近傍の二酸化炭素を用いて抽出するこ
とを特徴とする揮発性有効成分の抽出方法。(1) When extracting volatile active ingredients from a material to be extracted, supercritical carbon dioxide or carbon dioxide in a near supercritical state is used as an extractant at a temperature of 20 to 80°C and a pressure of 70 to 400 kgf/cm2 gauge. A method for extracting volatile active ingredients, characterized by extracting them using
【0010】(2) 揮発性有効成分を抽出する際の
抽出圧力の調整をキャピラリーを用いて行うことを特徴
とする上記(1)記載の方法。(2) The method according to (1) above, characterized in that the extraction pressure during extraction of the volatile active ingredient is adjusted using a capillary.
【0011】(3) 揮発性有効成分が香気成分であ
ることを特徴とする上記(1)または(2)記載の方法
。(3) The method described in (1) or (2) above, wherein the volatile active ingredient is a fragrance ingredient.
【0012】(4) 被抽出物が植物組織または細胞
であることを特徴とする上記(1)ないし(3)のいず
れかに記載の方法。(4) The method according to any one of (1) to (3) above, wherein the material to be extracted is a plant tissue or cell.
【0013】本発明の抽出方法において揮発性有効成分
の抽出剤として用いる二酸化炭素は、臨界温度(31.
1℃)および臨界圧力(75.3kgf/cm2)を越
えた状態にある超臨界二酸化炭素またはこれらの臨界点
に近い状態にある二酸化炭素である。具体的には温度2
0〜80℃、好ましくは31.1(二酸化炭素の臨界温
度)〜70℃、さらに好ましくは35〜60℃、圧力7
0〜400kgf/cm2ゲージ、好ましくは75.3
(二酸化炭素の臨界圧力)〜300kgf/cm2ゲー
ジの超臨界二酸化炭素、または超臨界状態近傍の二酸化
炭素であり、温度、圧力は抽出する揮発性有効成分の種
類により適宜選択する。[0013] In the extraction method of the present invention, carbon dioxide used as an extractant for volatile active ingredients has a critical temperature (31.
1°C) and the critical pressure (75.3 kgf/cm2), or carbon dioxide in a state close to these critical points. Specifically, temperature 2
0 to 80°C, preferably 31.1 (critical temperature of carbon dioxide) to 70°C, more preferably 35 to 60°C, pressure 7
0-400kgf/cm2 gauge, preferably 75.3
(Critical pressure of carbon dioxide) ~300 kgf/cm2 gauge supercritical carbon dioxide or carbon dioxide in the vicinity of supercritical state, temperature and pressure are appropriately selected depending on the type of volatile active ingredient to be extracted.
【0014】抽出剤としては、温度および圧力の両方が
臨界点以上の超臨界二酸化炭素を使用するのが好ましい
。温度および圧力の一方または両方が臨界点未満の超臨
界二酸化炭素近傍の二酸化炭素を使用することもできる
が、抽出力は超臨界二酸化炭素に比ベれば小さくなる。
一方、前記超臨界二酸化炭素または超臨界状態近傍の二
酸化炭素の範囲外の気体状態の二酸化炭素は密度が小さ
くなり、このため抽出力が小さくなり使用できない。ま
た前記超臨界二酸化炭素または超臨界状態近傍の二酸化
炭素の範囲外の液体状態の二酸化炭素は植物細胞等の被
抽出物への浸透性が小さく、このため抽出力が小さくな
り好ましくない。[0014] As the extractant, it is preferable to use supercritical carbon dioxide whose temperature and pressure are both above the critical point. Carbon dioxide near supercritical carbon dioxide, where one or both of temperature and pressure are below the critical point, can also be used, but the extraction power will be smaller than that of supercritical carbon dioxide. On the other hand, carbon dioxide in a gaseous state outside the range of the supercritical carbon dioxide or carbon dioxide in the vicinity of the supercritical state has a low density and therefore has a low extraction power and cannot be used. Moreover, liquid carbon dioxide outside the range of the supercritical carbon dioxide or carbon dioxide in the vicinity of the supercritical state has low permeability to the material to be extracted such as plant cells, and is therefore undesirable because the extraction power is low.
【0015】本発明の抽出方法において抽出の対象とな
る揮発性有効成分は特に限定されないが、例えば植物の
花、つぼみ、果実、種子、枝葉、樹皮、幹、根茎等の植
物組織または細胞、あるいは培養細胞などの被抽出物に
存在する、医薬品、食品、香料等の分野で利用される揮
発性物質をあげることができる。抽出の対象となる揮発
性有効成分の好ましいものとしては、前記植物組織また
は細胞、あるいは培養細胞等に含有されている香気成分
、中でも微量に含有されている香気成分をあげることが
できる。The volatile active ingredients to be extracted in the extraction method of the present invention are not particularly limited, but include, for example, plant tissues or cells such as plant flowers, buds, fruits, seeds, branches, leaves, bark, trunks, rhizomes, etc.; Volatile substances that exist in extracted materials such as cultured cells and are used in the fields of pharmaceuticals, foods, fragrances, etc. can be mentioned. Preferred volatile active ingredients to be extracted include aroma components contained in the plant tissue or cells, cultured cells, etc., especially aroma components contained in trace amounts.
【0016】抽出に用いられる被抽出物中には、水分が
存在していてもよく、特に培養細胞から香気成分を抽出
する場合は含有水分を乾燥等の操作により除去すること
なく抽出に供することができる。[0016] Moisture may be present in the extracted material used for extraction, and especially when extracting aroma components from cultured cells, the extracted material should be subjected to extraction without removing the water content by drying or other operations. Can be done.
【0017】本発明の抽出方法においては、必要により
二酸化炭素にエントレーナ(抽出助剤としての第3成分
)を併用してもよい。エントレーナとしては、好ましく
はメタノール、エタノール、水(原料中に水分が含有さ
れている場合は不要)およびアセトン等をあげることが
できる。エントレーナとしてのこれらの溶媒は、二酸化
炭素とエントレーナとの混合物中に通常10モル%以下
、好ましくは0.5〜10モル%含有するのが望ましい
。エントレーナを使用する場合は、エントレーナを含有
しない二酸化炭素で抽出した後、さらにエントレーナを
含有する二酸化炭素で抽出してもよいし、エントレーナ
を含有する二酸化炭素だけで抽出してもよい。In the extraction method of the present invention, an entrainer (a third component as an extraction aid) may be used in combination with carbon dioxide, if necessary. Preferred entrainers include methanol, ethanol, water (unnecessary if the raw material contains water), acetone, and the like. The content of these solvents as entrainers in the mixture of carbon dioxide and entrainer is usually 10 mol % or less, preferably 0.5 to 10 mol %. When using entrainer, extraction may be performed with carbon dioxide that does not contain entrainer and then further extraction with carbon dioxide that contains entrainer, or extraction may be performed with only carbon dioxide that contains entrainer.
【0018】超臨界二酸化炭素または超臨界状態近傍の
二酸化炭素を用いる本発明の抽出方法は、植物含有成分
の抽出法として従来繁用されている有機溶媒による抽出
方法または水蒸気蒸留法と比較して、次のような利点を
備えている。[0018] The extraction method of the present invention using supercritical carbon dioxide or carbon dioxide in a near supercritical state is superior to extraction methods using organic solvents or steam distillation methods, which are conventionally frequently used for extracting plant-containing components. , has the following advantages:
【0019】■抽出時に熱エネルギーを与える必要がな
い。■抽出後、抽出溶媒の除去に際しても熱エネルギー
を与える必要がなく、また抽出成分と抽出溶媒との分離
が容易である。■二酸化炭素自体は、溶媒抽出法で一般
的に用いられているアルコール類、ケトン類、エステル
類、ハロゲン化炭化水素類に比べて化学反応性に乏しい
ので、抽出成分を変質し難い。■二酸化炭素自体は毒性
を示さないため、抽出成分を医薬品、食品として供する
際にも残留溶媒による毒性を考慮する必要がない。[0019] There is no need to apply thermal energy during extraction. (2) There is no need to apply thermal energy when removing the extraction solvent after extraction, and the extraction components and extraction solvent can be easily separated. - Carbon dioxide itself has less chemical reactivity than alcohols, ketones, esters, and halogenated hydrocarbons that are commonly used in solvent extraction methods, so it is difficult to alter the extracted components. ■Since carbon dioxide itself is not toxic, there is no need to consider the toxicity of residual solvents when using extracted components as medicines or foods.
【0020】[0020]
【実施例】次に本発明の抽出方法の実施例を図面により
説明する。[Example] Next, an example of the extraction method of the present invention will be explained with reference to the drawings.
【0021】図1は本発明の抽出方法の一例を示す系統
図である。図において、1は所定の圧力、温度に調節可
能な抽出槽、2は分離槽であり、両者は互いに導管3で
連結され、循環系が形成されている。抽出槽1に揮発性
有効成分を含有する被抽出物を充填し、この被抽出物に
二酸化炭素およびエントレーナを接触させることにより
揮発性有効成分を抽出する。ここで、抽出剤としての二
酸化炭素は二酸化炭素供給源4から、またエントレーナ
はエントレーナ貯槽5から、導管3を経て抽出槽1の底
部に連続的に供給する。このとき二酸化炭素は二酸化炭
素供給用の導管3aから昇圧ポンプ6aで加圧し、熱交
換器7aで加熱して、前記温度および圧力の超臨界状態
またはその近傍の状態にして抽出槽1に供給する。エン
トレーナはエントレーナ供給用の導管3bから昇圧ポン
プ6b、ストップバルブ8aおよび熱交換器7aを介し
て連続的に供給する。エントレーナ供給用の導管3bは
昇圧ポンプ6aと熱交換器7aとの間の導管3に連結さ
れている。抽出槽1の圧力はキャピラリー9およびスト
ップバルブ8bにより調節する。キャピラリー9の代り
に圧力調整バルブを用いて圧力を調節してもよいが、圧
力調整バルブを用いて圧力を調節した場合に比べ、キヤ
ピラリー9を用いて圧力を調節した場合の方がデッドボ
リュームおよび抽出圧力の脈動を少なくすることができ
、これにより抽出効率を向上させることができるので好
ましい。特に少量の被抽出物から含有量が微量の揮発性
有効成分を抽出する場合または含有成分を検索する場合
は、キャピラリー9を使用するのが好ましい。キャピラ
リー9としては、内径50〜300μm、好ましくは5
0〜200μm、長さ50〜500mm、好ましくは5
0〜300mmのものが使用でき、抽出圧力により適宜
選択する。FIG. 1 is a system diagram showing an example of the extraction method of the present invention. In the figure, 1 is an extraction tank that can be adjusted to a predetermined pressure and temperature, 2 is a separation tank, and both are connected to each other by a conduit 3 to form a circulation system. The extraction tank 1 is filled with a material to be extracted containing volatile active ingredients, and the volatile active ingredients are extracted by bringing carbon dioxide and an entrainer into contact with the extracted material. Here, carbon dioxide as an extractant is continuously supplied from a carbon dioxide supply source 4 and the entrainer from an entrainer storage tank 5 via a conduit 3 to the bottom of the extraction tank 1. At this time, carbon dioxide is pressurized from the carbon dioxide supply conduit 3a by a pressure booster pump 6a, heated by a heat exchanger 7a, and brought into a supercritical state at the above temperature and pressure or in a state near it, and is supplied to the extraction tank 1. . The entrainer is continuously supplied from the entrainer supply conduit 3b via a boost pump 6b, a stop valve 8a and a heat exchanger 7a. The entrainer supply conduit 3b is connected to the conduit 3 between the boost pump 6a and the heat exchanger 7a. The pressure in the extraction tank 1 is controlled by a capillary 9 and a stop valve 8b. Although the pressure may be adjusted using a pressure adjustment valve instead of the capillary 9, the dead volume and This is preferable because the pulsation of the extraction pressure can be reduced, thereby improving the extraction efficiency. In particular, it is preferable to use the capillary 9 when extracting a trace amount of a volatile active ingredient from a small amount of material to be extracted or when searching for a contained ingredient. The capillary 9 has an inner diameter of 50 to 300 μm, preferably 5 μm.
0 to 200 μm, length 50 to 500 mm, preferably 5
Those with a diameter of 0 to 300 mm can be used, and are appropriately selected depending on the extraction pressure.
【0022】抽出槽1で抽出された揮発性有効成分を含
有する二酸化炭素は、抽出槽1の上部から連続的に抜出
し、熱交換器7bおよびストップバルブ8bを介して分
離槽2に導く。分離槽2では抽出槽1の圧力より低い圧
力で二酸化炭素を気体状態とし、またドライアイス・ア
セトン等で冷却して抽出された揮発性有効成分を液体ま
たは固体状態とすることにより、揮発性有効成分および
エントレーナと二酸化炭素とを分離する。分離された揮
発性有効成分およびエントレーナはストップバルブ8c
を介して回収する。一方分離された気体状の二酸化炭素
は二酸化炭素回収用の導管3cから耐圧逆止バルブ10
を介して回収し、昇圧ポンプ6aで加圧し、熱交換器7
aで加熱して超臨界状態またはその近傍の状態にし、導
管3を経て抽出槽1に供給し、再び抽出剤として使用す
る。The carbon dioxide containing volatile active ingredients extracted in the extraction tank 1 is continuously extracted from the upper part of the extraction tank 1 and introduced into the separation tank 2 via the heat exchanger 7b and the stop valve 8b. In the separation tank 2, carbon dioxide is made into a gaseous state at a pressure lower than that in the extraction tank 1, and the volatile active ingredients extracted by cooling with dry ice, acetone, etc. are made into a liquid or solid state. Separate the components and entrainer and carbon dioxide. The separated volatile active ingredient and entrainer are separated by stop valve 8c.
Collect through. On the other hand, the separated gaseous carbon dioxide is passed through a pressure-resistant check valve 10 through a conduit 3c for carbon dioxide recovery.
, is pressurized by a boost pump 6a, and then transferred to a heat exchanger 7.
a to bring it to a supercritical state or a state close to it, and supply it to the extraction tank 1 through the conduit 3, where it is used again as an extractant.
【0023】なお上記抽出方法において、揮発性有効成
分を含有する被抽出物は抽出槽1に連続的に供給しても
よい。また分離槽2の代わりに抽出された成分が二酸化
炭素に同伴して逸散しないように、ドライアイス・アセ
トン等で外部を冷却した抽出物採集容器をストップバル
ブ8bの出口部に接続された導管3に接続して用いるこ
ともできる。この場合、揮発性有効成分とエントレーナ
は抽出物採集容器に捕集され、二酸化炭素は抽出物採集
容器の出口側より大気へ放出される。In the above extraction method, the material to be extracted containing volatile active ingredients may be continuously supplied to the extraction tank 1. In addition, instead of the separation tank 2, an extract collection container whose outside is cooled with dry ice, acetone, etc. is connected to the outlet of the stop valve 8b to prevent the extracted components from escaping along with carbon dioxide. It can also be used by connecting to 3. In this case, volatile active ingredients and entrainer are collected in the extract collection container, and carbon dioxide is released into the atmosphere from the outlet side of the extract collection container.
【0024】次に揮発性有効成分を含有する被抽出物と
してアカエゾマツのカルスを用い、このアカエゾマツの
カルスから揮発性香気成分を抽出する方法について図1
に基づいて説明する。Next, Fig. 1 shows a method for extracting volatile aroma components from the callus of Picea acanthus using the callus of Picea acanthus as the material to be extracted containing volatile active ingredients.
The explanation will be based on.
【0025】抽出槽1にアカエゾマツのカルスを、水分
を含んだ状態または水分を除去した状態で、好ましくは
粉砕して充填する。この抽出槽1は所定の圧力および温
度に調節可能であり、この底部に導管3を接続し、この
導管3から超臨界二酸化炭素またはエントレーナとして
のメタノール、エタノール等を含む超臨界二酸化炭素を
、昇圧ポンプ6aおよび熱交換器7aを介して連続的に
供給する。エントレーナはエントレーナ貯槽5からエン
トレーナ供給用の導管3b、昇圧ポンプ6aおよびスト
ップバルブ8aを介して連続的に供給する。そしてこの
抽出槽1内で、抽出される成分を含む被抽出物と、超臨
界二酸化炭素または超臨界状態近傍の二酸化炭素、ある
いはエントレーナを含むこれらの二酸化炭素(以下、単
に抽出剤ということがある)とを接触させて抽出剤中に
揮発性香気成分を抽出する。この場合、アカエゾマツの
カルス中の揮発性香気成分の含有量は微量であるので、
圧力の調節にはキャピラリー9を使用するのが好ましい
。[0025] The extraction tank 1 is filled with callus of Picea acanthus in a water-containing state or in a state in which water has been removed, preferably by crushing it. This extraction tank 1 can be adjusted to a predetermined pressure and temperature, and a conduit 3 is connected to the bottom of the extraction tank 1, from which supercritical carbon dioxide or supercritical carbon dioxide containing methanol, ethanol, etc. as an entrainer is pumped. Continuously supplied via pump 6a and heat exchanger 7a. The entrainer is continuously supplied from the entrainer storage tank 5 via the entrainer supply conduit 3b, the boost pump 6a and the stop valve 8a. In this extraction tank 1, the material to be extracted containing the components to be extracted, supercritical carbon dioxide, carbon dioxide in the vicinity of supercritical state, or these carbon dioxides containing entrainer (hereinafter sometimes simply referred to as extractant) are extracted. ) to extract volatile aroma components into the extractant. In this case, since the content of volatile aroma components in the callus of Picea abies is very small,
Preferably, a capillary 9 is used to regulate the pressure.
【0026】次に揮発性香気成分を溶解した抽出剤を抽
出槽1の上部から連続的に抜出し、キャピラリー9で低
圧化した後、熱交換器7bおよびストップバルブ8bを
介して分離槽2へ導入する。分離槽2内で、ドライアイ
ス・アセトン等で冷却しながら降圧することにより抽出
物と二酸化炭素を分離する。分離された揮発性香気成分
またはエントレーナを使用した場合はエントレーナと揮
発性香気成分とは、ストップバルブ8cを介して回収す
る。一方、分離された二酸化炭素は、耐圧逆止バルブ1
0を介して回収し、昇圧ポンプ6aおよび熱交換器7a
により加圧および加熱し、再び超臨界流体とした後、導
管3から抽出槽1に循環し、再利用する。循環させる二
酸化炭素に一部損失が生じた場合には、二酸化炭素供給
源4から二酸化炭素を補給する。分離槽2の代わりに前
記抽出物採集容器を使用してもよい。[0026] Next, the extractant in which the volatile aroma components have been dissolved is continuously extracted from the upper part of the extraction tank 1, lowered in pressure by the capillary 9, and then introduced into the separation tank 2 via the heat exchanger 7b and stop valve 8b. do. In the separation tank 2, the extract and carbon dioxide are separated by lowering the pressure while cooling with dry ice, acetone, etc. When a separated volatile aroma component or entrainer is used, the entrainer and volatile aroma component are recovered via the stop valve 8c. On the other hand, the separated carbon dioxide is transferred to the pressure-resistant check valve 1
0, the booster pump 6a and the heat exchanger 7a
After pressurizing and heating the fluid to make it a supercritical fluid again, it is circulated through the conduit 3 to the extraction tank 1 and reused. If some of the circulating carbon dioxide is lost, carbon dioxide is replenished from the carbon dioxide supply source 4. The extract collection container described above may be used instead of the separation tank 2.
【0027】上記のようにして超臨界二酸化炭素で抽出
することにより、アカエゾマツのカルスが放つ香気成分
をその香気の特徴を損うことなく、しかも抽出効率よく
抽出、分離することができる。[0027] By extracting with supercritical carbon dioxide as described above, the aroma components emitted by the callus of Picea spruce can be extracted and separated with high extraction efficiency without impairing the characteristics of the aroma.
【0028】実施例1
冷凍保存しておいた果実様の芳香を放つアカエゾマツ(
Picea glehnii)のカルスを水分が含まれ
ている状態で2.3g(抽出終了後、含有水分を乾燥除
去した状態で0.34g)秤量し、図1に示した抽出方
法で揮発性有効成分の抽出を行った。キャピラリー9と
しては内径200μm、長さ150mmのキャピラリー
を用いた。Example 1 Picea spruce (Japanese spruce) emitting a fruit-like aroma that was kept frozen
Weighed 2.3 g of callus (Picea glehnii) with water in it (0.34 g after drying and removing the water content after extraction), and extracted volatile active ingredients using the extraction method shown in Figure 1. Extraction was performed. As the capillary 9, a capillary with an inner diameter of 200 μm and a length of 150 mm was used.
【0029】すなわち、アカエゾマツのカルスを内容積
15mlの抽出槽1に充填し、抽出剤として超臨界二酸
化炭素を用い、抽出圧力180kgf/cm2ゲージ、
抽出温度40℃で1時間抽出を行い、抽出物を捕集した
。二酸化炭素は20Nl/時間の流量で連続的に供給し
た。抽出操作において、仕込被抽出物重量は天秤により
秤量して決定し、使用した二酸化炭素量はガスメーター
により測定した。抽出物の捕集は、分離槽2の代わりに
、抽出された香気成分が二酸化炭素に同伴して逸散しな
いように、ドライアイス・アセトンにより外部を冷却し
た抽出物採集容器を用いた。この抽出物採集容器はスト
ップバルブ8bの出口部に接続された導管3に接続し、
その採集容器に抽出物を捕集した。この捕集した抽出物
を抽出物Aとする。That is, callus of Picea acanthus was filled into an extraction tank 1 with an internal volume of 15 ml, supercritical carbon dioxide was used as an extractant, and the extraction pressure was 180 kgf/cm2 gauge.
Extraction was performed at an extraction temperature of 40° C. for 1 hour, and the extract was collected. Carbon dioxide was supplied continuously at a flow rate of 20 Nl/h. In the extraction operation, the weight of the charged material to be extracted was determined by weighing it using a balance, and the amount of carbon dioxide used was measured using a gas meter. For collection of the extract, an extract collection container whose outside was cooled with dry ice/acetone was used in place of the separation tank 2 to prevent the extracted aroma components from escaping along with carbon dioxide. This extract collection container is connected to a conduit 3 connected to the outlet of the stop valve 8b;
The extract was collected in the collection container. This collected extract is referred to as extract A.
【0030】上記と同じアカエゾマツのカルスを水分が
含まれている状態で24.7g(抽出終了後、含有水分
を乾燥除去した状態で3.7g)秤量し、上記方法と同
様な方法で超臨界抽出試験を行い抽出物を捕集した。こ
の捕集した抽出物を抽出物Bとする。[0030] Weighed 24.7 g of the same Picea callus as above while it contained moisture (3.7 g after the moisture content was removed by drying after extraction), and heated it to supercritical temperature in the same manner as above. An extraction test was conducted and the extract was collected. This collected extract is referred to as extract B.
【0031】上記のいずれの場合も採集容器中に捕集さ
れた抽出物A、Bからは、被抽出物であるアカエゾマツ
のカルスが放つ果実様の芳香と全く同一の香りが確認で
きた。また抽出時に採集容器出口部では、上記のような
芳香は確認されず、かつ抽出後に抽出槽1から取出した
アカエゾマツのカルスからは、上記の芳香は全く確認さ
れなかった。これらのことにより、アカエゾマツのカル
スが放つ果実様の芳香は、超臨界二酸化炭素を用いた抽
出により完全に抽出、分離することができたことがわか
る。[0031] In all of the above cases, extracts A and B collected in the collection container had a fruit-like aroma that was exactly the same as the fruit-like aroma emitted by the callus of Picea spruce, which was the extract to be extracted. Further, during extraction, the above-mentioned aroma was not observed at the outlet of the collection container, and the above-mentioned aroma was not observed at all from the callus of Picea abies taken out from the extraction tank 1 after extraction. These results indicate that the fruit-like aroma emitted by the callus of Picea abies could be completely extracted and separated by extraction using supercritical carbon dioxide.
【0032】抽出物Aは主として親油性の成分を分析す
るために用いた。すなわち、抽出物Aが捕集されている
採集容器に500μlのエーテルと500μlの水を注
射筒を用いて注入し、採集容器を回転させて抽出物を溶
解した。採集容器中の溶液のエーテル層は試料ビンに集
めた。水層は栓付試験管に移した。採集容器を500μ
lの水と1000μlのエーテルで洗浄し、この洗液を
栓付試験管に移した。この栓付試験管に栓をしてよく振
りエーテル層を分離した。水層は再度500μlのエー
テルを加えてよく振った後、エーテル層を分離した。上
記の方法で分離したエーテル層を全て集めて、無水硫酸
ナトリウム上で乾燥した後、ガスクロマトグラフィー・
質量分析計で分析した。Extract A was mainly used to analyze lipophilic components. That is, 500 μl of ether and 500 μl of water were injected into the collection container in which extract A had been collected using a syringe, and the collection container was rotated to dissolve the extract. The ether layer of the solution in the collection container was collected into a sample bottle. The aqueous layer was transferred to a stoppered test tube. Collection container 500μ
1 of water and 1000 μl of ether, and the washings were transferred to a stoppered test tube. This stoppered test tube was stoppered and shaken well to separate the ether layer. After adding 500 μl of ether again to the aqueous layer and shaking well, the ether layer was separated. All the ether layers separated by the above method were collected, dried over anhydrous sodium sulfate, and then subjected to gas chromatography.
It was analyzed using a mass spectrometer.
【0033】抽出物Bは低沸点成分で、かつ比較的親水
性の成分を分析するために用いた。すなわち採集容器中
の超臨界二酸化炭素で抽出された水溶液を、直接ガスク
ロマトグラフィー・質量分析計で分析した。Extract B was used to analyze components with low boiling points and relatively hydrophilic properties. That is, the aqueous solution extracted with supercritical carbon dioxide in the collection container was directly analyzed using a gas chromatography/mass spectrometer.
【0034】上記の2種類のガスクロマトグラフィー・
質量分析計に供する試料1〜3μlをガスクロマトグラ
フィー・質量分析計に注入した。その時のガスクロマト
グラフィー・質量分析計の条件は次の通りである。
(株)日立製作所製M−80B型質量分析計イオン化エ
ネルギー:70eV
ガスクロマトグラフィーカラム:
フューズドシリカキャピラリカラムUNBON HR
−101,50m×0.25mmφ(信和化学工業(株
)製)
温度条件;60℃(5分)
60〜220℃(2℃/分)[0034] The above two types of gas chromatography
1 to 3 μl of the sample to be subjected to mass spectrometry was injected into a gas chromatography/mass spectrometer. The conditions of the gas chromatography/mass spectrometer at that time were as follows. M-80B mass spectrometer manufactured by Hitachi, Ltd. Ionization energy: 70 eV Gas chromatography column: Fused silica capillary column UNBON HR
-101,50m x 0.25mmφ (manufactured by Shinwa Chemical Industry Co., Ltd.) Temperature conditions: 60℃ (5 minutes) 60-220℃ (2℃/min)
【0035】抽出物Aを処理したエーテル溶液および抽
出物Bと共存していた水溶液のイオンクロマトグラムを
図2および図3に示す。Ion chromatograms of the ether solution treated with extract A and the aqueous solution coexisting with extract B are shown in FIGS. 2 and 3.
【0036】図2にみられるピークA〜K成分の構造解
析を行った結果、下記物質であることが確認された。
ピークA:イソアミルアルコール
ピークB:脂肪酸エチルエステル
ピークC:酪酸
ピークD:ヘプチルブチレート
ピークE:脂肪酸エチルエステル
ピークF:脂肪酸プロピルエステル
ピークG:脂肪酸エチルエステル
ピークH:脂肪酸エチルエステル
ピークI:脂肪酸メチルエステル
ピークJ:脂肪酸エチルエステル
ピークK:脂肪酸エチルエステルAs a result of structural analysis of peaks A to K components shown in FIG. 2, it was confirmed that they were the following substances. Peak A: Isoamyl alcohol peak B: Fatty acid ethyl ester peak C: Butyric acid peak D: Heptyl butyrate peak E: Fatty acid ethyl ester peak F: Fatty acid propyl ester peak G: Fatty acid ethyl ester peak H: Fatty acid ethyl ester peak I: Fatty acid methyl Ester peak J: Fatty acid ethyl ester peak K: Fatty acid ethyl ester
【0037】また図3にみられるピークA〜H成分の構
造解析を行った結果、下記物質であることが確認された
。
ピークA:ブテナール
ピークB:酢酸
ピークC:アセトイン
ピークD:エチルプロピオン酸
ピークE:脂肪酸イソブチルエステル
ピークF:ベンズアルデヒド
ピークG:脂肪酸イソプロピルエステルピークH:1−
ホルミルナフタレンFurther, as a result of structural analysis of peaks A to H components shown in FIG. 3, it was confirmed that they were the following substances. Peak A: Butenal peak B: Acetic acid peak C: Acetoin peak D: Ethylpropionic acid peak E: Fatty acid isobutyl ester peak F: Benzaldehyde peak G: Fatty acid isopropyl ester peak H: 1-
formylnaphthalene
【0038】上記より、アカエゾマツのカルスが放つ果
実様の芳香の主成分は図2および図3に示す成分である
ことが確認できた。[0038] From the above, it was confirmed that the main components of the fruit-like aroma emitted by the callus of Picea acanthus were the components shown in FIGS. 2 and 3.
【0039】比較例1
実施例1で用いたカルスと同一の芳香を生産するアカエ
ゾマツのカルスを水分が含まれている状態で5.2g(
抽出終了後、含有水分を乾燥除去した状態で0.80g
)秤量し、抽出槽1に充填し、抽出剤として二酸化炭素
を用い、抽出圧力30kgf/cm2ゲージ、抽出温度
30℃とした以外は、実施例1と同様な方法で抽出操作
を行い、抽出物を抽出物採集容器に捕集した。この採集
容器に捕集された抽出物からは、被抽出物であるアカエ
ゾマツのカルスが放つ果実様の芳香と同一様の香りは確
認できなかった。Comparative Example 1 5.2 g (5.2 g) of callus of Picea sylvestris that produces the same aroma as the callus used in Example 1 was prepared in a moist state.
After extraction, 0.80g after drying and removing the moisture content
) The extract was weighed and filled into extraction tank 1, and extracted in the same manner as in Example 1, except that carbon dioxide was used as the extractant, the extraction pressure was 30 kgf/cm2 gauge, and the extraction temperature was 30°C. was collected in an extract collection container. The extract collected in this collection container did not have a fruit-like aroma similar to the fruit-like aroma emitted by the callus of Picea sylvestris, which is the material to be extracted.
【0040】比較例2
実施例1で用いたカルスと同一の芳香を生産するアカエ
ゾマツのカルス13.4gに蒸留水100mlを添加し
、エーテル30mlで90分間連続蒸留抽出した。エー
テル抽出液を無水硫酸ナトリウム上で一夜乾燥後、減圧
濃縮し、次いでハンドウォーム法で濃縮後、ガスクロマ
トグラフィー・質量分析を行った。その時のガスクロマ
トグラフィー・質量分析計の条件は次の通りである。
(株)日立製作所製M−80B型質量分析計イオン化エ
ネルギー:70eV
ガスクロマトグラフィーカラム:
SiliconeOV−101,50m×0.25mm
φ(信和化学工業(株)製)
温度条件;60℃(5分)
60〜220℃(2℃/分)Comparative Example 2 100 ml of distilled water was added to 13.4 g of callus of Picea spruce producing the same aroma as the callus used in Example 1, and the mixture was extracted by continuous distillation for 90 minutes with 30 ml of ether. The ether extract was dried over anhydrous sodium sulfate overnight, concentrated under reduced pressure, and then concentrated using a hand warm method, followed by gas chromatography/mass spectrometry. The conditions of the gas chromatography/mass spectrometer at that time were as follows. M-80B mass spectrometer manufactured by Hitachi, Ltd. Ionization energy: 70 eV Gas chromatography column: Silicone OV-101, 50 m x 0.25 mm
φ (manufactured by Shinwa Chemical Industry Co., Ltd.) Temperature conditions: 60°C (5 minutes) 60-220°C (2°C/min)
【0041】その結果、ピリジン、ベンズアルデヒド、
安息香酸エチル、バニリン、ナフタレン酢酸エチル、エ
トキシベンズアルデヒド等の芳香族化合物、酢酸、アシ
ルアルコール、炭素数6〜10の各種アルデヒド、アル
コール、炭素数12〜18の脂肪酸およびそれらのメチ
ルまたはエチルエステル、アシルアセテート、炭素数1
3〜16の直鎖状炭化水素を同定したが、抽出物は芳香
を示さず果実様芳香の捕集に失敗した。As a result, pyridine, benzaldehyde,
Aromatic compounds such as ethyl benzoate, vanillin, naphthalene ethyl acetate, ethoxybenzaldehyde, acetic acid, acyl alcohol, various aldehydes with 6 to 10 carbon atoms, alcohol, fatty acids with 12 to 18 carbon atoms and their methyl or ethyl esters, acyl Acetate, carbon number 1
Although 3 to 16 linear hydrocarbons were identified, the extract showed no aroma and failed to capture fruity aromas.
【0042】比較例3
実施例1で用いたカルスと同一の芳香を生産するアカエ
ゾマツ液体培養細胞102.8gを解凍後、水200m
lを加えながら均一に懸濁させた。これを4分割し、7
5mlずつを500ml容の丸底フラスコに分注し、ア
セトン・ドライアイスにて急速冷凍後、凍結乾燥を行っ
た。回収水295ml(所用時間6時間)を得、ジクロ
ルメタンで抽出した。なお、得られた凍結乾燥残渣は、
さらにジクロルメタン抽出後の回収水を加え、上記と同
様に凍結乾燥による揮発性成分捕集操作を行った。2回
分合わせてグデルナー・ダニシュの濃縮装置(柴田科学
器械工業(株)製)で濃縮し、3mgの濃縮物を得た。Comparative Example 3 After thawing 102.8 g of liquid cultured cells of Picea acanthus that produce the same aroma as the callus used in Example 1, they were soaked in 200 m of water.
1 was added to make the mixture uniformly suspended. Divide this into 4 parts, 7
5 ml portions were dispensed into 500 ml round bottom flasks, rapidly frozen with acetone/dry ice, and then freeze-dried. 295 ml of recovered water (required time: 6 hours) was obtained and extracted with dichloromethane. In addition, the obtained freeze-dried residue is
Furthermore, the water recovered after the dichloromethane extraction was added, and volatile components were collected by freeze-drying in the same manner as above. The two batches were combined and concentrated using a Guderner-Danish concentrator (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd.) to obtain 3 mg of a concentrate.
【0043】この濃縮物からは、実施例1で確認された
ような果実様の芳香は確認されなかった。また、この濃
縮物をガスクロマトグラフィー・質量分析に用いた。ガ
スクロマトグラフィー・質量分析計の条件は、次の通り
である。
(株)日立製作所製M−80B型質量分析計イオン化エ
ネルギー:70eV
ガスクロマトグラフィーカラム:
PEG 20M bonded(25m×0.25mm
ID,)(信和化学工業(株)製)
温度条件;45℃(4分)
45〜230℃(3℃/分)[0043] The fruit-like aroma as observed in Example 1 was not observed in this concentrate. Moreover, this concentrate was used for gas chromatography/mass spectrometry. The conditions of the gas chromatography/mass spectrometer are as follows. M-80B mass spectrometer manufactured by Hitachi, Ltd. Ionization energy: 70 eV Gas chromatography column: PEG 20M bonded (25 m x 0.25 mm
ID, ) (manufactured by Shinwa Chemical Industry Co., Ltd.) Temperature conditions: 45°C (4 minutes) 45-230°C (3°C/min)
【0044】
ガスクロマトグラフィー・質量分析の結果より、上記の
濃縮物中にアセトイン、アセトインアルコール、1−オ
クテン−3−オール、ブテン−1,4−オライド、メン
トール、メチルカルビノール、イソペンテノール、4−
メチル−ブチル酸等の低沸点物質を検出したが、果実様
の芳香に関連すると考えられる成分は同定できなかった
。According to the results of gas chromatography/mass spectrometry, acetoin, acetoin alcohol, 1-octen-3-ol, butene-1,4-olide, menthol, methyl carbinol, isopentenol, 4-
Low-boiling substances such as methyl-butyric acid were detected, but no components thought to be related to the fruity aroma could be identified.
【0045】上記の実施例1および比較例1〜3により
、凍結乾燥法や水蒸気蒸留法に比べて、実施例1の超臨
界二酸化炭素を用いる抽出法は揮発性香気成分をその品
質を損なうことなく、効率よく抽出、分離できることが
わかる。[0045] According to the above-mentioned Example 1 and Comparative Examples 1 to 3, the extraction method using supercritical carbon dioxide in Example 1 does not impair the quality of volatile aroma components compared to the freeze-drying method and the steam distillation method. It can be seen that extraction and separation can be performed efficiently without any problems.
【0046】アカエゾマツのカルスの揮発性香気成分は
、複数の成分から成り特徴のある香りの原因となってお
り、かつその成分のなかには含有量が微量のものもある
。比較例2では、高温での香気成分の変質が懸念され、
かつ蒸留物の油層と水層とを分離する際に、目的の香気
成分のうち水に溶解する成分は、さらに水層から抽出、
分離する操作が必要となる。比較例3では、含有成分を
含有水とともに凍結させ、減圧下で水の昇華とともに含
有成分を昇華または蒸発させて捕集する方法であり、沸
点の高い成分に対しては、二酸化炭素の溶解力によって
含有成分を抽出する本発明の抽出法に比べて抽出力が小
さい。一方、本発明の抽出方法によれば、超臨界二酸化
炭素の適当な抽出力により、目的とする香気成分を効率
よく抽出、分離し、かつ抽出物の後処理をなんら行うこ
となく、目的の香気成分を抽出、分離することができる
。[0046] The volatile aroma components of the callus of Picea acanthus are composed of a plurality of components and are responsible for the characteristic scent, and some of these components are contained in trace amounts. In Comparative Example 2, there was concern that the aroma components would deteriorate at high temperatures;
When separating the oil and water layers of the distillate, the water-soluble components of the target aromatic components are further extracted from the water layer.
Separation operation is required. In Comparative Example 3, the contained components are frozen together with the contained water, and the contained components are collected by sublimation or evaporation as the water sublimates under reduced pressure.For components with high boiling points, the dissolving power of carbon dioxide The extraction power is smaller than that of the extraction method of the present invention, which extracts the contained components. On the other hand, according to the extraction method of the present invention, the target aroma components can be efficiently extracted and separated using the appropriate extraction power of supercritical carbon dioxide, and the target aroma components can be extracted and separated without any post-treatment of the extract. Components can be extracted and separated.
【0047】[0047]
【発明の効果】以上の通り、本発明によれば、超臨界二
酸化炭素または超臨界状態近傍の二酸化炭素を用いて揮
発性有効成分を抽出するようにしたので、揮発性有効成
分を変質させることなく、高収率で、かつ効率よく抽出
、分離することができる。このため微量の揮発性有効成
分であっても抽出、分離することができ、しかも香気成
分でもその香気の特徴を損うことなく抽出、分離するこ
とができる。[Effects of the Invention] As described above, according to the present invention, volatile active ingredients are extracted using supercritical carbon dioxide or carbon dioxide in the vicinity of supercritical state, so that volatile active ingredients cannot be altered. It can be extracted and separated with high yield and efficiency. Therefore, even trace amounts of volatile active ingredients can be extracted and separated, and even aromatic components can be extracted and separated without impairing their aroma characteristics.
【図1】本発明の抽出方法の一例を示す系統図である。FIG. 1 is a system diagram showing an example of the extraction method of the present invention.
【図2】実施例1の結果を示すグラフである。FIG. 2 is a graph showing the results of Example 1.
【図3】実施例1の結果を示すグラフである。FIG. 3 is a graph showing the results of Example 1.
1 抽出槽 2 分離槽 3,3a,3b,3c 導管 4 二酸化炭素供給源 5 エントレーナ貯槽 6a,6b 昇圧ポンプ 7a,7b 熱交換器 8a,8b,8c ストップバルブ 9 キヤピラリー 10 耐圧逆止バルブ 1 Extraction tank 2 Separation tank 3, 3a, 3b, 3c conduit 4. Carbon dioxide supply source 5 Entrainer storage tank 6a, 6b Boost pump 7a, 7b Heat exchanger 8a, 8b, 8c Stop valve 9 Capillary 10 Pressure resistant check valve
Claims (4)
るに際し、抽出剤として温度20〜80℃、圧力70〜
400kgf/cm2ゲージの超臨界二酸化炭素または
超臨界状態近傍の二酸化炭素を用いて抽出することを特
徴とする揮発性有効成分の抽出方法。Claim 1: When extracting volatile active ingredients from a material to be extracted, an extractant is used at a temperature of 20-80°C and a pressure of 70-80°C.
1. A method for extracting volatile active ingredients, characterized by extraction using supercritical carbon dioxide or carbon dioxide in a near supercritical state with a gauge of 400 kgf/cm2.
力の調整をキャピラリーを用いて行うことを特徴とする
請求項1記載の方法。2. The method according to claim 1, wherein the extraction pressure during extraction of the volatile active ingredient is adjusted using a capillary.
を特徴とする請求項1または2記載の方法。3. The method according to claim 1 or 2, wherein the volatile active ingredient is a fragrance ingredient.
ことを特徴とする請求項1ないし3のいずれかに記載の
方法。4. The method according to claim 1, wherein the extract is a plant tissue or cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1669591A JPH04255799A (en) | 1991-02-07 | 1991-02-07 | Extraction of volatile effective component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1669591A JPH04255799A (en) | 1991-02-07 | 1991-02-07 | Extraction of volatile effective component |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04255799A true JPH04255799A (en) | 1992-09-10 |
Family
ID=11923433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1669591A Pending JPH04255799A (en) | 1991-02-07 | 1991-02-07 | Extraction of volatile effective component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04255799A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06128220A (en) * | 1992-10-15 | 1994-05-10 | L'oreal Sa | Method of deodorization of mercapto acid by extracting bad odor compound and deodorized product is obtained by it |
JPH06128221A (en) * | 1992-10-15 | 1994-05-10 | L'oreal Sa | Method of deodorization of mercapto acid and deodorized product obtained by this process |
EP0665231A1 (en) * | 1994-01-24 | 1995-08-02 | IMMODAL PHARMAKA GESELLSCHAFT m.b.H. | Process for obtaining oxindole alkaloids |
-
1991
- 1991-02-07 JP JP1669591A patent/JPH04255799A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06128220A (en) * | 1992-10-15 | 1994-05-10 | L'oreal Sa | Method of deodorization of mercapto acid by extracting bad odor compound and deodorized product is obtained by it |
JPH06128221A (en) * | 1992-10-15 | 1994-05-10 | L'oreal Sa | Method of deodorization of mercapto acid and deodorized product obtained by this process |
EP0665231A1 (en) * | 1994-01-24 | 1995-08-02 | IMMODAL PHARMAKA GESELLSCHAFT m.b.H. | Process for obtaining oxindole alkaloids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11248189B2 (en) | Apparatus and method for plant extraction | |
US11135257B2 (en) | Method for preparation of pharmacologically-relevant compounds from botanical sources | |
US5512285A (en) | Fragrance extraction | |
US10428040B2 (en) | Processes for the isolation of a cannabinoid extract and product from Cannabis plant material | |
US10888595B2 (en) | Apparatus for preparation of pharmacologically-relevant compounds from botanical sources | |
Hamzah et al. | Comparison of Citronella Oil Extraction Methods from Cymbopogon nardus Grass by Ohmic-heated Hydro-distillation, Hydro-Distillation, and Steam Distillation. | |
Smith et al. | Supercritical fluid extraction and gas chromatographic determination of the sesquiterpene lactone parthenolide in the medicinal herb feverfew (Tanacetum parthenium) | |
KR960007096B1 (en) | Process for the preparation of soluble coffee | |
Shah et al. | Extraction of essential oil from Patchouli leaves using hydrodistillation: Parametric studies and optimization | |
Allaf et al. | Instant controlled pressure drop technology in plant extraction processes | |
US4281171A (en) | Liquid carbon dioxide extraction of pyrethrins | |
Marongiu et al. | Extraction of Santalum album and Boswellia carterii Birdw. volatile oil by supercritical carbon dioxide: influence of some process parameters | |
Arino et al. | Influence of extraction method and storage conditions on the volatile oil of wormwood (Artemisia absinthium L.) | |
JPH04255799A (en) | Extraction of volatile effective component | |
US4592911A (en) | Extraction of camomile with liquid carbon dioxide | |
GB2372714A (en) | Distillation of volatile constituent from plant material without use of solvent | |
EP1144561B1 (en) | A process of obtaining natural antioxidants from plants | |
JPH04256401A (en) | Device for separating trace volatile effective component | |
Choi et al. | Extraction of epicuticular wax and nonacosan-10-ol from Ephedra herb utilizing supercritical carbon dioxide | |
US20230174891A1 (en) | Method for extracting odour from plant material in solid form | |
CN109135927B (en) | Flower essential oil extraction method | |
US11304986B2 (en) | Methods of extraction of plant materials and extracts obtained using supercritical glycerin | |
IT202000008200A1 (en) | PROCEDURE FOR THE PRODUCTION OF COMPLEX PHYTO-DERIVATES FROM NATURAL SUBSTRATES | |
CN116554963A (en) | Sweet wormwood oil composition and preparation method thereof | |
Hamzah et al. | Comparison of Citronella Oil Extraction Methods from Cymbopogon nardus Grass by h eated Hydro-distillation, Hydro-Distillation, and Steam Distillation |