JPH04255614A - Power photo-composite submarine cable - Google Patents

Power photo-composite submarine cable

Info

Publication number
JPH04255614A
JPH04255614A JP3039086A JP3908691A JPH04255614A JP H04255614 A JPH04255614 A JP H04255614A JP 3039086 A JP3039086 A JP 3039086A JP 3908691 A JP3908691 A JP 3908691A JP H04255614 A JPH04255614 A JP H04255614A
Authority
JP
Japan
Prior art keywords
groove
optical fiber
iron wire
pitch
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3039086A
Other languages
Japanese (ja)
Other versions
JP2630856B2 (en
Inventor
Naoki Okada
直樹 岡田
Hiroyuki Sawano
沢野 弘幸
Akio Mogi
茂木 章夫
Suehiro Miyamoto
宮本 末広
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3039086A priority Critical patent/JP2630856B2/en
Publication of JPH04255614A publication Critical patent/JPH04255614A/en
Application granted granted Critical
Publication of JP2630856B2 publication Critical patent/JP2630856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables

Abstract

PURPOSE:To improve respective characteristics such as side-pressure-resistant characteristic, bending characteristic, or twisting characteristic by providing, on the side face of PE sheath, a spiral groove whose twisting direction is the same as that of an iron wire armor and in which the relationship between a pitch and a pitch diameter is specified. CONSTITUTION:A spiral groove 23 is provided in the plastic sheath 22 of a power cable 12 in such a way that an optical fiber unit 24 is housed therein. The unit 24 is not fixed by a presser winding 25 so that it moves inside the groove so as to can cel a tensile and a compressive stresses arising in and outside of a neutral plane upon bending. The swirl direction of the groove 23 is designed to be the same as the twist direction of an iron wire armor 34, and the relational equation such as n/m=D/d is designed to be satisfied when the ratio between a twist pitch 'P' and the pitch diameter 'D' of the armor 34 is designated to be 'n' and the ratio between a spiral pitch 'p' and a pitch diameter 'd' of the groove 23 is designated to be 'm'. When a composite cable 10 is twisted, the length of the groove 23 is substantially kept constant, thus no stress is applied to the unit 24 so that a lowering of life and a degradation of transmission loss can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電力ケーブルと光フ
ァイバユニットとの複合海底ケーブルに関するもので、
特に電力ケーブルの外側に光ファイバユニットをらせん
巻きした層を設け、さらにその外側に1層の鉄線外装を
設けた構造の、電力光複合海底ケーブルに関するもので
ある。
[Industrial Application Field] This invention relates to a composite submarine cable consisting of a power cable and an optical fiber unit.
In particular, the present invention relates to a power-optical composite submarine cable having a structure in which a layer of spirally wound optical fiber units is provided on the outside of the power cable, and a single layer of iron wire sheathing is further provided on the outside of the power cable.

【0002】0002

【従来の技術】図2に、従来の複合ケーブルの断面の一
例を示す。10は複合ケーブルの全体である。12は電
力ケーブルで、14はその油通路、16は導体、18は
絶縁層、20は鉛シース、22はPEシース。電力ケー
ブル12の上に、光ファイバユニット24のらせん巻き
層を設ける。光ファイバユニットとしては、右側に拡大
して示すように、光フアイバ26を金属パイプ28内に
収容し、プラスチック(PE)シース30を施したもの
(以下パイプ型という)、あるいは左側に示すように、
テンションメンバの回りに光ファイバ26をUV樹脂3
2を用いて集合し、プラスチック(ナイロン)シース3
0を施したもの(以下集合型という)、などを用いる。 34は鉄線外装(亜鉛メッキ鉄線など)である。光ファ
イバユニット24の層は、鉄線外装34の層の直下に設
けられる。
2. Description of the Related Art FIG. 2 shows an example of a cross section of a conventional composite cable. 10 is the entire composite cable. 12 is a power cable, 14 is its oil passage, 16 is a conductor, 18 is an insulating layer, 20 is a lead sheath, and 22 is a PE sheath. A spirally wound layer of optical fiber units 24 is provided over the power cable 12 . The optical fiber unit may be one in which the optical fiber 26 is housed in a metal pipe 28 and covered with a plastic (PE) sheath 30 (hereinafter referred to as a pipe type), as shown enlarged on the right, or one in which the optical fiber 26 is housed in a metal pipe 28 and covered with a plastic (PE) sheath 30 (hereinafter referred to as a pipe type), or as shown on the left ,
Optical fiber 26 is wrapped around the tension member using UV resin 3.
2 and a plastic (nylon) sheath 3
A type with 0 applied (hereinafter referred to as a set type) is used. 34 is a steel wire exterior (galvanized iron wire, etc.). The layer of optical fiber unit 24 is provided directly below the layer of iron wire sheath 34 .

【0003】ところが、上記のような1重鉄線外装ケー
ブルの場合、曲げ等の外力により、比較的容易に捻回し
(鉄線外装のゆるむ方向)、捻回するとケーブルが伸び
るという現象が発生するすなわち、図3に模型的に示す
ように、複合ケーブル10が、(a)の状態から角度θ
だけ捻回して(b)の状態になったとすると、ゆるんだ
鉄線外装34によって複合ケーブル10の長さが、L0
からL1に伸ばされる。なお、図3では、複合ケーブル
10の右端面を併記し、(a)のとき、端面の真上にあ
ったA点が、捻回により(b)のように移動したことを
示している。このように複合ケーブル10が伸びると、
光ファイバに応力が加わり、寿命低下、伝送損失劣化を
もたらす。
However, in the case of the above-mentioned single-layered iron wire armored cable, a phenomenon occurs in which it is relatively easy to twist (in the direction in which the iron wire sheath loosens) due to external force such as bending, and when twisted, the cable stretches. As schematically shown in FIG. 3, the composite cable 10 is rotated at an angle θ
If the state shown in (b) is obtained by twisting only
It is extended from L1 to L1. In addition, in FIG. 3, the right end surface of the composite cable 10 is also shown, and it shows that the point A which was right above the end surface in (a) moved as shown in (b) due to twisting. When the composite cable 10 is stretched in this way,
Stress is added to the optical fiber, resulting in a shortened service life and degraded transmission loss.

【0004】そこで、このような問題を解消するために
、次の技術が提案されている(特願平2−198696
号)。それは、図4に模型的に示すように、(1)光フ
ァイバユニット24の撚り方向と鉄線外装34の撚り方
向を同一とし、かつ (2)鉄線外装34の撚りピッチPと層心径Dとの比P
/Dをnとし、光ファイバユニット24の撚りピッチp
’と層心径d’との比p’/d’をm’とするき、n/
m’=D/d’  となるようにする、ということであ
る。このようにすると、上記のように、捻回によりケー
ブルが伸びても、光ファイバユニットの長さが変化せず
、したがって光ファイバに応力が加わらなくなる。
[0004] In order to solve this problem, the following technology has been proposed (Japanese Patent Application No. 198696/1999).
issue). As schematically shown in FIG. 4, (1) the twisting direction of the optical fiber unit 24 and the twisting direction of the iron wire sheathing 34 are the same, and (2) the twist pitch P and the layer core diameter D of the iron wire sheathing 34 are the same. ratio P
/D is n, and the twist pitch p of the optical fiber unit 24 is
When the ratio p'/d' of ' and layer core diameter d' is m', n/
This means that m'=D/d'. In this way, as described above, even if the cable is stretched due to twisting, the length of the optical fiber unit does not change, and therefore no stress is applied to the optical fiber.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
に、n/m’=D/d’となるようにケーブル設計を行
った場合、一般に光ユニットの撚りピッチp’は大きく
なる場合が多い。そのため、ケーブルを曲げたときに、
光ユニットに加わる応力は増大する。特に上記のように
、電力ケーブルの外側にらせん状に配する場合、その層
心径d’は大きくなることから、ケーブル曲げ時、中立
面の外側では光ユニットは大きな引張り応力を受け、中
立面の内側では大きな圧縮力を受けることになり、光フ
ァイバの伝送特性上、致命的な影響を受けることになり
かねない。
[Problem to be Solved by the Invention] However, as described above, when a cable is designed so that n/m'=D/d', the twist pitch p' of the optical unit often becomes large. . Therefore, when the cable is bent,
The stress applied to the light unit increases. In particular, when the cable is arranged spirally on the outside of the power cable as described above, the core diameter d' of the layer becomes large, so when the cable is bent, the optical unit receives a large tensile stress outside the neutral plane. The inside of the vertical plane will be subjected to a large compressive force, which may have a fatal effect on the transmission characteristics of the optical fiber.

【0006】[0006]

【課題を解決するための手段】図1のように、(1)電
力ケーブルのプラスチックシース22にらせん状の溝2
3を設け、その中に光ファイバユニット24を収容する
こと、(2)らせん状の溝24の旋回方向を、鉄線外装
34の撚り方向と同一とすること、(3)鉄線外装34
の撚りピッチPと層心径Dとの比をnとし、前記溝23
のらせんピッチpと層心径dとの比をmとするとき、 
 n/m=D/d  となるようにすること、という手
段をとる。
[Means for Solving the Problems] As shown in FIG. 1, (1) a spiral groove 2 is formed in a plastic sheath 22 of a power cable;
(2) the direction of rotation of the spiral groove 24 is the same as the twisting direction of the iron wire sheath 34; (3) the iron wire sheath 34
The ratio of the twist pitch P to the layer core diameter D is n, and the groove 23
When the ratio of the helical pitch p and the layer core diameter d is m,
A measure is taken to ensure that n/m=D/d.

【0007】すなわち、図1のように、PEシース22
の側面に、多数の溝23を螺旋状に設けておいて、それ
ぞれの中に光ファイバユニット24を収容する。光ファ
イバユニット24の長さと溝23の長さとは、ほぼ等し
い。25は押え巻きである。溝23と鉄線外装34との
関係を上記のようにする。なお、この関係は、上記従来
例(図2)における、光ファイバユニット24と鉄線外
装34との関係と同じである。なお、溝23の層心径d
は、溝23のほぼ中心を通る円の直径である。
That is, as shown in FIG.
A large number of grooves 23 are spirally provided on the side surface of the optical fiber unit 23, and an optical fiber unit 24 is accommodated in each groove. The length of the optical fiber unit 24 and the length of the groove 23 are approximately equal. 25 is a presser winder. The relationship between the groove 23 and the iron wire sheath 34 is as described above. Note that this relationship is the same as the relationship between the optical fiber unit 24 and the iron wire sheath 34 in the conventional example (FIG. 2). Note that the layer core diameter d of the groove 23
is the diameter of a circle passing approximately through the center of the groove 23.

【0008】[0008]

【作用】(1)光ファイバユニット24を溝23内に収
容することにより、光ファイバユニット24に鉄線外装
34の側圧が加わらなくなる。 (2)また光ファイバユニット24を溝23内に配置す
ることにより、直接押え巻き25により押えられること
がなくなり、曲げを受けたとき、光ファイバユニット2
4が溝23内で容易に移動できる、その結果、中立面の
外側と内側で光ファイバユニット24に加わる引張り応
力と圧縮応力とが相殺される。 (3)溝23の旋回方向と鉄線外装34の撚り方向を同
一とし、かつ鉄線外装34の撚りピッチPと層心径D、
ならびに溝23のらせんピッチpと層心径dとの関係を
、n/m=D/d(ただしp/d=m、P/D=n)と
なるようにすることにより、捻回の前後で、溝23の長
さにほとんど変化がなくなる。したがって、3内に収容
してある光ファイバユニット24の長さもほとんど変化
しない。
[Function] (1) By housing the optical fiber unit 24 in the groove 23, the lateral pressure of the iron wire sheath 34 is not applied to the optical fiber unit 24. (2) Furthermore, by arranging the optical fiber unit 24 in the groove 23, it is no longer directly pressed by the presser winding 25, so that when the optical fiber unit 24 is bent, the optical fiber unit 24
4 can be easily moved within the groove 23, so that the tensile and compressive stresses applied to the optical fiber unit 24 outside and inside the neutral plane cancel each other out. (3) The turning direction of the groove 23 and the twisting direction of the iron wire sheath 34 are the same, and the twist pitch P and layer core diameter D of the iron wire sheath 34,
In addition, by setting the relationship between the helical pitch p of the groove 23 and the layer core diameter d as n/m=D/d (however, p/d=m, P/D=n), it is possible to Therefore, there is almost no change in the length of the groove 23. Therefore, the length of the optical fiber unit 24 housed in the optical fiber unit 3 also hardly changes.

【0009】[0009]

【実施例】光ファイバユニット24としてパイプ型(図
2の右側)と集合型(図2の左側)のものを用い、図1
の構造の本発明品と図2の構造の従来品を作製し、それ
ぞれの場合について、特性を比較して、表1に示した。 なお、 ・鉄線外装34の層心径D=1600mm・鉄線外装3
4の撚りピッチP=120mm・溝23の層心径d=1
00mm ・溝23のらせんピッチp=1110mm・光ファイバ
ユニット24の層心径d’=100mm・光ファイバユ
ニット24の撚りピッチp’=1110mmである。
[Example] As the optical fiber unit 24, a pipe type (on the right side of Fig. 2) and an aggregate type (on the left side of Fig. 2) were used.
A product of the present invention having the structure shown in FIG. 2 and a conventional product having the structure shown in FIG. In addition, - Layer core diameter D of iron wire sheathing 34 = 1600 mm - Iron wire sheathing 3
4, twist pitch P = 120 mm, layer core diameter d of groove 23 = 1
00 mm - Helical pitch p of the groove 23 = 1110 mm - Core diameter d' of the optical fiber unit 24 = 100 mm - Twisting pitch p' of the optical fiber unit 24 = 1110 mm.

【0010】0010

【表1】 この表から、本発明品における曲げ特性の著しい向上が
伺われる。
[Table 1] From this table, it can be seen that the bending properties of the products of the present invention are significantly improved.

【0011】[0011]

【発明の効果】(1)光ファイバユニットを溝内に収容
することにより、光ファイバユニットに鉄線外装の側圧
が加わらなくなる。したがって、特別に耐側圧性に優れ
た光ファイバユニットを必要としない。 (2)また光ファイバユニットを溝内に配置することに
より、直接に押え巻きにより押えられることがなくなり
、曲げを受けたとき、光ファイバユニットが溝内で容易
に移動できる、その結果、中立面の外側と内側で光ファ
イバユニットに加わる引張り応力と圧縮応力とが相殺さ
れる。したがって、曲げ特性が改善される。 (3)溝の旋回方向と前記鉄線外装の撚り方向を同一と
し、かつ前記鉄線外装の撚りピッチPと層心径D、なら
びに溝のらせんピッチpと層心径dとの関係を、n/m
=D/d(ただしp/d=m、P/D=n)となるよう
にすることにより、捻回の前後で、溝の長さにほとんど
変化がなくなる。したがって、溝内に収容してある光フ
ァイバユニットの長さもほとんど変化しない。したがっ
て、捻回特性に優れた複合ケーブルになる。
Effects of the Invention (1) By housing the optical fiber unit in the groove, the lateral pressure of the iron wire exterior is not applied to the optical fiber unit. Therefore, there is no need for an optical fiber unit with particularly excellent lateral pressure resistance. (2) Furthermore, by arranging the optical fiber unit in the groove, it is no longer directly pressed down by the presser and winding, and when it is bent, the optical fiber unit can easily move within the groove. The tensile stress and compressive stress applied to the optical fiber unit on the outside and inside of the plane cancel each other out. Therefore, bending properties are improved. (3) The turning direction of the groove and the twisting direction of the iron wire sheath are the same, and the relationship between the twist pitch P and layer core diameter D of the iron wire sheath, and the relationship between the helical pitch p of the groove and the layer core diameter d is n/ m
=D/d (where p/d=m, P/D=n), there is almost no change in the length of the groove before and after twisting. Therefore, the length of the optical fiber unit housed in the groove also hardly changes. Therefore, the composite cable has excellent twisting characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例における断面の説明図。FIG. 1 is an explanatory diagram of a cross section in an embodiment of the present invention.

【図2】従来例における断面の説明図。FIG. 2 is an explanatory diagram of a cross section in a conventional example.

【図3】一重鉄線外装ケーブルの場合、捻回すると、鉄
線の作用によりケーブルが伸びることの説明図。
FIG. 3 is an explanatory diagram showing that in the case of a single-layered iron wire armored cable, when the cable is twisted, the cable stretches due to the action of the iron wire.

【図4】従来の複合ケーブルにおける捻回前後の状態の
説明図。
FIG. 4 is an explanatory diagram of a conventional composite cable before and after twisting.

【符号の説明】[Explanation of symbols]

10:複合ケーブル       12:電力ケーブル 14:油通路                   
 16:ケーブル導体 18:ケーブル絶縁層            20:
鉛シース 22:プラスチックシース 23:らせん状の溝 24:光ファイバユニット 26:光ファイバ              28:
金属パイプ 30:シース            34:鉄線外装
10: Composite cable 12: Power cable 14: Oil passage
16: Cable conductor 18: Cable insulation layer 20:
Lead sheath 22: Plastic sheath 23: Spiral groove 24: Optical fiber unit 26: Optical fiber 28:
Metal pipe 30: Sheath 34: Iron wire exterior

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電力ケーブルの外側に光フアイバユニ
ットをらせん巻きした層を設け、その外側に1層の鉄線
外装を設けた、電力光複合海底ケーブルにおいて、前記
光ファイバユニットは、前記電力ケーブルのシースに設
けた、旋回方向が前記鉄線外装の撚り方向と同一な、ら
せん状の溝の中に収容されており;かつ前記鉄線外装の
撚りピッチPと層心径Dとの比をnとし、前記溝のらせ
んピッチpと層心径dとの比をmとするとき、  n/
m=D/d  となるようにしてある、電力光複合海底
ケーブル
1. A power-optical composite submarine cable comprising a spirally wound layer of optical fiber units provided on the outside of the power cable and a single layer of iron wire sheathing provided on the outside thereof, wherein the optical fiber unit is connected to the power cable. It is accommodated in a spiral groove provided in the sheath and whose turning direction is the same as the twisting direction of the iron wire sheath; and the ratio of the twist pitch P of the iron wire sheath to the layer core diameter D is n; When the ratio of the helical pitch p of the groove to the layer core diameter d is m, n/
A power/optical composite submarine cable designed so that m=D/d
JP3039086A 1991-02-08 1991-02-08 Power optical composite submarine cable Expired - Fee Related JP2630856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039086A JP2630856B2 (en) 1991-02-08 1991-02-08 Power optical composite submarine cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039086A JP2630856B2 (en) 1991-02-08 1991-02-08 Power optical composite submarine cable

Publications (2)

Publication Number Publication Date
JPH04255614A true JPH04255614A (en) 1992-09-10
JP2630856B2 JP2630856B2 (en) 1997-07-16

Family

ID=12543278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039086A Expired - Fee Related JP2630856B2 (en) 1991-02-08 1991-02-08 Power optical composite submarine cable

Country Status (1)

Country Link
JP (1) JP2630856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966573A (en) * 2015-05-25 2015-10-07 广州供电局有限公司 Multifunctional intelligent cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283451A (en) * 1985-10-09 1987-04-16 Hitachi Ltd Disk of gas turbine
JPS63274014A (en) * 1987-05-01 1988-11-11 Sumitomo Electric Ind Ltd Photo-fiber compound monocore power cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283451A (en) * 1985-10-09 1987-04-16 Hitachi Ltd Disk of gas turbine
JPS63274014A (en) * 1987-05-01 1988-11-11 Sumitomo Electric Ind Ltd Photo-fiber compound monocore power cable

Also Published As

Publication number Publication date
JP2630856B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
KR960013801B1 (en) Optical cable having non-metallic sheath system
KR100492957B1 (en) Loose Tube Optical Cable
US20060048966A1 (en) Shield cable, wiring component, and information apparatus
JP3031522B2 (en) Manufacturing method of optical fiber cable
US4259544A (en) Electric cable with a longitudinal strength member
US4787702A (en) Fiber optic cable and method of making the same
CA2960325C (en) Optical fiber cable, and method and apparatus for manufacturing optical fiber cable
US20180075949A1 (en) Extended frequency range balanced twisted pair transmission line or communication cable
JPS62191810A (en) Optical fiber cable
JPH04255614A (en) Power photo-composite submarine cable
US20070230879A1 (en) Armored fiber optic cable having a centering element and methods of making
JP3134695B2 (en) SZ twisted spacer type optical fiber cable
JP3300377B2 (en) Optical fiber composite overhead ground wire
JP6973543B2 (en) Composite cable
KR200318547Y1 (en) Loose Tube Optical Cable
JPH0652738A (en) Manufacture of optical fiber composite overhead earth wire
JPS61282806A (en) Alternant reversed strand optical fiber cable
JPS60177312A (en) Manufacture of optical fiber cable
KR200210083Y1 (en) 3-way crimp structure of wire rope twisted pair device
JP2627573B2 (en) Power optical composite submarine cable
JPH04126306A (en) Low wind noise multiple conductor electric wire and drawing method therefor
JP3571834B2 (en) Fiber optic cable
JPS6059611A (en) Composite cable of optical fiber and conductor
JPH0514410Y2 (en)
CN112712927A (en) Transmission cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees