JPH04254547A - Steel for induction hardening - Google Patents

Steel for induction hardening

Info

Publication number
JPH04254547A
JPH04254547A JP3543791A JP3543791A JPH04254547A JP H04254547 A JPH04254547 A JP H04254547A JP 3543791 A JP3543791 A JP 3543791A JP 3543791 A JP3543791 A JP 3543791A JP H04254547 A JPH04254547 A JP H04254547A
Authority
JP
Japan
Prior art keywords
steel
hardness
induction hardening
less
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3543791A
Other languages
Japanese (ja)
Inventor
Mitsuo Uno
宇野 光男
Fukukazu Nakazato
中里 福和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3543791A priority Critical patent/JPH04254547A/en
Publication of JPH04254547A publication Critical patent/JPH04254547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a steel for machine structural use capable of forming 'a surface hardened layer having sufficient hardness and free from dispersion of hardness' only by ordinary induction hardening treatment. CONSTITUTION:The steel for induction hardening is constituted so that it has a chemical composition consisting of 0.30-0.60% C, <=1.00% Si, 0.30-2.00% Mn, 0.040-0.100% S, and the balance Fe with inevitable impurities or further containing, if necessary, one or more kinds among <=3.50% Ni, <=2.00% Cr, <=2.00% MO, <=1.00% Cu, 0.0003-0.0050% B, 0.010-0.100% Al, 0.010-0.100% Ti, 0.010-0.100% Nb, 0.01-0.30% V, 0.0005-0.0100% Ca, and 0.01-0.20% Pb. Moreover, the structure of this steel is regulated to a structure where the average grain size of ferrite is <=20mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、自動車,建設機械或
いは産業機械に使用されるシャフト,ボルト,歯車等の
如き、高周波焼入れを必要とする部材用として好適な機
械構造用鋼(高周波焼入れ鋼)に関するものである。
[Industrial Application Field] This invention is a mechanical structural steel (induction hardened steel) suitable for parts that require induction hardening, such as shafts, bolts, gears, etc. used in automobiles, construction machines, and industrial machines. ).

【0002】0002

【従来技術とその課題】「高周波焼入れ」は、鋼材の耐
摩耗性や疲労特性の向上を図る目的でその表層部(1〜
3mm)のみを焼入れする焼入れ方法の1種であるが、
処理時間が非常に短くて作業性が良いことから、広く一
般に適用されている処理の1つである。
[Prior art and its problems] "Induction hardening" is used to improve the wear resistance and fatigue properties of steel materials.
This is a type of hardening method that hardens only 3mm).
It is one of the widely used processes because the processing time is very short and the workability is good.

【0003】ところが、この高周波焼入れでは、加熱時
間が通常の焼入れ(25mm直径当り30〜60分の加
熱)に比べ極めて短時間(1〜2秒)であるが故に不完
全焼入れ(前組織の残存或いは炭化物の不完全固溶)と
なることが多く、硬さの低下や硬度バラツキを生じるこ
とがしばしば起きていた。
However, in this induction hardening, the heating time is extremely short (1 to 2 seconds) compared to normal hardening (heating for 30 to 60 minutes per 25 mm diameter), so incomplete hardening (previous structure remains) (or incomplete solid solution of carbides), which often resulted in a decrease in hardness and variations in hardness.

【0004】そこで、上記不都合を防止するため、最近
では高周波焼入れに先立ち一度通常の焼入れ・焼戻しを
施して合金元素を完全に固溶させると共に、組織を焼戻
マルテンサイト組織にしておく等の対策を採ることが多
い。
Therefore, in order to prevent the above-mentioned disadvantages, recent measures have been taken, such as performing normal hardening and tempering once before induction hardening to completely dissolve the alloying elements and make the structure a tempered martensitic structure. is often taken.

【0005】しかしながら、高周波焼入れの前に通常の
焼入れ・焼戻しを施すことは作業性の低下と同時にコス
トアップにもつながり、そのためこの前処理(通常の焼
入れ・焼戻し)を省略しても所望性能を安定して確保で
きる高周波焼入れ鋼の開発が望まれていた。
However, performing normal hardening and tempering before induction hardening reduces workability and increases costs, so even if this pretreatment (normal hardening and tempering) is omitted, the desired performance cannot be achieved. There was a desire to develop stable induction hardened steel.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上述のよ
うな観点から、通常の高周波焼入れ処理のみで“十分な
硬さを有する硬度バラツキの無い表面硬化層”が得られ
る機械構造用鋼を実現すべく鋭意研究を行った結果、次
のような知見を得ることができた。
[Means for Solving the Problems] From the above-mentioned viewpoint, the present inventors have developed a material for mechanical structures in which a "surface-hardened layer having sufficient hardness and no hardness variation" can be obtained only by ordinary induction hardening treatment. As a result of intensive research aimed at realizing steel, we were able to obtain the following knowledge.

【0007】(a)  高周波焼入れによる焼入れ層の
硬さ不足や硬さバラツキの発生は、高周波焼入れ前にお
ける鋼のフェライト粒径と密接な関係がある,(b) 
 そして、高周波焼入れ前のフェライトの平均粒径を2
0μm以下に制御した場合には、通常の高周波焼入れ(
加熱温度:900〜1000℃,加熱時間:1〜2秒)
を単独で施すだけでもバラツキの無い十分な硬度を有す
る焼入れ層を安定して形成できるようになる,(c) 
 ところで、この種の材料に必要な強度を確保するため
Cを0.30%以上(以降、 成分割合を表わす%は重
量%とする)含有させた鋼では、フェライト粒径を20
μm以下に調整するには鍛造或いは圧延後の冷却速度を
60℃/min以上に制御する必要があって少なからぬ
作業上の困難を余儀無くされる。しかし、鋼中にMn及
びSの特定量を複合添加した場合には、フェライトの析
出核としてのMnSが微細に分散析出されることとなっ
て、鍛造或いは圧延後の冷却速度が60℃/min未満
であってもフェライト粒径を20μm以下に制御できる
ようになる。
(a) Insufficient hardness and hardness variations in the hardened layer due to induction hardening are closely related to the ferrite grain size of the steel before induction hardening. (b)
Then, the average grain size of ferrite before induction hardening is 2
When controlled to 0μm or less, ordinary induction hardening (
Heating temperature: 900-1000℃, heating time: 1-2 seconds)
By applying it alone, it becomes possible to stably form a hardened layer with sufficient hardness without any variation. (c)
By the way, in order to ensure the strength required for this type of material, steel containing 0.30% or more of C (hereinafter, % representing the component ratio is expressed as weight %) has a ferrite grain size of 20%.
In order to adjust the thickness to below μm, it is necessary to control the cooling rate after forging or rolling to 60° C./min or more, which causes considerable operational difficulties. However, when specific amounts of Mn and S are added in combination to steel, MnS, which serves as ferrite precipitation nuclei, is finely dispersed and precipitated, resulting in a cooling rate of 60°C/min after forging or rolling. Even if it is less than 20 μm, the ferrite grain size can be controlled to 20 μm or less.

【0008】本発明は、上記知見事項等を基にして完成
されたものであり、「高周波焼入れ用鋼を、   C:
0.30〜0.60%,    Si:1.00%以下
,    Mn:0.30〜2.00%,  S:0.
040 〜0.100 %を含有するか、 或いは必要
に応じて更に  Ni:3.50%以下,      
Cr:2.00%以下,      Mo:2.00%
以下,  Cu:1.00%以下,      B:0
.0003〜0.0050%,  Al:0.010 
〜0.100 %,  Ti:0.010 〜0.10
0 %,  Nb:0.010 〜0.100 %, 
 V:0.01〜0.30%,  Ca:0.0005
〜0.0100%,  Pb:0.01〜0.20%の
1種以上をも含むと共に、 残部がFe及び不可避的不
純物から成る化学成分組成に構成し、 かつフェライト
の平均粒径が20μm以下である組織に調整することに
よって、 格別な前処理を要することなく高周波焼入れ
のみで硬度バラツキが極力小さい上に十分な硬さを有す
る表面焼入れ層を安定して実現できるようにした点」に
大きな特徴を有している。ここで、「フェライトの粒径
」とは、図1に示したような“単独フェライトの粒径”
及び“集合フェライトの粒径”の何れをも意味するもの
である。
[0008] The present invention was completed based on the above-mentioned findings and the like.
0.30-0.60%, Si: 1.00% or less, Mn: 0.30-2.00%, S: 0.
040 to 0.100%, or if necessary further Ni: 3.50% or less,
Cr: 2.00% or less, Mo: 2.00%
Below, Cu: 1.00% or less, B: 0
.. 0003-0.0050%, Al: 0.010
~0.100%, Ti:0.010 ~0.10
0%, Nb: 0.010 to 0.100%,
V: 0.01-0.30%, Ca: 0.0005
~0.0100%, Pb: 0.01~0.20%, and has a chemical composition with the balance consisting of Fe and unavoidable impurities, and the average grain size of ferrite is 20 μm or less The major advantage is that by adjusting the structure to a certain structure, it is possible to stably create a surface-hardened layer that has sufficient hardness with as little variation in hardness as possible using only induction hardening without the need for special pretreatment. It has characteristics. Here, the "grain size of ferrite" refers to the "grain size of individual ferrite" as shown in Figure 1.
and "grain size of aggregate ferrite".

【0009】[0009]

【作用】上述の如く、本発明は鋼のCやSiの含有量を
調整して所望特性の確保を図ったほか、特にMn,Sの
添加量を特定範囲に調整することによりフェライトの析
出核となる微細分散MnSを生成させてフェライトを微
細析出させ、これによってフェライト平均粒径を20μ
m以下に制御することで高周波焼入れ後の硬さ低下,硬
さバラツキを防止した機械構造用鋼に係わるものである
が、以下、構成化学成分の含有量並びにフェライト平均
粒径を前記の如くに数値限定した理由をその作用と共に
より詳細に説明する。
[Operation] As mentioned above, the present invention aims to ensure the desired properties by adjusting the content of C and Si in the steel, and in particular, by adjusting the amounts of Mn and S added within a specific range, the precipitation nuclei of ferrite are obtained. Finely dispersed MnS is generated to finely precipitate ferrite, thereby increasing the average ferrite grain size to 20μ.
This relates to a steel for machine structures that prevents hardness reduction and hardness variation after induction hardening by controlling the content of the constituent chemical components and the average ferrite grain size as described above. The reason for limiting the numerical value will be explained in more detail along with its effect.

【00010】(A)  化学成分C Cには鋼の静的強度及び硬さを向上させる作用があるが
、高周波焼入れ用鋼として所定の硬さを得るためには0
.30%以上の含有量を確保する必要がある。一方、0
.60%を超えてCを含有させても硬度上昇効果は飽和
する。 従って、C含有量は0.30〜0.60%と定めた。
(A) Chemical component C C has the effect of improving the static strength and hardness of steel, but in order to obtain the specified hardness as a steel for induction hardening, 0.
.. It is necessary to ensure a content of 30% or more. On the other hand, 0
.. Even if C is contained in an amount exceeding 60%, the hardness increasing effect is saturated. Therefore, the C content was determined to be 0.30 to 0.60%.

【00011】Si Siは、鋼の脱酸促進剤としての作用のほか、鋼に静的
強度を付与する作用を有する有効な成分であるが、 1
.0%を超えて含有させてもその効果が飽和してしまう
ばかりか、冷間加工性の低下を招くようになる。従って
、Siの添加量は 1.0%以下と定めた。
Si Si is an effective component that not only acts as a deoxidizing agent for steel but also imparts static strength to steel.
.. Even if it is contained in an amount exceeding 0%, not only the effect will be saturated, but also the cold workability will deteriorate. Therefore, the amount of Si added was determined to be 1.0% or less.

【00012】Mn Mnは、Siと同様に鋼の脱酸に有効な元素であるが、
本発明の主要な狙いであるMnSを形成しフェライトの
微細分散析出を促してフェライト平均粒径を20μm以
下に制御するためには、所定量のSと共に0.30%以
上のMn含有量を確保する必要がある。一方、2.00
%を超えてMnを含有させると鋼の冷間加工性を低下さ
せるようになる。従って、Mn含有量は0.30〜2.
00%と定めた。
Mn Mn, like Si, is an effective element for deoxidizing steel.
In order to form MnS, promote finely dispersed precipitation of ferrite, and control the average ferrite grain size to 20 μm or less, which is the main aim of the present invention, ensure a Mn content of 0.30% or more along with a predetermined amount of S. There is a need to. On the other hand, 2.00
If Mn is contained in an amount exceeding %, the cold workability of the steel will be reduced. Therefore, the Mn content is between 0.30 and 2.
It was set as 00%.

【00013】S Sは鋼の切削性向上に有効な元素であるが、本発明の主
要な狙いであるMnSを形成してフェライト平均粒径を
20μm以下に制御するためには、所定量のMnと共に
 0.040%以上のS含有量を確保する必要がある。 一方、 0.100%を超えてSを含有させると鋼の靱
性低下を招く。従って、S含有量は 0.040〜 0
.100%と定めた。
SS is an effective element for improving the machinability of steel, but in order to form MnS and control the average ferrite grain size to 20 μm or less, which is the main aim of the present invention, a predetermined amount of Mn must be added. It is also necessary to ensure an S content of 0.040% or more. On the other hand, when S is contained in an amount exceeding 0.100%, the toughness of the steel decreases. Therefore, the S content is 0.040~0
.. It was set as 100%.

【00014】 Ni,Cr,Mo,Cu,B,Al,Ti,Nb,V,
Ca及びPbこれらの元素は各々鋼の焼入れ性,靱性,
強度或いは切削性を改善する作用を有しているため、必
要に応じて1種又は2種以上が添加・含有せしめられる
が、各成分に関する含有量の限定理由は次の通りである
[00014] Ni, Cr, Mo, Cu, B, Al, Ti, Nb, V,
Ca and Pb These elements each affect the hardenability, toughness,
Since it has the effect of improving strength or machinability, one or more types may be added or contained as necessary, and the reason for limiting the content of each component is as follows.

【00015】a)  Ni Niは鋼の焼入れ性を改善しかつ靱性を向上させる作用
を有しているが、3.50%を超えて含有させても前記
作用による効果が飽和して経済性を損なうようになるこ
とから、Ni添加量は3.50%以下と定めた。
a) Ni Ni has the effect of improving the hardenability and toughness of steel, but even if it is contained in an amount exceeding 3.50%, the effect of the above effect is saturated and the economic efficiency is reduced. The amount of Ni added was determined to be 3.50% or less since this would cause damage.

【00016】b)  Cr CrもNiと同様に鋼の焼入れ性改善に有効な元素であ
るが、2.00%を超えて添加してもそれに見合うだけ
の改善効果が得られなくなるばかりか、靱性低下を招く
ようになる。従って、Cr添加量は2.00%以下と定
めた。
b) Cr Like Ni, Cr is an effective element for improving the hardenability of steel, but adding more than 2.00% will not only result in no commensurate improvement effect, but will also reduce the toughness. This will lead to a decline. Therefore, the amount of Cr added was determined to be 2.00% or less.

【00017】c)  Mo Moは焼入れ性向上及び靱性向上に極めて有効な元素で
あるが、2.00%を超えて含有させてもその効果が飽
和して経済性を損なうようになることから、Mo添加量
は2.00%以下と定めた。
c) Mo Mo is an extremely effective element for improving hardenability and toughness, but if it is contained in an amount exceeding 2.00%, its effect will be saturated and economic efficiency will be impaired. The amount of Mo added was determined to be 2.00% or less.

【00018】d)  Cu Cuは鋼の焼入れ性向上及び静的強度の改善に有効な元
素であるが、1.00%を超えて含有させると熱間加工
性の低下、更には静的強度の低下を招くようになること
から、Cu含有量は1.00%以下と定めた。
d) Cu Cu is an element that is effective in improving the hardenability and static strength of steel, but when it is contained in an amount exceeding 1.00%, hot workability decreases and furthermore, static strength decreases. The Cu content was set at 1.00% or less since this would lead to a decrease in the Cu content.

【00019】e)  B Bは鋼の焼入れ性を向上させ静的強度を改善するのに有
効な元素であるが、その含有量が0.0003%未満で
は十分な効果が得られない。一方、0.0050%を超
えてBを含有させると結晶粒の粗大化を招いて靱性低下
を来たすようになる。従って、B含有量は0.0003
〜0.0050%と定めた。
e) B B is an element effective in improving the hardenability and static strength of steel, but if its content is less than 0.0003%, sufficient effects cannot be obtained. On the other hand, if B is contained in an amount exceeding 0.0050%, the crystal grains will become coarser, resulting in a decrease in toughness. Therefore, the B content is 0.0003
It was set at ~0.0050%.

【00020】f)  Al Alは鋼の結晶粒を微細化させ、靱性を向上させるのに
有効な元素であるが、その効果を十分に発揮させるため
には 0.010%以上の添加が必要である。しかし、
 0.100%を超えて添加すると逆に結晶粒の粗大化
を招いて靱性低下を来たすようになる。従って、Al含
有量は 0.010〜 0.100%と定めた。
f) Al Al is an effective element for refining the crystal grains of steel and improving its toughness, but in order to fully demonstrate its effect, it must be added in an amount of 0.010% or more. be. but,
If it is added in an amount exceeding 0.100%, the crystal grains will become coarser, resulting in a decrease in toughness. Therefore, the Al content was determined to be 0.010 to 0.100%.

【00021】g)  Ti TiもAlと同様に結晶粒を微細化させ靱性を向上させ
るのに有効な元素であるが、その効果を十分に発揮させ
るためには 0.010%以上の添加が必要である。し
かし、 0.100%を超えて含有させると切削性が低
下すると共に結晶粒が逆に粗大化して靱性低下を来たす
ようになる。従って、Ti含有量は 0.010〜 0
.100%と定めた。
g) Ti Like Al, Ti is an effective element for refining crystal grains and improving toughness, but in order to fully demonstrate its effect, it is necessary to add 0.010% or more. It is. However, if it is contained in an amount exceeding 0.100%, machinability decreases and the crystal grains become coarser, resulting in a decrease in toughness. Therefore, the Ti content is between 0.010 and 0.
.. It was set as 100%.

【00022】h)  Nb NbもAl,Tiと同様に結晶粒を微細化させて靱性を
向上させるのに有効な元素であるが、その効果を十分に
発揮させるためには 0.010%以上の添加が必要で
ある。しかし、 0.100%を超えて添加すると切削
性の低下を招くようになる。従って、Nb含有量は 0
.010〜 0.100%と定めた。
h) Nb Like Al and Ti, Nb is an effective element for refining crystal grains and improving toughness, but in order to fully demonstrate its effect, it must be contained in an amount of 0.010% or more. Addition is necessary. However, when added in excess of 0.100%, machinability deteriorates. Therefore, the Nb content is 0
.. 010% to 0.100%.

【00023】i)  V Vは、鋼中で炭窒化物を析出して鋼の高温強度を高める
のに有効な元素であるが、その効果を十分に発揮させる
ためには0.01%以上の添加が必要である。しかし、
0.30%を超えて添加すると熱間加工性の低下を招く
ようになる。従って、V含有量は0.01〜0.30%
と定めた。
i) V V is an effective element for precipitating carbonitrides in steel and increasing the high-temperature strength of steel, but in order to fully exhibit its effect, it must be present in an amount of 0.01% or more. Addition is necessary. but,
Addition of more than 0.30% leads to a decrease in hot workability. Therefore, the V content is 0.01-0.30%
It was determined that

【00024】j)  Ca Caは鋼の切削性を向上させる元素であるが、その効果
を十分に発揮させるためには0.0005%以上の添加
が必要である。しかし、0.0100%を超えて含有さ
せると鋼の靱性を低下させることから、Ca含有量は0
.0005〜0.0100%と定めた。
j) Ca Ca is an element that improves the machinability of steel, but in order to fully exhibit its effect, it must be added in an amount of 0.0005% or more. However, if the Ca content exceeds 0.0100%, it will reduce the toughness of the steel.
.. 0005 to 0.0100%.

【00025】k)  Pb Pbも鋼の切削性を向上させるのに有効な元素であるが
、その効果を十分に発揮させるためには0.01%以上
の含有量を確保する必要がある。しかし、0.20%を
超えて含有させると鋼の靱性を低下させることから、P
b含有量は0.01〜0.20%と定めた。
k) Pb Pb is also an effective element for improving the machinability of steel, but in order to fully exhibit its effect, it is necessary to ensure a content of 0.01% or more. However, P content exceeding 0.20% reduces the toughness of steel.
The b content was determined to be 0.01 to 0.20%.

【00026】(B)  フェライト平均粒径フェライ
ト平均粒径(単独フェライト平均粒径及び集合フェライ
ト平均粒径)が20μmよりも大きいと、通常の焼入れ
・焼戻し等の前処理を施すことなく高周波焼入れ層の“
硬さ低下”や“硬さバラツキの発生”を防止することが
困難となる。従って、フェライト平均粒径を20μm以
下と定めた。
(B) Ferrite average grain size If the ferrite average grain size (individual ferrite average grain size and collective ferrite average grain size) is larger than 20 μm, the induction hardening layer can be formed without pretreatment such as normal hardening and tempering. of"
It becomes difficult to prevent "a decrease in hardness" or "occurrence of variations in hardness."Therefore, the average ferrite grain size was set to 20 μm or less.

【00027】続いて、本発明の効果を実施例により更
に具体的に説明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

【実施例】表1及び表2に示す各成分組成の鋼を50k
gの大気炉にて溶製した後、それぞれ直径が50mmφ
と25mmφの棒材に鍛伸して供試材とした。
[Example] Steel with each component composition shown in Tables 1 and 2 was 50k
After melting in an atmospheric furnace of g, each has a diameter of 50mmφ.
A sample material was prepared by forging and elongating into a bar with a diameter of 25 mm.

【表1】[Table 1]

【表2】[Table 2]

【00028】次に、上記各供試材を800〜900℃
の温度域に 1.5時間加熱した後に空冷して(50m
mφ材の冷却速度:30〜40℃/min,25mmφ
材の冷却速度:60〜80℃/min)焼ならしを行っ
た。そして、その後、これら供試材を「直径20mmφ
×長さ50mm」の試験片に加工し、周波数:200k
Hz,加熱温度:950℃,移動速度:3mm/sec
(加熱から冷却までの時間:約2秒)の条件で高周波焼
入れを実施した。
[00028] Next, each of the above test materials was heated to 800 to 900°C.
After heating to a temperature range of 1.5 hours, air cooling (50 m
Cooling rate of mφ material: 30-40℃/min, 25mmφ
Material cooling rate: 60-80°C/min) Normalizing was performed. After that, these test materials were
× length 50mm” test piece, frequency: 200k
Hz, heating temperature: 950°C, movement speed: 3mm/sec
Induction hardening was performed under the following conditions (time from heating to cooling: approximately 2 seconds).

【00029】次いで、高周波焼入れ後の供試材につき
硬さ測定を行って“硬さバラツキ”を調査し、高周波焼
入れの前に実施された“集合フェライト平均粒径の調査
結果”と共に表1,表2に併記した。なお、硬さバラツ
キの評価は、図2に示したように、25mmφ鍛伸材(
焼ならし時の冷却速度が速かったためにフェライト粒径
が細かくなっており、 そのため硬度バラツキが殆ど無
い)の硬さ分布曲線内に滑らかな挿入線を引き、その挿
入線と実際の硬さ分布を示す硬さ分布曲線との差により
生じた面積を求めてバラツキ度を算出する手法によった
。そして、バラツキ度はA=〔50mmφ材の面積〕/
〔25mmφ材の面積〕なる式で求められる面積比(A
)で表わした。
Next, the hardness of the sample material after induction hardening was measured to investigate the "hardness variation", and Table 1, It is also listed in Table 2. In addition, the evaluation of hardness variation was performed using a 25 mmφ forged and drawn material (as shown in Fig. 2).
Because the cooling rate during normalization was fast, the ferrite grain size has become fine, so there is almost no variation in hardness.) Draw a smooth insertion line within the hardness distribution curve, and compare that insertion line with the actual hardness distribution. A method was used to calculate the degree of variation by determining the area caused by the difference from the hardness distribution curve showing the hardness distribution curve. Then, the degree of variation is A = [area of 50mmφ material]/
[Area of 25 mmφ material] Area ratio (A
).

【00030】表1,表2に示される結果らも明らかな
ように、本発明鋼は何れも高周波焼入れ後の硬さバラツ
キ度は 2.0以下であるのに対し、比較鋼ではバラツ
キ度が 2.1〜7.1 となって極めて硬さバラツキ
の大きいことが分かる。
As is clear from the results shown in Tables 1 and 2, the degree of hardness variation after induction hardening for all of the steels of the present invention is 2.0 or less, whereas the degree of variation for the comparison steel is less than 2.0. It can be seen that the hardness varies from 2.1 to 7.1, and the variation in hardness is extremely large.

【00031】[00031]

【効果の総括】以上に説明した如く、特に高周波焼入れ
鋼のフェライト粒径を制御するためにMn及びSの適正
量を複合添加する点を重要な骨子とする本発明によれば
、高周波焼入れ硬化層の硬さバラツキを著しく小さくす
ることができる上に十分な硬度を安定して確保すること
も可能となり、高周波焼入れ前の予備処理としての“焼
入れ・焼戻し処理”を省略できるなど、産業上極めて有
用な効果がもたらされる。
[Summary of Effects] As explained above, according to the present invention, which has as its important point the combined addition of appropriate amounts of Mn and S in order to particularly control the ferrite grain size of induction hardened steel, induction hardening It is possible to significantly reduce the variation in hardness of the layer, and it is also possible to stably secure sufficient hardness, making it possible to omit "quenching and tempering" as a preliminary treatment before induction hardening, which is extremely useful in industry. Useful effects are produced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】フェライト粒径の定義を示した説明図である。FIG. 1 is an explanatory diagram showing the definition of ferrite grain size.

【図2】「硬さバラツキ度」を求める手法の説明図であ
る。
FIG. 2 is an explanatory diagram of a method for determining "hardness variation degree."

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量割合にて   C:0.30〜0.60%,    Si:1.0
0%以下,    Mn:0.30〜2.00%,  
S:0.040 〜0.100 %を含むと共に、残部
がFe及び不可避的不純物から成り、かつフェライト平
均粒径が20μm以下であることを特徴とする高周波焼
入れ用鋼。
[Claim 1] Weight percentage: C: 0.30-0.60%, Si: 1.0
0% or less, Mn: 0.30-2.00%,
A steel for induction hardening, characterized in that it contains 0.040 to 0.100% S, the balance consists of Fe and unavoidable impurities, and the average ferrite grain size is 20 μm or less.
【請求項2】  重量割合にて   C:0.30〜0.60%,      Si:1
.00%以下,      Mn:0.30〜2.00
%,  S:0.040 〜0.100 %を含有し、
更に   Ni:3.50%以下,        Cr:2
.00%以下,        Mo:2.00%以下
,  Cu:1.00%以下,        B:0
.0003〜0.0050%,  Al:0.010 
〜0.100 %,  Ti:0.010 〜0.10
0 %,  Nb:0.010 〜0.100 %, 
 V:0.01〜0.30%,  Ca:0.0005
〜0.0100%,  Pb:0.01〜0.20%の
1種以上をも含むと共に、残部がFe及び不可避的不純
物から成り、かつフェライト平均粒径が20μm以下で
あることを特徴とする高周波焼入れ用鋼。
[Claim 2] Weight percentage: C: 0.30-0.60%, Si: 1
.. 00% or less, Mn: 0.30-2.00
%, S: 0.040 to 0.100%,
Furthermore, Ni: 3.50% or less, Cr: 2
.. 00% or less, Mo: 2.00% or less, Cu: 1.00% or less, B: 0
.. 0003-0.0050%, Al: 0.010
~0.100%, Ti:0.010 ~0.10
0%, Nb: 0.010 to 0.100%,
V: 0.01-0.30%, Ca: 0.0005
~0.0100%, Pb: 0.01~0.20%, the balance is Fe and unavoidable impurities, and the average ferrite grain size is 20 μm or less. Steel for induction hardening.
JP3543791A 1991-02-05 1991-02-05 Steel for induction hardening Pending JPH04254547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3543791A JPH04254547A (en) 1991-02-05 1991-02-05 Steel for induction hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3543791A JPH04254547A (en) 1991-02-05 1991-02-05 Steel for induction hardening

Publications (1)

Publication Number Publication Date
JPH04254547A true JPH04254547A (en) 1992-09-09

Family

ID=12441827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3543791A Pending JPH04254547A (en) 1991-02-05 1991-02-05 Steel for induction hardening

Country Status (1)

Country Link
JP (1) JPH04254547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662245B2 (en) 2003-05-27 2010-02-16 Koyo Seiko Co., Ltd. Steering rack comprising steel bar with rack teeth
WO2016194938A1 (en) * 2015-06-01 2016-12-08 新日鐵住金株式会社 Hot forging steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662245B2 (en) 2003-05-27 2010-02-16 Koyo Seiko Co., Ltd. Steering rack comprising steel bar with rack teeth
WO2016194938A1 (en) * 2015-06-01 2016-12-08 新日鐵住金株式会社 Hot forging steel material
JPWO2016194938A1 (en) * 2015-06-01 2018-03-08 新日鐵住金株式会社 Steel for hot forging

Similar Documents

Publication Publication Date Title
CN110468341B (en) 1400 MPa-level delayed fracture-resistant high-strength bolt and manufacturing method thereof
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
CN113862576A (en) Non-quenched and tempered steel, crankshaft and production method thereof
US4584032A (en) Bolting bar material and a method of producing the same
CN109790602B (en) Steel
JP3932995B2 (en) Induction tempering steel and method for producing the same
EP3395998A1 (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JPH02236223A (en) Production of high strength steel excellent in delayed fracture characteristic
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
CN114787409B (en) Wire rod for high-strength cold heading quality steel having excellent hydrogen embrittlement resistance and method for manufacturing same
JPH04254547A (en) Steel for induction hardening
JP3725666B2 (en) Manufacturing method of carburized shaft parts
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPS58221263A (en) Special steel with superior workability and heat treatability and its manufcture
JPH0215604B2 (en)
JP2002069573A (en) Case-hardening steel excellent in torsional fatigue characteristic, and case-hardened parts
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPH05255733A (en) Production of carburized and case hardened steel material having delayed fracture resistance
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
JPS59159971A (en) Steel for cold forging with superior hardenability
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP2938322B2 (en) Manufacturing method of cylindrical case hardened parts with excellent fatigue life
JPS634042A (en) Case hardening steel for cold and warm forging