JPH04254464A - Semiconductor porcelain material - Google Patents

Semiconductor porcelain material

Info

Publication number
JPH04254464A
JPH04254464A JP3031836A JP3183691A JPH04254464A JP H04254464 A JPH04254464 A JP H04254464A JP 3031836 A JP3031836 A JP 3031836A JP 3183691 A JP3183691 A JP 3183691A JP H04254464 A JPH04254464 A JP H04254464A
Authority
JP
Japan
Prior art keywords
sno2
zno
mol
porcelain material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3031836A
Other languages
Japanese (ja)
Inventor
Masaru Masuyama
増山 勝
Yoshiaki Iguchi
井口 喜章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3031836A priority Critical patent/JPH04254464A/en
Publication of JPH04254464A publication Critical patent/JPH04254464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To substitute cheap ZnO powder for expensive SnO2 powder in order to reduce the production cost of semiconductor porcelain material essentially comprising SiO2 and having voltage-depending nonlinear resistance characteristics. CONSTITUTION:It is found that a porcelain material essentially comprising SiO2 30-99.5mol%, 0.5-70mol% ZnO, 0.05-20mol% Sb2O5, 0.1-40mol% CoO, in total 100%, has equal or superior varistor voltage, nonlinearity coefft., and mechanical strength to those of conventional semiconductor porcelain material essentially comprising SnO2. Therefore, only by substituting ZnO powder for the expensive SnO2 powder within the above composn. range, a varistor of good characteristics can be produced at a low cost by the same process.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電圧依存非直線抵抗特
性を有する半導体磁器物質に係り、特に従来品に比して
安価に提供することを可能とした磁器物質に関するもの
である。 【0002】 【従来の技術】小型モータのノイズ防止用リングバリス
タに使用される半導体磁器物質は、一般にSrTiO3
 を主成分とする系統に属する物質と、SnO2 を主
成分とする系統の物質に分類される。後者に属するSn
O2 系については、主成分であるSnO2 にSb2
 O5 、Bi2 O3 、CoOを副成分として含有
する非直線性抵抗体に関する特許(特公昭52−407
60、特公昭52−47158)が公告され実用化され
ている。 【0003】 【発明が解決しようとする課題】上述のSrTiO3 
を主成分とする磁器物質においては、非直線係数αは極
めて高いという優位性を有するが、該磁器物質はその成
分に起因する焼結性の劣化により脆く、したがってモー
タに取り付ける際に割れが発生し易いなどの欠点を有し
ているために、特にパーツの小型化は困難である。 【0004】一方、SnO2 を主成分とする磁器物質
は、非直線係数αは前者程ではないが、実用上差し支え
のない程度の値を有する反面、焼結体の強度が前者に比
して極めて高く、十分前者の欠点を償うことができると
いう利点を有する。 【0005】しかしながら後者においては磁器物質の原
料にSnO2 、Sb2 O5 、Bi2 O3 およ
びCoOという高価な粉末を使用するために、必然的に
製品の価格は相当上昇するなどの問題点を有している。 【0006】 【課題を解決するための手段】本発明者らは、斯る課題
を解決するため、SnO2 を主成分とする磁器物質の
主原料である高価なSnO2 粉末の少なくとも一部を
、はるかに安価なZnOに代替えすることを考え、鋭意
研究の結果、SnO2 20〜99.5モル%、ZnO
 0.5〜70モル%、Sb2 O5 0.05〜20
モル%、CoO 0.1〜40モル%からなり、合計1
00 モル%となるように配合された磁器物質が従来の
SnO2 を主成分とする焼結品と同等以上の非直線係
数を示し、しかも靭性(抗折強度)を有すること、並び
に従来のSnO2 主成分品より安価に製造できること
を見い出したのである。 【0007】 【作用】焼結体の電気特性はその結晶構造に関連性を有
すると考えられる。ZnOは六方格子を形成することが
SnO2 と類似している。すなわちSnO2 は、正
方格子、三斜晶形格子を形成すると同時に六方格子を形
成する。 【0008】したがって、SnO2 を主成分とする磁
器組成物のSnO2 を同一六方格子を形成するZnO
に代えてもその焼結体の電気特性にはそれ程変化が無い
とも考えられる。また、Sb2 O5 、Bi2 O3
 は焼結体のバインダの働きも兼ねると考えられる。S
b2 O5 は 350℃で熱分解して、 656℃の
融点を有するSb2 O3 となる。Bi2 O3 の
融点は 820℃である。SnO2 、ZnOの融点は
焼結温度より高いため、少なくともSb2 O5 およ
びBi2 O3 のいずれか一方をを混合する必要があ
るが両方を同時に加える必要はない。Sb2 O5 の
適量使用によりBi2 O3 の使用は省略できること
が確かめられた。ZnOはSnO2 よりバインダによ
り結合される効果が小さいと考えられるので、ZnOを
SnO2 に多量に代替えした場合は、焼結は不完全に
なることが予想されたが、70モル%までのZnOを含
ませ得ることがわかった。バインダの混合比が小さけれ
ば焼結は不完全になる。焼結が不完全な場合には磁器物
質のバリスタ電圧は上昇し、非直線係数、機械強度は低
下する。一方バインダの混合比を高くすれば、SnO2
 、ZnO粒子間にバインダ層が幅広く発生すると共に
、SnO2 、ZnO両粒子の内部までバインダ成分が
浸透してバリスタ電圧の上昇、非直線性の低下を引き起
こす原因となるであろうし、さらにこれらの層が脆いた
めに機械強度は低下するであろう。したがって、上記Z
nOによりSnO2 を置換するための条件を理論的に
導き出すことは必ずしも容易ではなく、数多くの実験に
よる試行錯誤を経る必要があった。 【0009】すなわち、本発明者らは、種々の異なる組
成の磁器物質についての実験の繰り返しによってSnO
2 を主成分とする磁器物質のSnO2 の一部をZn
Oに代えても非直線抵抗値αおよび抗折強度τ(kg/
cm2 )が同等以上となる特定組成の半導体磁器物質
が得られることを知り、高価なSnO2 粉末を安価な
ZnOにより置換して、製造コストの大幅な低減をもた
らすことになった。 【0010】以下実施例により本発明をさらに詳細に説
明する。 【0011】 【実施例】高純度SnO2 、ZnO、Sb2 O5 
、CoOを表1の試料番号1〜14に示すモル%の混合
比に秤量配合し、その各々につきボールミルにより10
時間湿式撹拌を行い、乾燥後粉砕した。次に、これら1
4試料粉砕物の各々を、1,100 ℃×2時間大気中
で仮焼し、再粉砕を行って14種類の原料粉末を得た。 さらに、これら原料粉末に10〜15重量%のポリビニ
ールアルコールを有機結合剤として混合して造粒し、約
1ton/cm2 の圧力で圧縮して、直径10mm、
厚さ1.0mm の円板に成形した。 【0012】これら円板を大気中、表1に示す温度でそ
れぞれ4時間焼成して、磁器試料を得た。 【0013】次に、これら試料円板の各々につき表裏面
に銀ペーストを塗布し、 800℃に加温して焼き付け
、銀電極を形成した。 【0014】以上の方法により作製された試料につき、
バリスタ電圧V1 、並びに非直線係数α、抗折強度τ
(kg/cm2 )を測定した。各試料につき、SnO
2 、ZnO、Sb2 O5 、CoOの混合比とバリ
スタ電圧V1 、非直線係数αおよび抗折強度τ(kg
/cm2 )との関係を表に示す。 【0015】なお、バリスタ電圧の測定法、非直線係数
および抗折強度の算出式を以下に記述する。 【0016】(1) バリスタ電圧V1 の測定法試料
の接点に直流定電流電源および直流電流計を直列に接続
する。また、試料の接点の両端に直流電圧計を並列に接
続して、直流定電流電源より試料に1mAの電流を流す
ために要する電圧を直流電圧計で測定してバリスタ電圧
V1(V) とした。 【0017】(2) 非直線係数αの測定法1mAの電
流を流すのに要する電圧V1 および10mAの電流を
流すのに要する電圧V10を測定して、各々の測定値を
次式に代入して非直線係数αを算出する。 α=1/log (V10/V1 ) 【0018】(3) 抗折強度τ(kg/cm2 )の
測定法一般に脆性物質の機械的強度の目安として、抗折
強度が用いられるため、試料の抗折強度を測定した。 【0019】幅 0.4cm、厚さ0.1cm の方形
断面を有する試料を上述の14枚の円板試料の作製過程
において、同時に作製して、磁器試料(銀ペースト塗布
、焼き付けは行わず)を用意した。この試料を支点間距
離1.2cm の2つの支点上に水平に置き、中央部に
毎秒約5kgの速さで荷重を加え、最大破壊荷重Pmを
測定し、次式により抗折強度を算出した。 τ= 3/2 ×(1.2 ×Pm)/(0.4 ×0
.1) kg/cm2 【0020】組成粉末SnO2
 、ZnO、Sb2 O5、CoOの混合比と、これよ
り作製した磁器物質のバリスタ電圧V1 、非直線係数
α、および抗折強度τとの関係を総括して表に示す。た
だし、試料番号14は比較例としてZnOを含まない従
来品である。 【表1】 【0021】同表の結果を考察して次の知見を得た。 【0022】(1) 特許請求の範囲に明記した組成(
試料番号 1、3 、5 、7 、9 、10、12、
13)の磁器物質は従来品(試料番号14)に比してバ
リスタ電圧V1 (V) 、非直線係数αおよび抗折強
度τが同等もしくは優れている。 【0023】(2) SnO2 が30モル%未満、Z
nOが70モルを超える場合はバリスタ電圧が極端に高
い反面、非直線係数αおよび抗折強度τ(kg/cm2
 )は低い(試料番号2)。 【0024】(3) またSb2 O5 が20モル%
を超える場合では抗折強度τ(kg/cm2 )が低い
(試料番号4)。 【0025】(4) 一方CoOが40モル%を超える
場合(試料番号6)およびSb2 O5 が0.05モ
ル%未満(試料番号8)では両者共バリスタ電圧V1 
(V) が高い。 【0026】(5) さらにCoOが 0.1モル%未
満では逆にバリスタ電圧V1 (V) が低い(試料番
号11)。 【0027】(6) なお、ZnOが 0.5モル%未
満の場合には、バリスタ電圧V1 (V) 、非直線係
数α、抗折強度τ(kg/cm2 )共満足できる値で
あるが、製造コストは従来品と同等となり、低減の効果
が得られない(試料番号14)。 【0028】上述のように、SnO2 30〜99.5
モル%、ZnO 0.5〜70モル%、Sb2 O5 
0.05〜20モル%、CoO 0.1〜40モル%か
らなり合計が 100モル%となる如き組成を有する半
導体磁器物質がバリスタ電圧V1 (V)、非直線係数
α、抗折強度τ(kg/cm2 )共満足できる値を示
すため、小型モータのノイズ防止用リングバリスタ用素
材として十分利用できる。すなわち、ZnOを主成分の
一部に代替えしても従来のSnO2 を主成分とするバ
リスタと同等以上の非直線係数および機械的強度を有す
ることが明らかであることが判明した。 【0029】 【発明の効果】本発明の開発により、高価なSnO2 
粉末を安価なZnOに代替えして従来のSnO2 を主
成分とするバリスタと同等以上の非直線係数および機械
強度を有するバリスタを製造することを可能とした。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a semiconductor ceramic material having voltage-dependent non-linear resistance characteristics, and in particular can be provided at a lower cost than conventional products. It concerns porcelain materials. [0002] Semiconductor ceramic materials used in ring varistors for noise prevention in small motors are generally SrTiO3.
It is classified into two types: those whose main component is SnO2 and those whose main component is SnO2. Sn belonging to the latter
Regarding the O2 system, Sb2 is added to the main component SnO2.
Patent on a nonlinear resistor containing O5, Bi2 O3, and CoO as subcomponents (Japanese Patent Publication No. 52-407
60, Japanese Patent Publication No. 52-47158) was published and put into practical use. Problem to be Solved by the Invention: The above-mentioned SrTiO3
Porcelain material whose main component is α has an extremely high nonlinear coefficient α, but the porcelain material is brittle due to deterioration in sinterability caused by its components, and therefore cracks occur when it is attached to a motor. However, it is difficult to miniaturize the parts because of the drawbacks such as being easy to bend. On the other hand, although the nonlinear coefficient α of the porcelain material mainly composed of SnO2 is not as high as the former, it has a value that does not cause any problem in practical use, but the strength of the sintered body is extremely high compared to the former. It has the advantage of being able to compensate for the disadvantages of the former. However, the latter method uses expensive powders such as SnO2, Sb2O5, Bi2O3, and CoO as raw materials for the porcelain material, which inevitably leads to problems such as a considerable increase in the price of the product. . [Means for Solving the Problem] In order to solve the problem, the present inventors have made it possible to use at least a part of the expensive SnO2 powder, which is the main raw material of the porcelain material mainly composed of SnO2, in a far more As a result of intensive research, we found that SnO2 20-99.5 mol%, ZnO
0.5-70 mol%, Sb2O5 0.05-20
mol%, CoO 0.1 to 40 mol%, total 1
00 mol% of the porcelain material has a nonlinear coefficient equal to or higher than that of conventional sintered products whose main component is SnO2, and has toughness (flexural strength). They discovered that it could be manufactured more cheaply than component products. [0007] It is believed that the electrical properties of a sintered body are related to its crystal structure. ZnO is similar to SnO2 in that it forms a hexagonal lattice. That is, SnO2 forms a hexagonal lattice as well as a square lattice and a triclinic lattice. [0008] Therefore, if SnO2 of a porcelain composition mainly composed of SnO2 is
It is thought that even if the sintered body is replaced with the sintered body, the electrical properties of the sintered body do not change much. Also, Sb2 O5, Bi2 O3
It is thought that it also acts as a binder for the sintered body. S
b2O5 thermally decomposes at 350°C to form Sb2O3, which has a melting point of 656°C. The melting point of Bi2 O3 is 820°C. Since the melting points of SnO2 and ZnO are higher than the sintering temperature, it is necessary to mix at least one of Sb2 O5 and Bi2 O3, but it is not necessary to add both at the same time. It was confirmed that the use of Bi2 O3 could be omitted by using an appropriate amount of Sb2 O5. Since ZnO is thought to have a smaller binding effect with a binder than SnO2, it was expected that if a large amount of ZnO was replaced with SnO2, sintering would be incomplete; I found out that it can be done. If the binder mixing ratio is small, sintering will be incomplete. If sintering is incomplete, the varistor voltage of the porcelain material will increase, and the nonlinear coefficient and mechanical strength will decrease. On the other hand, if the binder mixing ratio is increased, SnO2
, a wide binder layer will be generated between the ZnO particles, and the binder component will penetrate into the interior of both the SnO2 and ZnO particles, causing an increase in varistor voltage and a decrease in nonlinearity. Since it is brittle, the mechanical strength will be reduced. Therefore, the above Z
It is not necessarily easy to theoretically derive the conditions for replacing SnO2 with nO, and it has been necessary to go through trial and error through numerous experiments. That is, the inventors of the present invention have repeatedly conducted experiments on ceramic materials with various different compositions.
A part of the SnO2 of the ceramic material whose main component is
Even if O is replaced, the nonlinear resistance value α and the bending strength τ (kg/
It was discovered that it was possible to obtain a semiconductor ceramic material of a specific composition with an equivalent or higher value (cm2), and the expensive SnO2 powder was replaced with inexpensive ZnO, resulting in a significant reduction in manufacturing costs. The present invention will be explained in more detail with reference to Examples below. [Example] High purity SnO2, ZnO, Sb2O5
, CoO were weighed and blended at the mixing ratio of mol% shown in sample numbers 1 to 14 in Table 1, and 10% of each was mixed using a ball mill.
Wet stirring was performed for an hour, and after drying, the mixture was pulverized. Next, these 1
Each of the four sample pulverized products was calcined in the air at 1,100° C. for 2 hours and re-pulverized to obtain 14 types of raw material powders. Furthermore, these raw material powders are mixed with 10 to 15% by weight of polyvinyl alcohol as an organic binder, granulated, and compressed at a pressure of about 1 ton/cm2 to form particles with a diameter of 10 mm.
It was molded into a disk with a thickness of 1.0 mm. These disks were fired in the atmosphere at the temperatures shown in Table 1 for 4 hours each to obtain porcelain samples. Next, silver paste was applied to the front and back surfaces of each of these sample disks, and baked at 800° C. to form silver electrodes. [0014] Regarding the sample prepared by the above method,
Varistor voltage V1, nonlinear coefficient α, and bending strength τ
(kg/cm2) was measured. For each sample, SnO
2, the mixing ratio of ZnO, Sb2O5, and CoO, the varistor voltage V1, the nonlinear coefficient α, and the bending strength τ (kg
/cm2) is shown in the table. The method for measuring the varistor voltage, the formula for calculating the nonlinear coefficient, and the bending strength will be described below. (1) Method for measuring varistor voltage V1 A DC constant current power source and a DC ammeter are connected in series to the contacts of the sample. Further, a DC voltmeter was connected in parallel to both ends of the contacts of the sample, and the voltage required to cause a current of 1 mA to flow through the sample from a DC constant current power source was measured with the DC voltmeter, and the value was determined as the varistor voltage V1 (V). (2) Method for measuring the nonlinear coefficient α Measure the voltage V1 required to flow a current of 1 mA and the voltage V10 required to flow a current of 10 mA, and substitute each measured value into the following equation. Calculate the nonlinear coefficient α. α=1/log (V10/V1) (3) Measuring method of bending strength τ (kg/cm2) Since bending strength is generally used as a measure of the mechanical strength of brittle materials, The bending strength was measured. A sample having a rectangular cross section with a width of 0.4 cm and a thickness of 0.1 cm was fabricated simultaneously in the process of fabricating the 14 disk samples described above, and a porcelain sample (no silver paste application or baking was performed). prepared. This sample was placed horizontally on two fulcrums with a distance of 1.2 cm between the fulcrums, a load was applied to the center at a rate of approximately 5 kg per second, the maximum breaking load Pm was measured, and the bending strength was calculated using the following formula. . τ= 3/2 × (1.2 ×Pm)/(0.4 ×0
.. 1) kg/cm2 Composition powder SnO2
, ZnO, Sb2O5, and CoO, and the relationship between the varistor voltage V1, the nonlinear coefficient α, and the bending strength τ of the ceramic material made from these are summarized in the table. However, sample number 14 is a conventional product that does not contain ZnO as a comparative example. [Table 1] [0021] By considering the results in the same table, the following findings were obtained. (1) The composition specified in the claims (
Sample number 1, 3, 5, 7, 9, 10, 12,
The porcelain material No. 13) is equivalent to or superior to the conventional product (Sample No. 14) in varistor voltage V1 (V), nonlinear coefficient α, and bending strength τ. (2) SnO2 is less than 30 mol%, Z
When nO exceeds 70 mol, the varistor voltage is extremely high, but the nonlinear coefficient α and bending strength τ (kg/cm2
) is low (sample number 2). (3) Also, Sb2O5 is 20 mol%
In the case where it exceeds .tau., the bending strength .tau. (kg/cm2) is low (sample number 4). (4) On the other hand, when CoO exceeds 40 mol% (sample number 6) and when Sb2O5 is less than 0.05 mol% (sample number 8), the varistor voltage V1 decreases in both cases.
(V) is high. (5) Furthermore, when CoO is less than 0.1 mol %, the varistor voltage V1 (V) is conversely low (sample number 11). (6) When ZnO is less than 0.5 mol %, the varistor voltage V1 (V), nonlinear coefficient α, and bending strength τ (kg/cm2) are all satisfactory values; The manufacturing cost is the same as that of the conventional product, and no reduction effect can be obtained (sample number 14). As mentioned above, SnO2 30-99.5
Mol%, ZnO 0.5-70 mol%, Sb2O5
A semiconductor ceramic material having a composition of 0.05 to 20 mol%, CoO 0.1 to 40 mol%, and a total of 100 mol% has a varistor voltage V1 (V), a nonlinear coefficient α, a bending strength τ( kg/cm2), it can be fully used as a material for ring varistors for noise prevention in small motors. That is, it has been found that even if ZnO is substituted as a part of the main component, it is clear that the varistor has a nonlinear coefficient and mechanical strength that are equal to or higher than those of the conventional varistor whose main component is SnO2. [0029] Effect of the invention: With the development of the present invention, expensive SnO2
By replacing the powder with inexpensive ZnO, it has become possible to manufacture a varistor with a nonlinear coefficient and mechanical strength equal to or higher than that of a conventional varistor whose main component is SnO2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  SnO2 30〜99.5モル%、Z
nO 0.5〜70モル%、Sb2 O5 0.05〜
20モル%、CoO 0.1〜40モル%からなり、そ
の合計が 100モル%となる各成分から構成される半
導体磁器組成物。
[Claim 1] SnO2 30-99.5 mol%, Z
nO 0.5~70 mol%, Sb2O5 0.05~
A semiconductor ceramic composition comprising 20 mol% of CoO, 0.1 to 40 mol% of CoO, and a total of 100 mol%.
JP3031836A 1991-01-31 1991-01-31 Semiconductor porcelain material Pending JPH04254464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031836A JPH04254464A (en) 1991-01-31 1991-01-31 Semiconductor porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031836A JPH04254464A (en) 1991-01-31 1991-01-31 Semiconductor porcelain material

Publications (1)

Publication Number Publication Date
JPH04254464A true JPH04254464A (en) 1992-09-09

Family

ID=12342149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031836A Pending JPH04254464A (en) 1991-01-31 1991-01-31 Semiconductor porcelain material

Country Status (1)

Country Link
JP (1) JPH04254464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128785A1 (en) * 2006-05-05 2007-11-15 Areva T&D Sa Use of b203 in a tin oxide-based semi conductive ceramic for reducing the leakage current thereof and for possibly stabilizing the electrical properties thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502194A (en) * 1973-05-14 1975-01-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502194A (en) * 1973-05-14 1975-01-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128785A1 (en) * 2006-05-05 2007-11-15 Areva T&D Sa Use of b203 in a tin oxide-based semi conductive ceramic for reducing the leakage current thereof and for possibly stabilizing the electrical properties thereof

Similar Documents

Publication Publication Date Title
CN104370539A (en) High use temperature lead-free PTCR (positive temperature coefficient resistance) ceramic and preparation method thereof
CN101624284B (en) Doped BKT-BT series lead-free PTCR ceramic material and preparation method thereof
JPH04254464A (en) Semiconductor porcelain material
JPH04254465A (en) Semiconductor porcelain material
JP3202273B2 (en) Composition for thermistor
JPH05129106A (en) Semiconductor porcelain substance
JP3559911B2 (en) Thermistor
JPH05129107A (en) Semiconductor porcelain substance
KR102137936B1 (en) Zinc oxide based varistor composition, varistor using the same and method of manufacturing the varistor
JP2573466B2 (en) Voltage non-linear resistor ceramic composition
KR900001979B1 (en) Process for the preparation of voltage non-linearity type resistors
JP3213647B2 (en) Negative thermistor composition and negative thermistor
JPH0546682B2 (en)
JPH1197217A (en) Manufacture of voltage-nonlinear resistor for low voltage
JPH0133921B2 (en)
KR20200074879A (en) ZnO-BASED VARISTOR COMPOSITION AND METHOD OF MANUFACTURING THE SAME AND VARISTOR USING THE SAME
JPH03271154A (en) Composition for thermistor
JP3089370B2 (en) Voltage non-linear resistance composition
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JPS62117303A (en) Voltage nonlinear resistance porcelain and noise prevention device using the same
JPH0546684B2 (en)
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor
JPS6138841B2 (en)
JPS5826803B2 (en) Oxide semiconductor for thermistor
JPH0546685B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951212