JPH04254460A - Water hardening inorganic molded body and its manufacture - Google Patents

Water hardening inorganic molded body and its manufacture

Info

Publication number
JPH04254460A
JPH04254460A JP3068519A JP6851991A JPH04254460A JP H04254460 A JPH04254460 A JP H04254460A JP 3068519 A JP3068519 A JP 3068519A JP 6851991 A JP6851991 A JP 6851991A JP H04254460 A JPH04254460 A JP H04254460A
Authority
JP
Japan
Prior art keywords
hydraulic
silicic acid
particle size
weight
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068519A
Other languages
Japanese (ja)
Inventor
Takashi Takada
高田 貴
Takeo Matsunase
武雄 松名瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3068519A priority Critical patent/JPH04254460A/en
Publication of JPH04254460A publication Critical patent/JPH04254460A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To solve such a problem that an acrylic fiber does not show enough reinforcing effect under autoclave aging conditions, and to offer a water hardening inorg. molded product and method for producing this product showing high strength and excellent dimensional stability by extrusion molding. CONSTITUTION:An acrylic fiber and a water hardening material essentially comprising cement and amorphous silicate are mixed, and extrusion molded and aged in an autoclave. This water hardening inorg. molded body features in the specific bending strength higher than 80kg/cm<2> obtd. by calculating the ratio of the bending strength to the square of the specific gravity. This product is produced by mixing an cement, amorphous silicate of >=1mum average particle size, and amorphous silicate of <1mum average particle size by 0-30wt.%, and acrylic fiber, kneading with water and extrusion molding and aging in an autoclave.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、建築用部材として好適
な、高強度で寸法安定性に優れた水硬性無機質成形品と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic inorganic molded product having high strength and excellent dimensional stability, suitable as a building member, and a method for producing the same.

【0002】0002

【従来の技術】従来、建築用無機質成形品、たとえばア
スベストセメント板、珪酸カルシウム板、軽量気泡コン
クリート板(ALC)などのように、石灰質と珪酸質な
どからなる水硬性無機物質が高温の水蒸気下のオートク
レーブ中で養生されると、トバモライトと呼ばれる高結
晶性の水和物が形成される。そして、このような高結晶
性の水硬性無機物質からなる屋根材、床材、外壁および
間仕切り材などは高強度で、優れた断熱性と熱的安定性
が付与され、加えてその乾燥収縮を少なくし化学的抵抗
性を大きくすることができると言われている。したがっ
て、このような高温の水蒸気中での養生を必須とする上
記高性能な水硬性無機質成形品の補強用繊維としては、
高温のアルカリに耐えるアスベストや鉄筋などが使用さ
れてきた。しかしながら、天然素材であるアスベストは
、そのほとんどを輸入に依存しているため、価格の変動
が大きいのに加えて、近年アスベストが健康、衛生上有
害であることが明らかになったことにより、その使用が
忌避ないし制限されようとしている。
[Prior Art] Conventionally, inorganic molded articles for construction, such as asbestos cement boards, calcium silicate boards, lightweight aerated concrete boards (ALC), etc., have been made using hydraulic inorganic materials consisting of calcareous materials and silicic materials under high-temperature steam. When cured in an autoclave, a highly crystalline hydrate called tobermorite is formed. Roofing materials, flooring materials, exterior walls, partition materials, etc. made of such highly crystalline hydraulic inorganic materials have high strength, excellent insulation properties and thermal stability, and are also resistant to drying shrinkage. It is said that it is possible to increase chemical resistance by reducing the amount of carbon dioxide. Therefore, as reinforcing fibers for the above-mentioned high-performance hydraulic inorganic molded products that require curing in such high-temperature steam,
Asbestos and reinforcing steel, which can withstand high-temperature alkalis, have been used. However, asbestos is a natural material, and as most of it is imported, its price fluctuates widely, and in recent years it has become clear that asbestos is harmful to health and hygiene. Its use is being avoided or restricted.

【0003】そこで、耐アルカリ性に優れたアクリル系
繊維をアスベストの替わりに用いようとする試みがなさ
れている。たとえば、特開昭61−6159号公報には
珪酸質と石灰質を主原料とする水硬性物質とアクリル系
繊維からなるスラリー状混合物を抄造法で成形し高温の
水蒸気中で養生する方法、また、特開昭62−1973
42号公報には極限粘度2.5以上の高強度高弾性率ア
クリル系繊維を用い110〜160℃の温度で水蒸気養
生する方法、また、特開昭63−282144号公報に
はアクリルアミド系モノマを共重合した高強度高弾性率
アクリル系繊維を用い110℃以上の水蒸気中で養生す
る方法、および特開平2−129053号公報には重量
平均分子量40万以上の高強度アクリル系繊維を用い1
80℃で養生したセメント製品に関する発明などが開示
されている。
[0003] Therefore, attempts have been made to use acrylic fibers with excellent alkali resistance in place of asbestos. For example, Japanese Patent Application Laid-Open No. 61-6159 describes a method in which a slurry-like mixture consisting of a hydraulic material whose main raw materials are silicic acid and calcareous material and acrylic fiber is formed by a papermaking method and then cured in high-temperature steam. Unexamined Japanese Patent Publication 1986-1973
42 describes a method of steam curing at a temperature of 110 to 160°C using high-strength, high-modulus acrylic fibers with an intrinsic viscosity of 2.5 or more, and JP-A-63-282144 discloses a method of curing with steam at a temperature of 110 to 160°C. A method using copolymerized high-strength, high-modulus acrylic fibers and curing in steam at 110°C or higher, and JP-A-2-129053 disclose a method using high-strength acrylic fibers with a weight average molecular weight of 400,000 or higher.
Inventions related to cement products cured at 80°C have been disclosed.

【0004】ところで、近年、高強度な水硬性無機質成
形品を得る方法として、石灰質と珪酸質などからなる水
硬性物質を押出成形した後オートクレーブ養生する方法
が注目されている。たとえば、特開昭64−18953
号公報にはポゾラン性のない超微粉を含有し、かつ水/
固形比が20〜40重量%である押出成形組成物、ある
いは特開平1−93446号公報には結晶質の超微粉珪
石を含有する押出成形組成物に関する発明などが開示さ
れている。
By the way, in recent years, as a method for obtaining high-strength hydraulic inorganic molded articles, a method of extruding a hydraulic material made of calcareous material, silicic acid, etc. and then curing it in an autoclave has been attracting attention. For example, JP-A-64-18953
The publication contains ultrafine powder without pozzolanic properties, and contains water/
Inventions related to extrusion molding compositions having a solids ratio of 20 to 40% by weight, or extrusion molding compositions containing ultrafine crystalline silica stone are disclosed in JP-A-1-93446.

【0005】ところが、これらの提案になる方法におい
ても、アクリル系繊維は180℃という高温の水蒸気養
生下、すなわちオートクレーブ養生下で充分な補強効果
が発現しないため高強度な水硬性無機質成形品が得られ
ていない。
However, even with these proposed methods, it is difficult to obtain a high-strength hydraulic inorganic molded product because the acrylic fiber does not exhibit sufficient reinforcing effect under steam curing at a high temperature of 180°C, that is, under autoclave curing. It has not been done.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上述
のようにアクリル系繊維がオートクレーブ養生下で充分
な補強効果が発現しないという問題点を解決し、押出成
形法において高強度で寸法安定性に優れた水硬性無機質
成形品と、その製造方法を提供するにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problem that acrylic fibers do not exhibit a sufficient reinforcing effect under autoclave curing, and to provide high strength and dimensional stability in extrusion molding. To provide a hydraulic inorganic molded article with excellent properties and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】このような本発明の目的
は、セメントおよび非晶性珪酸質を主原料とする水硬性
物質とアクリル系繊維との混合物を押出成形後オートク
レーブ養生してなる成形品であって、曲げ強度を比重の
2乗で除した比曲げ強度が80Kg/cm2 以上を呈
することを特徴とする水硬性無機質成形品とすることに
よって達成することができる。
[Means for Solving the Problems] The object of the present invention is to extrude a mixture of cement and a hydraulic substance whose main raw materials are amorphous silicic acid, and acrylic fibers, and then cure the mixture in an autoclave. This can be achieved by making a hydraulic inorganic molded product characterized by exhibiting a specific bending strength of 80 kg/cm 2 or more, which is obtained by dividing the bending strength by the square of the specific gravity.

【0008】また、本発明の水硬性無機質成形品の製造
方法は、セメント、重量平均粒径が1μ以上の非晶性珪
酸質および重量平均粒径が1μ未満の非晶性珪酸質0〜
30重量%を主原料とする水硬性物質とアクリル系繊維
との混合物を水とともに混練した後、押出成形し、次い
でオートクレーブ養生に供することを特徴とする水硬性
無機質成形品の製造方法である。
[0008] Furthermore, the method for producing a hydraulic inorganic molded article of the present invention includes cement, an amorphous silicic acid material having a weight average particle size of 1 μ or more, and an amorphous silicic acid material having a weight average particle size of less than 1 μm.
A method for producing a hydraulic inorganic molded article, which is characterized in that a mixture of a hydraulic substance and acrylic fibers containing 30% by weight as a main raw material is kneaded with water, extrusion molded, and then subjected to autoclave curing.

【0009】[0009]

【作用】以下、さらに詳しく本発明について説明する。[Operation] The present invention will be explained in more detail below.

【0010】建築用部材として高強度で寸法安定性に優
れた水硬性無機質成形品を製造するには、石灰質(Ca
O)と珪酸質(SiO2 )をほぼ等量のモル数に配合
した水硬性物質を高温の水蒸気下のオートクレーブ中で
高結晶性の水和物にすることが必要である。このような
水硬性無機質成形品において、アクリル系繊維の補強効
果を十分発揮するには、第一に成形方法、第二に珪酸質
の種類、粒径およびその配合量が重要である。
[0010] In order to produce hydraulic inorganic molded products with high strength and excellent dimensional stability as building materials, calcareous (Ca)
It is necessary to convert a hydraulic material containing approximately equal moles of O) and silicic acid (SiO2) into a highly crystalline hydrate in an autoclave under high-temperature steam. In order to sufficiently exhibit the reinforcing effect of acrylic fibers in such hydraulic inorganic molded articles, firstly, the molding method is important, and secondly, the type, particle size, and amount of the silicic acid compound are important.

【0011】本発明において水硬性物質のうち石灰質は
セメントを用いる。セメントとしては、ポルトランドセ
メント、アルミナセメントなど単味セメントおよび高炉
セメントなど混合セメントが挙げられる。一方、珪酸質
は重量平均粒径が1μ以上の非晶性珪酸質および重量平
均粒径(以下、単に「粒径」と略す)が1μ未満の非晶
性珪酸質を用いる。粒径が1μ以上の非晶性珪酸質とし
てはフライアッシュ、高炉スラグなどが挙げられ、粒径
が1μ未満の非晶性珪酸質としてはシリカヒューム、珪
ソウ土、および白土などが挙げられる。これらの中でフ
ライアッシュとシリカヒュームの組合せが最も好ましく
用いられる。ここで、粒径が1μ未満の非晶性珪酸質の
配合量は0〜30重量%であるが、好ましくは1〜25
重量%、より好ましくは3〜20重量%である。この配
合量が30重量%を越えると上記珪酸質が凝集してしま
い、後述するように水の添加量が少ない状態での流動性
が低下し押出成形が困難となる。そのためアクリル系繊
維の補強効果が著しく低下することになる。
In the present invention, cement is used as the calcareous material among the hydraulic materials. Examples of cement include single cement such as Portland cement and alumina cement, and mixed cement such as blast furnace cement. On the other hand, as the silicic acid, an amorphous silicic acid having a weight average particle size of 1 μm or more and an amorphous silicic acid having a weight average particle size (hereinafter simply referred to as "particle size") of less than 1 μm are used. Examples of the amorphous silicic acid having a particle size of 1 μm or more include fly ash and blast furnace slag, and examples of the amorphous silicic acid having a particle size of less than 1 μm include silica fume, diatomaceous earth, and clay. Among these, a combination of fly ash and silica fume is most preferably used. Here, the amount of amorphous silicic acid with a particle size of less than 1μ is 0 to 30% by weight, preferably 1 to 25% by weight.
% by weight, more preferably 3-20% by weight. If the blending amount exceeds 30% by weight, the silicic acid substance will aggregate, and as will be described later, the fluidity will decrease even when the amount of water added is small, making extrusion molding difficult. Therefore, the reinforcing effect of the acrylic fibers is significantly reduced.

【0012】ところで、上記水硬性物質にはアルカリ成
分として少量のNa2 OおよびK2 Oが含まれる。 特に、非晶性珪酸質にはその種類によってアルカリ成分
の含有量がかなり多くなることがある。これらアルカリ
成分は、アクリル系繊維の補強効果に悪影響を及ぼすた
めできるだけ少ないことが望ましく、その含有量は等価
Na2 O量(Na2 O+0.658K2 O)とし
て3.3重量%以下が好ましく、より好ましくは3.0
重量%以下である。
By the way, the above-mentioned hydraulic substance contains small amounts of Na2O and K2O as alkaline components. In particular, depending on the type of amorphous silicic acid, the content of alkali components may be quite large. These alkaline components have a negative effect on the reinforcing effect of the acrylic fibers, so it is desirable that they be as small as possible, and the content thereof is preferably 3.3% by weight or less as an equivalent amount of Na2O (Na2O + 0.658K2O), and more preferably 3.0
% by weight or less.

【0013】また、本発明の効果をより一層発現するた
め、石灰質と非晶性珪酸質との水和反応を速める添加剤
、すなわち水和反応促進剤を併用するのが望ましい。 ここで、水和反応促進剤としてはMgcl2 、Cac
l2 などの無機の塩化物、無機のCa塩および酢酸C
aなど有機酸のCa塩が挙げられるが、これらの中でM
gcl2 は高強度な無機質成形品を得る上で特に好ま
しい。
[0013] In order to further exhibit the effects of the present invention, it is desirable to use an additive that accelerates the hydration reaction between calcareous material and amorphous silicic acid material, that is, a hydration reaction accelerator. Here, the hydration reaction accelerators include Mgcl2, Cac
Inorganic chlorides such as l2, inorganic Ca salts and C acetate
Examples include Ca salts of organic acids such as a, but among these, M
gcl2 is particularly preferred for obtaining high-strength inorganic molded products.

【0014】また、発明の効果を著しく損なわない範囲
内で珪砂、珪粉など結晶性珪酸質を配合してももちろん
構わない。
Furthermore, it is of course possible to incorporate crystalline silicic acid substances such as silica sand and silica powder within a range that does not significantly impair the effects of the invention.

【0015】さらに、無機質成形品に多孔性を与え、軽
量化するためにパーライト、シラスバルーン、ガラスバ
ルーンなどを適宜混合することができる。さらに、水硬
性物質の流動性を向上させるため、木材パルプ、アクリ
ル系繊維や芳香族ポリアミド繊維のフィブリル化物、ウ
オラストナイト、エデナイトおよびセピオライトなどの
無機繊維、マイカ、クレーおよびベントナイトなどその
他の充填剤を添加、配合することができる。
Furthermore, in order to impart porosity to the inorganic molded product and reduce its weight, pearlite, shirasu balloons, glass balloons, etc. can be mixed as appropriate. In addition, to improve the fluidity of hydraulic materials, other fillers such as wood pulp, fibrillated acrylic and aromatic polyamide fibers, inorganic fibers such as wollastonite, edenite and sepiolite, mica, clay and bentonite are used. can be added or blended.

【0016】次に、本発明に用いられるアクリル系繊維
は、特に限定されるものではないが、高温のアルカリに
耐え、かつ補強効果を高めるため高重合度のアクリル系
重合体からなる高強度高弾性率のアクリル系繊維である
ことが望ましい。たとえば、極限粘度が2.0〜5.0
の高重合度アクリロニトリル(以下、「AN」と略す)
系ポリマを使用し、引張強度が10g/d以上で、弾性
率が180g/d以上のアクリル系繊維を用いることが
望ましい。
Next, the acrylic fiber used in the present invention is not particularly limited, but in order to withstand high-temperature alkali and enhance the reinforcing effect, the acrylic fiber is made of a high-strength acrylic polymer with a high degree of polymerization. Preferably, the fiber is an acrylic fiber with a high modulus of elasticity. For example, the intrinsic viscosity is 2.0 to 5.0
Highly polymerized acrylonitrile (hereinafter abbreviated as "AN")
It is desirable to use an acrylic fiber having a tensile strength of 10 g/d or more and an elastic modulus of 180 g/d or more.

【0017】ここで、本発明に用いられるアクリル系繊
維の具体的な製法例を説明する。
[0017] Here, a specific example of the manufacturing method of the acrylic fiber used in the present invention will be explained.

【0018】まず、アクリル系繊維の製造に用いられる
AN系ポリマとしては、AN単独または少なくとも90
モル%のANと10モル%以下の該ANに対して共重合
性を有するモノマ、たとえばアクリル酸、メタクリル酸
、イタコン酸などのカルボン酸及びそれらの低級アルキ
ルエステル類、ヒドロキシメチルアクリレート、ヒドロ
キシエチルアクリレート、ヒドロキシメチルメタアクリ
レートなどのカルボン酸の水酸基を含有するヒドロキシ
アルキルアクリレート、アクリルアミド、メタクリルア
ミド、α−クロルアクリロニトリル、ヒドロキシエチル
アクリル酸、アリルスルホン酸、メタクリルスルホン酸
などの共重合モノマを例示することができるが、これら
の共重合モノマのうち強度の高いアクリル系繊維が得ら
れるアクリルアミド類が特に望ましい。
First, as the AN-based polymer used for producing acrylic fibers, AN alone or at least 90%
Monomers copolymerizable with mol% of AN and 10 mol% or less of the AN, such as carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and their lower alkyl esters, hydroxymethyl acrylate, and hydroxyethyl acrylate. Examples include copolymerizable monomers such as hydroxyalkyl acrylate containing a hydroxyl group of a carboxylic acid such as hydroxymethyl methacrylate, acrylamide, methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid, allyl sulfonic acid, and methacryl sulfonic acid. However, among these copolymerizable monomers, acrylamides are particularly desirable since they can yield acrylic fibers with high strength.

【0019】これらのAN系ポリマは、ジメチルスルホ
キシド(DMSO)、ジメチルホルムアミド(DMF)
、ジメチルアセトアミド(DMAc)などの有機溶剤、
塩化カルシウム、塩化亜鉛、ロダンソーダなどの無機塩
濃厚水溶液、硝酸などの無機系溶剤に溶解して、溶液粘
度が2000ポイズ以上、好ましくは3000〜100
00ポイズ、ポリマ濃度が5〜20%の紡糸原液を作成
する。
These AN-based polymers include dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF).
, organic solvents such as dimethylacetamide (DMAc),
When dissolved in a concentrated aqueous solution of inorganic salts such as calcium chloride, zinc chloride, and rhodan soda, or in an inorganic solvent such as nitric acid, the solution viscosity is 2000 poise or more, preferably 3000 to 100 poise.
A spinning dope having a polymer concentration of 5 to 20% is prepared.

【0020】かくして得られた前記高重合度AN系ポリ
マの溶剤溶液(紡糸原液)から、できる限り高強度高弾
性率で、内外構造差の少ない緻密な繊維を製造するため
には、この高重合度AN系ポリマの紡糸原液を紡糸口金
を通していったん空気などの不活性雰囲気中に吐出した
後、吐出された該紡糸原液を凝固浴中に導いて凝固を完
結させる、いわゆる乾湿式紡糸法を採用し、高度に延伸
することが望ましい。この乾湿式紡糸の具体的条件とし
ては、紡糸原液を紡糸口金面と凝固浴液面との距離が1
〜20mm、好ましくは3〜10mmの範囲内に設定さ
れた該紡糸口金面と凝固浴液面とで形成される微小空間
に吐出した後、凝固浴へ導いて凝固させ、次いで得られ
た繊維糸条を常法により、水洗、脱溶媒、1次延伸、乾
燥・緻密化、2次延伸、熱処理などの後処理工程を経由
せしめて延伸繊維糸条とする。この乾湿式紡糸によって
得られる繊維糸条は、延伸性が極めて優れているが、好
ましくは2次延伸方法として、150〜270℃の乾熱
下に少なくとも1.1倍、好ましくは1.5倍以上延伸
し、全有効延伸倍率が少なくとも10倍、好ましくは1
2倍以上になるように延伸し、その繊度を0.5〜7デ
ニール(d)、好ましくは1〜5dの範囲内とするのが
よい。この繊度が0.5dよりも小さいと延伸工程での
糸切れが多くなり、また7dよりも大きいと高強度が望
めないため好ましくない。
In order to produce dense fibers with as high strength and high modulus as possible and with little difference in internal and external structures from the solvent solution (spinning stock solution) of the highly polymerized AN-based polymer thus obtained, it is necessary to A so-called dry-wet spinning method is adopted in which the spinning stock solution of the AN-based polymer is once discharged into an inert atmosphere such as air through a spinneret, and then the discharged spinning stock solution is introduced into a coagulation bath to complete coagulation. , highly oriented is desirable. The specific conditions for this wet-dry spinning are such that the distance between the spinneret surface and the coagulation bath liquid level is 1.
After discharging into a microspace formed by the spinneret surface and the coagulation bath liquid level, which is set within a range of ~20 mm, preferably 3 to 10 mm, the fiber yarn is introduced into a coagulation bath and coagulated, and then the obtained fiber yarn is The strip is subjected to post-processing steps such as water washing, solvent removal, primary stretching, drying/densification, secondary stretching, and heat treatment in a conventional manner to form a drawn fiber yarn. The fiber yarn obtained by this dry-wet spinning has extremely excellent drawability, but preferably the secondary drawing method is at least 1.1 times, preferably 1.5 times, under dry heat at 150 to 270°C. or more, and the total effective stretching ratio is at least 10 times, preferably 1
It is preferable to stretch it so that it is twice or more, and the fineness thereof is in the range of 0.5 to 7 deniers (d), preferably 1 to 5 denier (d). If the fineness is smaller than 0.5 d, thread breakage will occur frequently during the drawing process, and if it is larger than 7 d, high strength cannot be expected, which is not preferable.

【0021】かくして得られたアクリル系繊維は、水硬
性物質への分散性を高める上で繊維長が5mm以下、好
ましくは2mm以下に切断される。特に、高速回転刃、
リファイナー、高速ハンマーおよび高速ジエット流など
の粉砕機によって0.5mm以下の繊維長が30重量%
以上、好ましくは50重量%以上になるように切断され
たアクリル系繊維が好ましく用いられる。このとき、繊
維長の制御は粉砕時間や粉砕機の出力を調節したり、径
の異なるスクリーンで分級することによって行うことが
できる。
The acrylic fiber thus obtained is cut into fiber lengths of 5 mm or less, preferably 2 mm or less, in order to improve dispersibility in hydraulic substances. In particular, high-speed rotating blades,
By crushing machines such as refiners, high-speed hammers, and high-speed jet flow, fiber length of 0.5 mm or less is reduced to 30% by weight.
As mentioned above, acrylic fibers cut to preferably 50% by weight or more are preferably used. At this time, the fiber length can be controlled by adjusting the grinding time and the output of the grinder, or by classifying the fibers using screens of different diameters.

【0022】かくして、上記のアクリル系繊維、水硬性
物質および各種の充填剤からなる配合物は水とともにミ
キサーで混合、混練された後、押出成形される。このと
き、アクリル系繊維の配合量は好ましくは0.1〜5重
量%、より好ましくは0.5〜2重量%である。また、
ミキサーとしてはオムニミキサー、アイリッヒおよびニ
ーダーなどが用いることができる。ところで、水硬性物
質100重量部に対する水の添加量(w/c)は50重
量部以下が好ましく、より好ましくは40重量部以下、
特に好ましくは30重量部以下である。ここで、水の添
加量が50重量部より多いと高性能な無機質成形品を得
ることが難しくなる。特に、水硬性物質と多量の水から
なるスラリーを用いて成形する抄造法においては、珪酸
質が非晶性であってもあるいは結晶性であってもオート
クレーブ養生後において高強度な無機質成形品を得るこ
とは一般に難しい。
[0022] Thus, the above-mentioned composition consisting of acrylic fibers, hydraulic substances and various fillers is mixed with water in a mixer, kneaded, and then extruded. At this time, the blending amount of the acrylic fiber is preferably 0.1 to 5% by weight, more preferably 0.5 to 2% by weight. Also,
As the mixer, an omni mixer, an Eirich, a kneader, etc. can be used. By the way, the amount of water added (w/c) to 100 parts by weight of the hydraulic material is preferably 50 parts by weight or less, more preferably 40 parts by weight or less,
Particularly preferably, it is 30 parts by weight or less. Here, if the amount of water added is more than 50 parts by weight, it becomes difficult to obtain a high-performance inorganic molded product. In particular, in the papermaking method that uses a slurry consisting of a hydraulic substance and a large amount of water, a high-strength inorganic molded product can be produced after autoclave curing, regardless of whether the silicic acid is amorphous or crystalline. Generally difficult to obtain.

【0023】次に、上記のように押出成形された成形物
はオートクレーブ中に投入され、たとえば、180℃の
水蒸気下で養生される。養生温度として100〜180
℃の温度範囲を用いてももちろん問題ない。また、養生
時間は上記養生温度によって相違するが、3〜15時間
の範囲で用いられる。
[0023] Next, the molded product extruded as described above is put into an autoclave and cured under steam at 180°C, for example. 100-180 as curing temperature
Of course, there is no problem in using the temperature range of °C. Further, the curing time varies depending on the curing temperature, but is used in the range of 3 to 15 hours.

【0024】かくして得られた本発明の成形品は、アク
リル系繊維の補強効果が十分発現され、曲げ強度が著し
く高く、かつ寸法安定性に優れたものである。
The thus obtained molded article of the present invention fully exhibits the reinforcing effect of the acrylic fibers, has extremely high bending strength, and has excellent dimensional stability.

【0025】ここで、本発明のような成形品分野におい
て、一般に曲げ強度は成形品の比重とともに増大するた
め、本発明の効果はこの比重の影響を考慮して検討され
るのがその特質を表わす上で好適であり、特に、曲げ強
度を比重の2乗で除した「比曲げ強度」値を用いて評価
をするのが好適である。本発明の成形品においては、か
かる比曲げ強度は、概して80Kg/cm2 以上と非
常に高レベルを示すものであり従来類似品には見られな
い非常に優れたものである。本発明の成形品において、
より好ましくは該値が90Kg/cm2 以上のもの、
さらに好ましくは95Kg/cm2 以上のものであり
、このような物性を持つ本発明にかかる水硬性無機質成
形品は非常に優れた新規なものである。
[0025] In the field of molded products such as the present invention, the bending strength generally increases with the specific gravity of the molded product, so the effect of the present invention is examined by taking into account the influence of this specific gravity. It is suitable for expression, and in particular, it is suitable to evaluate using the "specific bending strength" value, which is the bending strength divided by the square of the specific gravity. In the molded products of the present invention, such specific bending strength is generally at a very high level of 80 kg/cm2 or more, which is an extremely high level not found in conventional similar products. In the molded article of the present invention,
More preferably, the value is 90Kg/cm2 or more,
More preferably, it is 95 kg/cm2 or more, and the hydraulic inorganic molded article according to the present invention having such physical properties is an extremely novel and excellent product.

【0026】ここで、曲げ強度および比重は、成形品か
ら成形方向を長手方向として長さ15cm×幅4cm×
厚さ6mmの試験片を切り出し、JIS  A  14
08に準じ下記のようにして測定される値である。
[0026] Here, the bending strength and specific gravity are measured from a molded product, with the molding direction as the longitudinal direction, length 15 cm x width 4 cm x
A test piece with a thickness of 6 mm was cut out and JIS A 14
This value is measured as follows in accordance with 2008.

【0027】曲げ強度;気乾状態において、スパン10
cm、荷重速度1mm/minで試験片の曲げ試験を行
い、常法により曲げ強度(Kg/cm2 )を算出する
Bending strength: Span 10 in air dry condition
A bending test is performed on the test piece at a loading rate of 1 mm/min, and the bending strength (Kg/cm2) is calculated by a conventional method.

【0028】比重;20℃の水を用いて試験片の飽水重
量および水中重量を、次いで105℃、24hr乾燥し
て絶乾重量を各々測定し次式により嵩比重を算出する。
[0028] Specific gravity: The saturated weight and underwater weight of the test piece were measured using water at 20°C, and then the absolute dry weight was measured after drying at 105°C for 24 hours, and the bulk specific gravity was calculated using the following formula.

【0029】比重=絶乾重量/(飽水重量−水中重量)
Specific gravity = bone dry weight / (saturated water weight - weight in water)

【0030】[0030]

【発明の効果】本発明にかかる水硬性無機質成形品は、
セメントと非晶性珪酸質を主原料とする水硬性物質とア
クリル系繊維との混合物を押出成形後オートクレーブ養
生して得られるものであって、アクリル系繊維の補強効
果が十分発現されるため著しく曲げ強度が高く、耐熱性
、耐衝撃性ならびに寸法安定性などに極めて優れている
[Effect of the invention] The hydraulic inorganic molded product according to the present invention is
It is obtained by extrusion molding a mixture of cement, a hydraulic substance whose main raw materials are amorphous silicic acid, and acrylic fibers, and then curing it in an autoclave. It has high bending strength and excellent heat resistance, impact resistance, and dimensional stability.

【0031】したがって、建築資材用、土木資材用など
多くの用途にその優れた性能を活用することができる。
[0031] Therefore, its excellent performance can be utilized in many applications such as building materials and civil engineering materials.

【0032】[0032]

【実施例】以下、実施例により本発明の効果を具体的に
説明する。
[Examples] The effects of the present invention will be specifically explained below with reference to Examples.

【0033】実施例1〜8、比較例1〜2アクリロニト
リル(AN)100%からなる極限粘度が3.2のAN
重合体をジメチルスルホキシド(DMSO)中で溶液重
合し、得られた紡糸原液を乾湿式紡糸した。凝固浴とし
ては、20℃、55%DMSO水溶液を使用した。得ら
れた未延伸繊維糸条を熱水中で5倍に延伸した後、水洗
し180〜200℃の乾熱チューブ中で最高延伸倍率の
90%で二次延伸し、繊度2デニール、強度11.7g
/d、伸度11.8%、弾性率200g/dのアクリル
繊維を得た。このアクリル繊維を繊維長2mmに切断し
た。
Examples 1 to 8, Comparative Examples 1 to 2 AN made of 100% acrylonitrile (AN) and having an intrinsic viscosity of 3.2
The polymer was solution polymerized in dimethyl sulfoxide (DMSO), and the resulting spinning stock solution was wet-dry spun. As a coagulation bath, a 55% DMSO aqueous solution at 20° C. was used. The obtained undrawn fiber yarn was stretched 5 times in hot water, washed with water, and then subjected to secondary stretching at 90% of the maximum stretching ratio in a dry heat tube at 180 to 200°C to obtain a fineness of 2 denier and a strength of 11. .7g
/d, an elongation of 11.8%, and an elastic modulus of 200 g/d. This acrylic fiber was cut into a fiber length of 2 mm.

【0034】次に、セメントとしてポルトランドセメン
ト(等価Na2 O量1.0重量%)、非晶性珪酸質と
して粒径10〜20μのフライアッシュA(等価Na2
 O量1.8重量%)およびフライアッシュB(等価N
a2 O量3.5重量%)、粒径0.2μのシリカヒュ
ーム(等価Na2 O量1.2重量%)、結晶性珪酸質
として粒径10μの珪砂(等価Na2 O量0.2重量
%)を表1の配合で用い、これら水硬性物質100重量
部に対しアクリル繊維1重量部、メチルセルローズ1.
5重量部およびMgcl2 を配合しアイリッヒで混合
した後、水を添加し混練した。得られた粘度状物を押出
成形して厚さ約6mmの成形板とした。得られた成形板
を湿潤状態に24時間、70℃スチーム中に4時間放置
した後、180℃のオートクレーブ中で5.5時間水蒸
気で養生した。
Next, Portland cement (equivalent Na2O content 1.0% by weight) was used as the cement, and fly ash A (equivalent Na2O content of 1.0% by weight) with a particle size of 10 to 20μ was used as the amorphous silicic acid.
O amount 1.8% by weight) and fly ash B (equivalent N
a2 O content 3.5% by weight), silica fume with a particle size of 0.2μ (equivalent Na2O content 1.2% by weight), and silica sand with a particle size of 10μ as crystalline silicic acid (equivalent Na2O content 0.2% by weight). ) were used in the formulation shown in Table 1, and 1 part by weight of acrylic fiber and 1 part by weight of methyl cellulose were added to 100 parts by weight of these hydraulic substances.
After 5 parts by weight and Mgcl2 were blended and mixed in an Eirich, water was added and kneaded. The obtained viscous material was extrusion molded into a molded plate having a thickness of about 6 mm. The obtained molded plate was left in a wet state for 24 hours and in 70°C steam for 4 hours, and then cured in steam for 5.5 hours in an autoclave at 180°C.

【0035】得られた成形板の曲げ強度を測定し、比曲
げ強度などの評価をした結果を表1に示した。かかる表
1から本発明の成形板は、補強性能に優れていることが
わかる。
The bending strength of the obtained molded plate was measured and the specific bending strength was evaluated. The results are shown in Table 1. It can be seen from Table 1 that the molded plate of the present invention has excellent reinforcing performance.

【0036】[0036]

【表1】[Table 1]

【0037】比較例3〜4 実施例1で用いたと同様のアクリル繊維を用いて繊維長
5mmに切断した。
Comparative Examples 3 and 4 Acrylic fibers similar to those used in Example 1 were cut to a fiber length of 5 mm.

【0038】次に、実施例1と同様にセメントとしてポ
ルトランドセメント、非晶性珪酸質としてフライアッシ
ュ、結晶性珪酸質として珪砂を表1の配合で用い、これ
ら水硬性物質100重量部に対しアクリル繊維1重量部
、木材パルプ2重量部を配合し、これに水を添加して固
形分濃度5重量%のスラリーとした。次いで、低速撹拌
下でアニオン性ポリアクリルアミド系高分子凝集剤10
0ppmを添加した。得られたセメントスラリーを50
メッシュの金網で抄造して厚さ約6mmの成形板とした
Next, as in Example 1, Portland cement as cement, fly ash as amorphous silicic acid, and silica sand as crystalline silicic acid were used in the proportions shown in Table 1, and acrylic was added to 100 parts by weight of these hydraulic substances. 1 part by weight of fiber and 2 parts by weight of wood pulp were blended, and water was added to this to form a slurry with a solid content concentration of 5% by weight. Next, anionic polyacrylamide polymer flocculant 10 was added under low speed stirring.
0 ppm was added. 50% of the obtained cement slurry
A molded plate with a thickness of about 6 mm was made by forming a sheet using a wire mesh.

【0039】得られた成形板を実施例1と同様にオート
クレーブ養生した後、曲げ強度を測定し、比曲げ強度な
どの評価をした結果を表1に示した。比較例のものは、
いずれも曲げ強度、特に比曲げ強度値が低く、本発明の
ものよりも明らかに強度面で劣ることがわかる。
[0039] After the obtained molded plate was cured in an autoclave in the same manner as in Example 1, the bending strength was measured, and the results of evaluating the specific bending strength and the like are shown in Table 1. The comparative example is
In both cases, the bending strength, especially the specific bending strength value, is low, and it can be seen that the bending strength is clearly inferior to that of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セメントおよび非晶性珪酸質を主原料とす
る水硬性物質とアクリル系繊維との混合物を押出成形後
オートクレーブ養生してなる成形品であって、曲げ強度
を比重の2乗で除した比曲げ強度が80Kg/cm2 
以上を呈することを特徴とする水硬性無機質成形品。
Claim 1: A molded product made by extrusion molding a mixture of a hydraulic material mainly made of cement and amorphous silicic acid, and acrylic fibers and then curing in an autoclave, the bending strength of which is expressed as the square of the specific gravity. The specific bending strength divided by 80Kg/cm2
A hydraulic inorganic molded product characterized by exhibiting the above characteristics.
【請求項2】セメント、重量平均粒径が1μ以上の非晶
性珪酸質および重量平均粒径が1μ未満の非晶性珪酸質
0〜30重量%を主原料とする水硬性物質とアクリル系
繊維との混合物を水とともに混練した後、押出成形し、
次いでオートクレーブ養生に供することを特徴とする水
硬性無機質成形品の製造方法。
Cement, a hydraulic substance whose main raw material is an amorphous silicic acid substance with a weight average particle size of 1 μ or more and an amorphous silicic acid substance with a weight average particle size of less than 1 μm, and an acrylic material. After kneading the mixture with fibers with water, extrusion molding,
A method for producing a hydraulic inorganic molded product, which is then subjected to autoclave curing.
【請求項3】重量平均粒径が1μ以上の非晶性珪酸質が
フライアッシュであり、かつ重量平均粒径が1μ未満の
非晶性珪酸質がシリカヒュームであることを特徴とする
請求項2記載の水硬性無機質成形品の製造方法。
Claim 3: A claim characterized in that the amorphous silicic acid having a weight average particle size of 1 μ or more is fly ash, and the amorphous silicic acid having a weight average particle size of less than 1 μ is silica fume. 2. The method for producing a hydraulic inorganic molded product according to 2.
【請求項4】水硬性物質に水和反応促進剤を添加するこ
とを特徴とする請求項2または3記載の水硬性無機質成
形品の製造方法。
4. The method for producing a hydraulic inorganic molded article according to claim 2 or 3, wherein a hydration reaction accelerator is added to the hydraulic substance.
JP3068519A 1990-12-26 1991-04-01 Water hardening inorganic molded body and its manufacture Pending JPH04254460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068519A JPH04254460A (en) 1990-12-26 1991-04-01 Water hardening inorganic molded body and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-406900 1990-12-26
JP40690090 1990-12-26
JP3068519A JPH04254460A (en) 1990-12-26 1991-04-01 Water hardening inorganic molded body and its manufacture

Publications (1)

Publication Number Publication Date
JPH04254460A true JPH04254460A (en) 1992-09-09

Family

ID=26409731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068519A Pending JPH04254460A (en) 1990-12-26 1991-04-01 Water hardening inorganic molded body and its manufacture

Country Status (1)

Country Link
JP (1) JPH04254460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501038A (en) * 2016-12-05 2020-01-16 メティス・テクノロジーズ・ピーティーワイ・リミテッド Extruded polyacrylonitrile copolymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501038A (en) * 2016-12-05 2020-01-16 メティス・テクノロジーズ・ピーティーワイ・リミテッド Extruded polyacrylonitrile copolymer
US11504893B2 (en) 2016-12-05 2022-11-22 Metis Technologies Pty Ltd Extruded polyacrylonitrile copolymer

Similar Documents

Publication Publication Date Title
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
EP0383348A1 (en) Carbon fiber-reinforced hydraulic composite material
JPH0140785B2 (en)
JP2001302297A (en) Concrete-reinforcing fiber and fiber-reinforced concrete composition
JP2004360136A (en) Staple fiber for reinforcement having excellent loosening property
JPS6127340B2 (en)
JPH04254460A (en) Water hardening inorganic molded body and its manufacture
JPS6041629B2 (en) Manufacturing method for cement molded bodies
JPH04300229A (en) Formed article or hydraulic inorganic material and its production
CN114075061B (en) Efficient special fiber anti-cracking agent and preparation method thereof
JP2881256B2 (en) Method for producing carbon fiber reinforced concrete or similar composition
JPH04154652A (en) Production of inorganic molded article
JPS63282144A (en) Production of fiber reinforced inorganic product
JPS62197342A (en) Manufacture of fiber reinforced inorganic product
JP3355588B2 (en) Cellulose fiber-containing cement composition
JPH06115989A (en) Acrylic fiber-reinforced hydraulic inorganic molded product and its production
JP3166180B2 (en) Fiber-reinforced hydraulic molded article and method for producing the same
JP2004137119A (en) Cement-based fiber composite material
JPH06115997A (en) Acrylic fiber-reinforced hydraulic inorganic molded product and its production
JP6727486B2 (en) Nylon fiber for reinforcing hydraulic material, method for producing nylon fiber for reinforcing hydraulic material, and hydraulic material using the same
JPH04175252A (en) Acrylic synthetic fiber and its production
JPH0692699A (en) Production of hydraulic inorganic molded article
JPH0585800A (en) Hydraulic inorganic material formed product and its manufacture
JPH0193448A (en) Acrylic sulfide fiber for reinforcing hydraulic substance
JPS63162559A (en) Manufacture of carbon fiber reinforced hydraulic composite material