JPH0425348B2 - - Google Patents

Info

Publication number
JPH0425348B2
JPH0425348B2 JP60054682A JP5468285A JPH0425348B2 JP H0425348 B2 JPH0425348 B2 JP H0425348B2 JP 60054682 A JP60054682 A JP 60054682A JP 5468285 A JP5468285 A JP 5468285A JP H0425348 B2 JPH0425348 B2 JP H0425348B2
Authority
JP
Japan
Prior art keywords
copper
chemical
plating solution
oxide powder
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60054682A
Other languages
Japanese (ja)
Other versions
JPS61217581A (en
Inventor
Yoshinori Suzuki
Hiroko Sekya
Tadashi Kato
Tetsuo Kono
Toyoki Yamazaki
Hideo Pponma
Eisai Kin
Tomonori Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5468285A priority Critical patent/JPS61217581A/en
Publication of JPS61217581A publication Critical patent/JPS61217581A/en
Publication of JPH0425348B2 publication Critical patent/JPH0425348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は化学銅めつきに係り、特にプリント配
線基板用として好適な化学銅めつき液に関するも
のである。 〔従来の技術〕 従来化学銅めつき液は、一般に銅源として硫酸
銅、錯化剤として酒石酸ナトリウムカリウム、エ
チレンジアミン四酢酸又はそのナトリウム塩、還
元剤としてホルマリン、パラホルムアルデヒド、
アルカリとしては水酸化ナトリウム等が使用され
ている。 しかし、主要成分として上記の組み合せから成
る化学銅めつき液で得られた銅膜は、一般に脆弱
であり延性に欠ける。プリント配線基板の導体部
をめつきした膜が脆いと、加工や熱的歪によつて
回路の断線を生ずる事がある。 この点を考慮して該めつき液に、さらにシアン
化合物やジピリジル、およびポリエチレングリコ
ール等を添加して銅めつき膜の延性を向上する方
法が実用されている。このようなめつき液を使用
して得られるめつき膜は、3〜7%の延性と30〜
50Kgw/mm2の引張り強さがありプリント配線基板
の導体膜として実用に供し得るものである。 しかしながら、近年高密度又は多層線板用の需
要が多くなるに従つて、さらに延性に優れた銅め
つき膜が望まれている現状にある。 又、このプリント配線基板上に、30〜40μmと
厚い銅膜を形成する場合には、めつき反応を維持
するために、銅、還元剤、アルカリ等を順次補給
しなければならなないが、そうすると析出する銅
膜の延性は低下する傾向を示し、該めつき液の安
定性も損われる。 この問題点に対して1)イオン交換膜を用いて
反応副成物を分離する。2)隔膜電解によりエチ
レンジアミン4酢酸(以下E.D.T.Aと略す)水溶
液に銅を溶解させてE.D.T.A−Cu錯体を調整す
る方法などが提案されているが、1)の方法は抽
出効率が低いので実用性に乏しい。2)の方法
は、銅濃度を20〜25g/lとするまでに長時間を
要し効率的ではない。 又1),2)の双方と電解を伴なうため、化学
めつき工程と対応させて装置を稼動させる必要が
あり煩雑でコスト高などの欠点がある。 〔発明が解決しようとする問題点〕 発明の目的は、上記の欠点がなく優れた延性と
物性とを備えた銅膜が得られる化学銅めつき液及
び化学銅めつき方法を提供することにある。 〔問題点を解決するための手段〕 この目的を達成するため、本発明者等は鋭意研
究の結果、従来の錯化剤、還元剤、PH調整剤、
2,2′ジピリジルおよびポリエチレングリコー
ル等の主要組成物に銅源として酸化銅粉末の所定
量を添加してなる化学銅めつき液を見出した。 即ち本発明の銅源としては、酸化銅粉末好まし
くは鉱酸および有機酸に易溶性の酸化第二銅粉
末、より好ましくは、電気銅及び陰極を隔膜袋中
に収納し、0.3〜1.1モル/lの硫酸ナトリウム水
溶液を電解液として、PH5〜13、液温55〜75℃、
陰極電流密度150〜300A/m2の条件で製造された
酸化第二銅粉末の所定量を使用し、他は公知の組
成の水溶液が使用できる。その1例を示せば第1
表の如くである。 第 1 表 水酸化ナトリウム (PH調整に必要な量) CuO粉末 Cuとして20g/l E.D.T.A.4H 110g/l パラフオルムアルデヒド 6g/l (p−HCHO) 2,2′−ジピリジル 0.005〜0.02g/l ポリエチレングリコール 0.05〜0.02g/l 残部 水 PH 11.5〜13 (初期PH5.0) 〔作用〕 本発明に於ける銅以外の主要組成物は、前にも
述べたように公知のものが所定範囲内で使用でき
るが、銅分としては極力高純度の酸化銅粉末の所
定量を用いるのが好ましい。一般に市販されてい
る酸化第二銅粉末や水酸化銅等は、E.D.T.Aなど
の錯化剤に溶解する際に不溶解物が残留し且つ溶
解に長時間を要する。このような銅源は特にめつ
きの建浴や補給用としては不都合である。 本発明で推奨する塩酸、硝酸等の鉱酸、
EDTA等の有機酸に易溶性の酸化第二銅を用い
て、高濃度のE.D.T.A−Cu溶液(Cuとして20g/
l程度)を造る例としては、まずE.D.T.
A.4H110gに極力高濃度の水酸化ナトリウム水溶
液を添加撹拌して、PH5.0に調整してE.D.T.A4H
を完全に溶解する。 次に該溶液に上記の酸化第二銅粉末25g(Cuと
して20g)を添加して例えばエアレーシヨンを行
なうと約20分間でE.D.T.A−Cu錯体が得られる。 この反応は下式に従うものと思われる。 E.D.T.A・2H・2Na+CuO+H2O→ 〔EDTA−Cu〕2H+2NaOH 反応式から解るように、この錯化反応により初
期PH5.0は通常10.5〜11.0まで上昇する。 このように同じCuのE.D.T.A錯塩を得るのに、
従来技術の2)として説明した電解法と本発明法
との比較では約1/10と所要時間が短縮され、不溶
解残渣も極めて少なく且つ被めつき物に析出した
膜の物性が大巾に向上する。 次にめつきの操作は60℃以上好ましくは80℃以
下で行なうが、その理由はこれ以下の温度ではめ
つきに要する時間が長く、より高温では還元反応
が強くなりすぎ浴が分解する等好ましくないため
である。 尚めつき前の板の活性化は、通常の方法が適用
できるが1例として説明すると、紙フエノール基
板あるいはエポキシ樹脂をガラスクロスに含浸し
積層させて造られた基板を、常法による脱脂を行
つたのち、軽くエツチングし、被エツチ部に少量
の錫を付着させ更にパラジウム水溶液中に浸漬し
てパラジウムと置換する事によつて行われる。 尚めつき時のPH範囲は11.5〜13.0とする。この
範囲外では好適なめつき膜は得られず、めつき膜
のコーナークラツク発生の原因ともなるからであ
る。 〔実施例〕 以下実施例について説明する。 第2表に示した組み合せにより、まず酸に易溶
性の酸化第二銅粉末(クレーム3項により製造し
たもの)又は各種銅源とE.D.T.A.4H及び水酸化
ナトリウム水溶液を添加して初期PH5.0としてエ
アレーシヨンを行つてE.D.T.A−Cu錯体を得、
これに各添加剤及び水を加え、第2表の化学銅め
つき液を夫々調製した。
[Industrial Application Field] The present invention relates to chemical copper plating, and particularly to a chemical copper plating solution suitable for use in printed wiring boards. [Prior Art] Conventional chemical copper plating solutions generally contain copper sulfate as a copper source, sodium potassium tartrate, ethylenediaminetetraacetic acid or its sodium salt as a complexing agent, formalin, paraformaldehyde, or
Sodium hydroxide or the like is used as the alkali. However, copper films obtained with chemical copper plating solutions consisting of the above-mentioned combinations as main components are generally brittle and lack ductility. If the film plated on the conductor portion of a printed wiring board is brittle, the circuit may break due to processing or thermal strain. In consideration of this point, a method of improving the ductility of a copper-plated film by further adding a cyanide compound, dipyridyl, polyethylene glycol, etc. to the plating solution has been put into practice. The plated film obtained using such a plating solution has a ductility of 3 to 7% and a ductility of 30 to 30%.
It has a tensile strength of 50 Kgw/mm 2 and can be used practically as a conductive film for printed wiring boards. However, as demand for high-density or multilayer wire boards increases in recent years, there is a current demand for copper-plated films with even better ductility. In addition, when forming a thick copper film of 30 to 40 μm on this printed wiring board, copper, reducing agent, alkali, etc. must be sequentially replenished to maintain the plating reaction. In this case, the ductility of the deposited copper film tends to decrease, and the stability of the plating solution is also impaired. To solve this problem, 1) Separate reaction byproducts using an ion exchange membrane. 2) A method has been proposed in which an EDTA-Cu complex is prepared by dissolving copper in an aqueous solution of ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA) using diaphragm electrolysis, but method 1) has low extraction efficiency and is therefore not practical. poor. Method 2) is not efficient as it takes a long time to bring the copper concentration to 20 to 25 g/l. Furthermore, since both 1) and 2) involve electrolysis, it is necessary to operate the apparatus in conjunction with the chemical plating process, which has disadvantages such as complexity and high cost. [Problems to be Solved by the Invention] An object of the invention is to provide a chemical copper plating solution and a chemical copper plating method that do not have the above-mentioned drawbacks and can provide a copper film having excellent ductility and physical properties. be. [Means for solving the problem] In order to achieve this objective, the present inventors have conducted intensive research and have developed conventional complexing agents, reducing agents, PH adjusters,
A chemical copper plating solution has been found in which a predetermined amount of copper oxide powder is added as a copper source to a main composition such as 2,2' dipyridyl and polyethylene glycol. That is, as the copper source of the present invention, copper oxide powder, preferably cupric oxide powder that is easily soluble in mineral acids and organic acids, more preferably electrolytic copper and a cathode, are stored in a diaphragm bag, and 0.3 to 1.1 mol/ 1 of sodium sulfate aqueous solution as the electrolyte, pH5-13, liquid temperature 55-75℃,
A predetermined amount of cupric oxide powder produced under the conditions of a cathode current density of 150 to 300 A/m 2 is used, and an aqueous solution having a known composition can be used for the rest. One example is the first
It is as shown in the table. Table 1 Sodium hydroxide (amount required for pH adjustment) CuO powder 20g/l as Cu EDTA4H 110g/l Paraformaldehyde 6g/l (p-HCHO) 2,2'-dipyridyl 0.005-0.02g/l Polyethylene glycol 0.05-0.02g/l Balance Water PH 11.5-13 (Initial PH5.0) [Function] As mentioned above, the main components other than copper in the present invention are known ones used within the specified range. However, it is preferable to use a predetermined amount of copper oxide powder of as high purity as possible as the copper content. Generally available commercially available cupric oxide powder, copper hydroxide, etc., when dissolved in a complexing agent such as EDTA, leave undissolved matter behind and require a long time to dissolve. Such a copper source is particularly inconvenient for preparing or replenishing plating baths. Mineral acids such as hydrochloric acid and nitric acid recommended in the present invention,
Using cupric oxide, which is easily soluble in organic acids such as EDTA, a highly concentrated EDTA-Cu solution (20g/Cu)
As an example of creating an EDT
A.4H 110g was added with as high concentration sodium hydroxide aqueous solution as possible, stirred, adjusted to PH5.0, and EDTA4H
completely dissolve. Next, 25 g (20 g as Cu) of the cupric oxide powder described above is added to the solution and, for example, aeration is performed to obtain an EDTA-Cu complex in about 20 minutes. This reaction seems to follow the formula below. EDTA・2H・2Na+CuO+H 2 O → [EDTA−Cu]2H+2NaOH As can be seen from the reaction formula, the initial pH5.0 usually increases to 10.5 to 11.0 due to this complexation reaction. In this way, to obtain the same Cu EDTA complex salt,
Comparing the electrolytic method described in 2) of the conventional technology with the method of the present invention, the required time is reduced to about 1/10, the amount of undissolved residue is extremely small, and the physical properties of the film deposited on the coated object are greatly improved. improves. Next, the plating operation is carried out at a temperature of 60°C or higher, preferably 80°C or lower, because at lower temperatures the time required for plating is longer, and at higher temperatures, the reduction reaction becomes too strong and the bath decomposes, which is undesirable. It's for a reason. The activation of the board before plating can be carried out using the usual methods, but as an example, a paper phenol board or a board made by impregnating glass cloth with epoxy resin and laminating them is degreased by the usual method. After etching, the etching is performed by lightly etching, attaching a small amount of tin to the etched area, and then immersing it in an aqueous palladium solution to replace the palladium. The pH range during plating should be 11.5 to 13.0. This is because, outside this range, a suitable plated film cannot be obtained and may cause corner cracks in the plated film. [Example] Examples will be described below. Using the combinations shown in Table 2, first, add easily acid-soluble cupric oxide powder (manufactured according to claim 3) or various copper sources, EDTA4H, and aqueous sodium hydroxide solution to obtain an initial pH of 5.0. to obtain an EDTA-Cu complex,
Each additive and water were added to this to prepare chemical copper plating solutions shown in Table 2.

【表】【table】

【表】 尚試薬は特級品を用いた。 第2表のめつき液に、エポキシ樹脂をガラスク
ロスに含浸し積層させたプリント配線基板を、常
法により脱脂、パラジウムによる活性化したのち
夫々浸漬し、15時間後に引揚げ20〜40μm厚さの
銅膜を形成させ、析出皮膜の機械的特性を東洋測
器社製の引張り試験により測定しその結果を、第
3表に、260℃はんだ上げ試験を行つた結果を第
4表に、従来のめつき液を使用した場合と対比し
て夫々示す。該めつき液の組成をマイクロコンピ
ユーターにより管理しながら容量50の槽でロン
グラン試験を行つた結果を第5表に参考値として
示した。 めつきの際の温度は70℃一定で行つた。
[Table] Special grade reagents were used. Printed wiring boards made by impregnating glass cloth with epoxy resin and laminating them were immersed in the plating solution shown in Table 2 after being degreased by a conventional method and activated with palladium. After 15 hours, they were pulled out to a thickness of 20 to 40 μm. A copper film was formed, and the mechanical properties of the deposited film were measured using a tensile test manufactured by Toyo Sokki Co., Ltd. Table 3 shows the results, and Table 4 shows the results of a 260°C soldering test. The results are shown in comparison with the case where plating liquid is used. Table 5 shows the results of a long-run test in a tank with a capacity of 50 while controlling the composition of the plating solution using a microcomputer as reference values. The temperature during plating was kept constant at 70°C.

【表】【table】

【表】【table】

【表】 第3表より明らかなように、本発明のめつき液
を使用しためつき膜の延性は飛躍的に向上し、そ
の他の物性もほぼ同等を示した。特に第5表に示
した延性は長期間経過するほど差が大きくなつ
た。第4,5表は夫々めつき膜の穴のコーナー部
にクラツクの発生が見られるかどうかを比較した
ものであるが、ここでも本発明めつき膜が優れて
いることが示された。 (効果) 化学銅めつき液の銅源として、酸に易溶性又は
高純度の酸化第二銅粉末を用いるというだけで、
めつき液の調製も容易で優れためつき膜が得られ
るだけでなく、E.D.T.A−Cuの錯塩を調製する
際の副生成物も少いのでめつき液の寿命も長い等
の利点が得られる。
[Table] As is clear from Table 3, the ductility of the plating film using the plating solution of the present invention was dramatically improved, and the other physical properties were almost the same. In particular, the difference in ductility shown in Table 5 increased over time. Tables 4 and 5 compare the occurrence of cracks in the corners of the holes of the plated films, and it is shown that the plated films of the present invention are superior here as well. (Effects) Simply using acid-soluble or high-purity cupric oxide powder as the copper source for chemical copper plating solution,
Not only is the plating solution easy to prepare and an excellent plating film can be obtained, but there are also fewer by-products during the preparation of the EDTA-Cu complex salt, so the plating solution has advantages such as a long service life.

Claims (1)

【特許請求の範囲】 1 銅源、錯化剤、還元剤、PH調整剤、2,2′
ジピリジル及びポリエチレングリコールを含有す
る化学めつき液において、銅源として酸化銅粉末
を用いることを特徴とする化学めつき液。 2 該酸化銅粉末は酸に易溶性の酸化第二銅の粉
末である第1項に記載の化学めつき液。 3 該錯化剤としてエチレンジアミン酢酸を用
い、これを水酸化ナトリウム水溶液に完全に溶解
し、該溶液に該酸化第二銅を添加してエチレンジ
アミン酢酸−銅錯体を形成することを特徴とする
第1項に記載の化学めつき液。 4 該酸化第二銅粉末は、電気銅を陽極とし陰陽
両極とも隔膜袋中に収納した状態で0.3〜1.1モ
ル/1の硫酸ナトリウム水溶液を電解液として、
電解液のPH、温度、陰極電流密度を規制して電解
して得られたものである第2項に記載の化学めつ
き液。 5 板表面を脱脂し、活性化し、次いで化学銅め
つき液によつてめつきを行う化学銅めつき方法に
おいて、該化学銅めつき液の組成が、錯化剤、還
元剤、PH調整剤、2,2′ジピリジル、ポリエチ
レングリコール及び酸化銅粉末から成るものであ
り、該めつき浴の温度を60℃以上に、PHを11.5〜
13.0として行うことを特徴とする化学銅めつき方
法。
[Claims] 1. Copper source, complexing agent, reducing agent, PH regulator, 2,2'
A chemical plating solution containing dipyridyl and polyethylene glycol, characterized in that it uses copper oxide powder as a copper source. 2. The chemical plating solution according to item 1, wherein the copper oxide powder is a cupric oxide powder that is easily soluble in acids. 3. A first method characterized in that ethylenediamineacetic acid is used as the complexing agent, completely dissolved in an aqueous sodium hydroxide solution, and the cupric oxide is added to the solution to form an ethylenediamineacetic acid-copper complex. Chemical plating solution described in section. 4 The cupric oxide powder is prepared by using electrolytic copper as an anode, both negative and anode electrodes housed in a diaphragm bag, and using a 0.3 to 1.1 mol/1 sodium sulfate aqueous solution as an electrolyte.
2. The chemical plating solution according to item 2, which is obtained by electrolysis while regulating the pH, temperature, and cathode current density of the electrolyte. 5 In a chemical copper plating method in which the board surface is degreased, activated, and then plated with a chemical copper plating solution, the composition of the chemical copper plating solution includes a complexing agent, a reducing agent, and a PH adjuster. , 2,2' dipyridyl, polyethylene glycol, and copper oxide powder.
A chemical copper plating method characterized by being carried out as 13.0.
JP5468285A 1985-03-20 1985-03-20 Chemical copper plating solution and chemical copper plating method Granted JPS61217581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5468285A JPS61217581A (en) 1985-03-20 1985-03-20 Chemical copper plating solution and chemical copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5468285A JPS61217581A (en) 1985-03-20 1985-03-20 Chemical copper plating solution and chemical copper plating method

Publications (2)

Publication Number Publication Date
JPS61217581A JPS61217581A (en) 1986-09-27
JPH0425348B2 true JPH0425348B2 (en) 1992-04-30

Family

ID=12977557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5468285A Granted JPS61217581A (en) 1985-03-20 1985-03-20 Chemical copper plating solution and chemical copper plating method

Country Status (1)

Country Link
JP (1) JPS61217581A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10297544B4 (en) * 2001-12-18 2015-10-29 Asahi Kasei Kabushiki Kaisha Process for producing a metal thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627594A (en) * 1979-08-10 1981-03-17 Matsushita Electric Ind Co Ltd Remote controller
JPS5932542A (en) * 1982-08-17 1984-02-22 Aisin Seiki Co Ltd Signal transmission device on steering operation board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627594A (en) * 1979-08-10 1981-03-17 Matsushita Electric Ind Co Ltd Remote controller
JPS5932542A (en) * 1982-08-17 1984-02-22 Aisin Seiki Co Ltd Signal transmission device on steering operation board

Also Published As

Publication number Publication date
JPS61217581A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
US5039576A (en) Electrodeposited eutectic tin-bismuth alloy on a conductive substrate
EP1754805B1 (en) Tin electroplating solution and tin electroplating method
JPH0350431B2 (en)
WO1998041675A1 (en) Cyanide-free monovalent copper electroplating solutions
EP0198038B1 (en) Bath and process for plating tin/lead alloys on composite substrates
US6743346B2 (en) Electrolytic solution for electrochemical deposit of palladium or its alloys
EP1819848A1 (en) Near neutral ph tin electroplating solution
JPH0819550B2 (en) Surface treatment method for copper foil for printed circuits
US3637474A (en) Electrodeposition of palladium
TW573071B (en) Tin-copper alloy composition deposited on substrate and plating method for the same
JP2003147541A (en) Electroless copper plating solution, replenishing solution for electroless copper plating, and method of producing wiring board
CA2296900A1 (en) Electroplating solution for electroplating lead and lead/tin alloys
US4069113A (en) Electroplating gold alloys and electrolytes therefor
US4024031A (en) Silver plating
JP2019026894A (en) Electrolytic copper plating anode and electrolytic copper plating apparatus using the same
JPH0425348B2 (en)
EP0225422A1 (en) Alkaline baths and methods for electrodeposition of palladium and palladium alloys
WO1993018211A1 (en) Cyanide-free copper plating bath and process
CN102753732A (en) Cyanide based electrolytic gold plating solution and plating method using same
JP3466987B2 (en) Manufacturing method of electrolytic copper foil
KR100186952B1 (en) Method of electroless plating palladium or palladium alloy to copper alloy or fe-ni alloy
JPS61217580A (en) Chemical copper plating solution and chemical copper plating method
JPS608307B2 (en) Chemical copper plating solution and chemical copper plating method
JPH10204674A (en) Iron electroplating solution
JP2732947B2 (en) Method for producing reflow tin and reflow solder plating material