JPH0425290B2 - - Google Patents

Info

Publication number
JPH0425290B2
JPH0425290B2 JP12820883A JP12820883A JPH0425290B2 JP H0425290 B2 JPH0425290 B2 JP H0425290B2 JP 12820883 A JP12820883 A JP 12820883A JP 12820883 A JP12820883 A JP 12820883A JP H0425290 B2 JPH0425290 B2 JP H0425290B2
Authority
JP
Japan
Prior art keywords
mol
copolymer
units
fluorine
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12820883A
Other languages
Japanese (ja)
Other versions
JPS6020911A (en
Inventor
Masato Hamada
Tetsuro Oota
Shigekichi Oomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12820883A priority Critical patent/JPS6020911A/en
Publication of JPS6020911A publication Critical patent/JPS6020911A/en
Publication of JPH0425290B2 publication Critical patent/JPH0425290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的強度に優れた加硫ゴムを与える
ことのできる加硫可能な含フツ素共重合体に関
し、さらに詳しくは、単量体単位としてフツ化ビ
ニリデン(以下VdFと略記する)とヘキサフル
オロイソブテン(以下HFIBと略記する)とヘキ
サフルオロプロペン(以下HFPと略記する)か
ら成る含フツ素共重合体、及びこれらの単量体単
位に加えてテトラフルオロエチレン(以下TFE
と略記する)単位を含有した含フツ素共重合体に
関するものである。 従来、含フツ素共重合体、例えばVdFとHFP
を共重合して得られる共重合体などは、各種加硫
剤によつて加硫され、耐熱性や耐薬品性などに優
れたエラストマーを与えることが知られており、
このエラストマーはO−リング、シートその他各
種の成形品として種々の用途に用いられている。
しかしながら、この含フツ素エラストマーは、そ
れを耐熱、耐食性のベルト、ダイヤフラムあるい
は各種摺動部材のような機械的強度を要求される
用途に使用する場合、引張強さ特に100%引張応
力や引裂強さなどが十分でないという欠点があつ
た。 そして、このような含フツ素エラストマーの機
械的強度を向上させるために、これまでいろいろ
な方法、例えば各種カーボンブラツクなどの補強
剤の添加により100%引張応力を改良する方法や
無機繊維の配合(特開昭50−23441号公報)、耐熱
性有機繊維の配合(特開昭53−8649号公報)、あ
るいはフイブリル化したTFE乳化重合体の配合
(特開昭53−8650号公報)などにより引裂強度を
改良する方法などが提案されてきた。しかしなが
ら、これらの方法はいずれも、加硫配合時に添加
剤を加えるものであるため、混練時あるいは成形
時における加工性に難点がある。 本発明者らは、このような事情に鑑み、含フツ
素エラストマーの特徴である耐熱性や耐溶剤性な
どの物性及び成形加工性を損うことなく、100%
引張応力や引裂強度などの機械的強度の優れた含
フツ素エラストマーを得るために鋭意研究を重ね
た結果、従来のように補強剤を加えることなく、
含フツ素共重合体自体を改良することによりその
目的を達成しうることを見出し、この知見に基づ
いて本発明を完成するに至つた。 すなわち、本発明は、VdF単位40〜80モル%、
HFIB単位0.5〜20モル%及びHFP単位5〜30モ
ル%からなり、かつメチルエチルケトン溶液中35
℃で測定した固有粘度が0,5〜1.5dl/gであ
る含フツ素共重合体、及びVdF単位40〜80モル
%、HFIB単位0.5〜20モル%、HFP単位5〜20
モル%及びTFE単位5〜20からなり、かつメチ
ルエチルケトン溶液中35℃で測定した固有粘度が
0.5〜1.5dl/gである含フツ素共重合体を提供す
るものである。 本発明の含フツ素共重合体は、各単量体の含有
量がVdF単位60〜75モル%、HFIB単位2〜10モ
ル%及びHFP単位15〜30モル%である共重合体、
又はVdF単位60〜75モル%、HFIB単位2〜10モ
ル%、HFP単位5〜20モル%及びTFE単位5〜
20モル%である共重合体が好ましい。 また、本発明の共重合体においては、前記の単
量体単位以外に、他の単量体単位を所望に応じ20
モル%未満の範囲で含有させることができる。こ
の単量体単位としては、例えばクロロトリフルオ
ロエチレン、1−ハイドロペンタフロロプロペン
−1、エチレン、プロピレン、パーフロロメチル
ビニルエーテル、パーフロロプロピルビニルエー
テルなどが挙げられる。 本発明の共重合体におけるHFIB単位の含有量
が少なすぎると、本発明の特徴である機械的強度
の改良効果が不十分であり、また多すぎる場合は
ゴム弾性が損われる。したがつてHFIB単位の含
有量が2〜10モル%の範囲内にあるとき、好まし
い共重合体が得られる。また、VdF単位、HFP
単位、TFE単位の含有量は、前記所定範囲内に
おいて、ゴム弾性や耐熱性、耐溶剤性の面からそ
れぞれ適宜選択される。 本発明の共重合体は、ラジカル開始剤の存在下
に各単量体を、例えば塊状重合、懸濁重合、乳化
重合、溶液重合などの公知の重合方法で共重合さ
せることによつて得られる。 前記重合方法の中で好ましい重合方法は、懸濁
重合又は乳化重合であり、この場合、ラジカル開
始剤として過硫酸アンモニウム、過硫酸ナトリウ
ム、過硫酸カリウム、過リン酸、過ホウ酸、過炭
酸ナトリウム、過炭酸カリウム、過炭酸アンモニ
ウムなどが用いられるが、これらの中でもつとも
好ましい開始剤は過硫酸アンモニウムである。ま
た開始剤の使用量は、通常全単量体100重量部当
り0.01〜5重量部の範囲である。 前記のラジカル開始剤は単独で用いてもよい
が、必要に応じ亜硫酸、重亜硫酸、次亜硫酸、チ
オ硫酸、亜リン酸、次亜リン酸などのナトリウ
ム、カリウム又はアンモニウム塩のような還元剤
と組み合わせて用いてもよいし、第一鉄化合物、
第二銅化合物、その他の酸化されやすい金属化合
物と組み合わせて用いることもできる。 さらに、本発明の含フツ素共重合体の製造にお
いては、必要に応じ有用であることが公知の界面
活性剤、特に含フツ素界面活性剤を用いることが
できる。この含フツ素界面活性剤としては、例え
ば含フツ素脂肪族カルボン酸又はスルホン酸及び
それらの塩などが挙げられる。また、必要に応じ
て重合度の調整を行うために公知の連鎖移動剤を
用いることもできる。 共重合反応は、通常2〜45Kg/cm2の圧力下で行
われ、また重合温度は使用するラジカル開始剤の
種類によつて適宜選択され、例えばラジカル開始
剤として過硫酸塩を用いる場合は、通常50〜90℃
の温度で重合反応が行われる。 重合操作としては、所定の共重合単量体を一括
して仕込んで重合を行うバツチ方式でも、また所
定のモル比に調整した共重合単量体の混合ガスを
一定圧で連続供給して重合を行う連続方式でもよ
いが、バツチ方式で得られた共重合体の方が、加
硫後の機械的強度の改良効果が大きく、したがつ
て重合操作としてはバツチ方式が好ましい。 このようにして共重合反応を行つたのち、共重
合体は生成する重合体ラテツクスから、公知の方
法、例えば塩化マグネシウム、塩化アンモニウム
などの無機電解質の添加、又は凍結などにより重
合体を凝固させ、次いでろ過又は遠心分離するな
どの方法によつて分離し、純水でよく洗浄後乾燥
する。 このようにして得られた本発明の含フツ素共重
合体は、赤外吸収スペクトルや19F−NMRによ
つて、HFIB単位の確認及び各単量体単位の組成
分析を行うことができる。すなわち、赤外吸収ス
ペクトルにおいて、1450cm-1
The present invention relates to a vulcanizable fluorine-containing copolymer that can provide a vulcanized rubber with excellent mechanical strength. A fluorine-containing copolymer consisting of fluoroisobutene (hereinafter abbreviated as HFIB) and hexafluoropropene (hereinafter abbreviated as HFP), and in addition to these monomer units, tetrafluoroethylene (hereinafter abbreviated as TFE).
The present invention relates to a fluorine-containing copolymer containing a unit (abbreviated as ). Conventionally, fluorine-containing copolymers such as VdF and HFP
It is known that copolymers obtained by copolymerizing are vulcanized with various vulcanizing agents to produce elastomers with excellent heat resistance and chemical resistance.
This elastomer is used for various purposes as O-rings, sheets, and various other molded products.
However, when this fluorine-containing elastomer is used in applications that require mechanical strength, such as heat-resistant and corrosion-resistant belts, diaphragms, or various sliding members, it is difficult to maintain tensile strength, especially 100% tensile stress or tear strength. The drawback was that it was not strong enough. In order to improve the mechanical strength of such fluorine-containing elastomers, various methods have been used so far, such as improving the tensile stress by 100% by adding reinforcing agents such as various carbon blacks, and adding inorganic fibers ( JP-A-50-23441), combination of heat-resistant organic fibers (JP-A-53-8649), or combination of fibrillated TFE emulsion polymer (JP-A-53-8650). Several methods have been proposed to improve the strength. However, since all of these methods involve adding additives during vulcanization and compounding, there are difficulties in processability during kneading or molding. In view of these circumstances, the present inventors have developed a fluorine-containing elastomer that is 100% elastomer without impairing its physical properties such as heat resistance and solvent resistance, and its moldability.
As a result of intensive research to obtain a fluorine-containing elastomer with excellent mechanical strength such as tensile stress and tear strength, we have developed a fluorine-containing elastomer that has excellent mechanical strength such as tensile stress and tear strength.
The inventors have discovered that the objective can be achieved by improving the fluorine-containing copolymer itself, and have completed the present invention based on this knowledge. That is, the present invention contains 40 to 80 mol% of VdF units,
Consisting of 0.5 to 20 mol% of HFIB units and 5 to 30 mol% of HFP units, and 35% in methyl ethyl ketone solution
A fluorine-containing copolymer with an intrinsic viscosity of 0.5 to 1.5 dl/g measured at °C, and 40 to 80 mol% of VdF units, 0.5 to 20 mol% of HFIB units, and 5 to 20 HFP units.
mol% and TFE units from 5 to 20, and has an intrinsic viscosity measured at 35°C in methyl ethyl ketone solution.
The present invention provides a fluorine-containing copolymer having a content of 0.5 to 1.5 dl/g. The fluorine-containing copolymer of the present invention is a copolymer in which the content of each monomer is 60 to 75 mol% of VdF units, 2 to 10 mol% of HFIB units, and 15 to 30 mol% of HFP units,
or 60 to 75 mol% of VdF units, 2 to 10 mol% of HFIB units, 5 to 20 mol% of HFP units, and 5 to 5 mol% of TFE units.
Preference is given to copolymers that are 20 mol%. Furthermore, in the copolymer of the present invention, in addition to the above-mentioned monomer units, other monomer units may be added as desired.
It can be contained in a range of less than mol%. Examples of this monomer unit include chlorotrifluoroethylene, 1-hydropentafluoropropene-1, ethylene, propylene, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, and the like. If the content of HFIB units in the copolymer of the present invention is too small, the effect of improving mechanical strength, which is a feature of the present invention, will be insufficient, and if it is too large, rubber elasticity will be impaired. Therefore, preferred copolymers are obtained when the content of HFIB units is in the range from 2 to 10 mol%. Also, VdF unit, HFP
The content of the TFE unit is appropriately selected within the above-mentioned predetermined range from the viewpoints of rubber elasticity, heat resistance, and solvent resistance. The copolymer of the present invention can be obtained by copolymerizing each monomer in the presence of a radical initiator using a known polymerization method such as bulk polymerization, suspension polymerization, emulsion polymerization, or solution polymerization. . Among the above polymerization methods, a preferred polymerization method is suspension polymerization or emulsion polymerization, in which case ammonium persulfate, sodium persulfate, potassium persulfate, perphosphoric acid, perboric acid, sodium percarbonate, Potassium percarbonate, ammonium percarbonate, etc. are used, and among these, the most preferred initiator is ammonium persulfate. The amount of initiator used is usually in the range of 0.01 to 5 parts by weight per 100 parts by weight of the total monomers. The above radical initiator may be used alone, but if necessary, it may be used in combination with a reducing agent such as a sodium, potassium or ammonium salt such as sulfite, bisulfite, hyposulfite, thiosulfate, phosphorous acid, or hypophosphorous acid. It may be used in combination, or a ferrous compound,
It can also be used in combination with cupric compounds and other easily oxidized metal compounds. Furthermore, in the production of the fluorine-containing copolymer of the present invention, surfactants known to be useful, particularly fluorine-containing surfactants, can be used as necessary. Examples of the fluorine-containing surfactant include fluorine-containing aliphatic carboxylic acids or sulfonic acids and salts thereof. Further, a known chain transfer agent can also be used to adjust the degree of polymerization if necessary. The copolymerization reaction is usually carried out under a pressure of 2 to 45 Kg/cm 2 , and the polymerization temperature is appropriately selected depending on the type of radical initiator used. For example, when a persulfate is used as the radical initiator, Normally 50~90℃
The polymerization reaction takes place at a temperature of . Polymerization can be carried out either in a batch method, in which the predetermined comonomers are charged all at once, or by continuously supplying a mixed gas of comonomers adjusted to a predetermined molar ratio at a constant pressure. Although a continuous method may be used in which polymerization is carried out, a copolymer obtained by a batch method has a greater effect of improving mechanical strength after vulcanization, and therefore a batch method is preferable as a polymerization operation. After performing the copolymerization reaction in this manner, the copolymer is solidified from the resulting polymer latex by a known method, for example, by adding an inorganic electrolyte such as magnesium chloride or ammonium chloride, or by freezing. Then, it is separated by a method such as filtration or centrifugation, thoroughly washed with pure water, and then dried. In the fluorine-containing copolymer of the present invention thus obtained, the HFIB unit can be confirmed and the composition of each monomer unit can be analyzed by infrared absorption spectrum or 19F-NMR. In other words, in the infrared absorption spectrum, at 1450 cm -1

【式】結 合に起因する吸収をもち、また19F−NMRによ
ると、68.2PPM(標準物質
[Formula] Has absorption due to bonding, and according to 19F-NMR, 68.2PPM (standard material

【式】)のケミ カルシフトにHFIB単位のCF3基に起因するピー
クがみられる。 さらに、本発明の含フツ素共重合体の固有粘度
(メチルエチルケトン溶液中35℃で測定)は0.5〜
1.5dl/gであることが必要である。この範囲を
逸脱すると本発明の所期の効果が十分には発揮さ
れない。 本発明の含フツ素共重合体は、VdF単位を含
有する含フツ素弾性共重合体における公知の加硫
方法、すなわちポリアミン化合物、ポリヒドロキ
シ化合物、有機過酸化物などの加硫剤を用いる方
法によつて加硫できる。 前記のポリアミン化合物を用いる加硫の場合、
該化合物として例えばヘキサメチレンジアミン、
テトラエチレンペンタミン、トリエチレンテトラ
ミンなどのアルキルポリアミン又はそのカルバミ
ン酸やシンナミリデン酸などが好ましく用いられ
る。 ポリヒドロキシ化合物を用いる加硫の場合は、
該化合物としてポリヒドロキシ芳香族化合物、例
えばヒドロキノン、ビスフェノールA、ビスフエ
ノールAF及びこれらの塩などが好ましく用いら
れる。また、含フツ素脂肪族ジオールも用いるこ
とができる。これらのポリヒドロキシ化合物を加
硫剤として用いる場合、加硫促進剤として、例え
ば第四級リン化合物や第四級アンモニウム化合物
などを併用することが好ましい。 さらに、有機過酸化物を用いる加硫の場合に
は、該過酸化物として例えば2,5−ジメチル−
2,5−ジ(t−ブチルパーオキシ)−ヘキサン、
2,5−ジメチル−2,5−ジ(t−ブチルパー
オキシ)−ヘキシン−3などが好ましく用いられ
る。またこの場合、加硫助剤の併用が好ましく、
この加硫助剤としては、例えばトリアリルイソシ
アヌール酸やトリアリルシアヌール酸などが好適
である。 このような加硫剤、加硫助剤、加硫促進剤の使
用量は、通常含フツ素エラストマー100重量部当
り1〜10重量部の範囲である。 また、本発明の含フツ素共重合体を加硫する場
合、必要に応じ従来の加硫方法で通常用いられて
いる他の添加剤、例えば酸化マグネシウム、酸化
鉛などの金属酸化物、水酸化カルシウムなどの金
属水酸化物、カーボンブラツクやフアインシリカ
のような補強剤などを用いることができる。 前記の加硫剤などや他の添加剤を配合された含
フツ素共重合体組成物は、十分に均一混合したの
ち、加硫反応が生起する温度まで加熱することに
よつて加硫せしめる。前記混合は通常ゴム混練用
ロール又はバーバリミキサーなどを用いて行われ
る。 加硫は、ゴムやプラスチツクなどの加硫に通常
使用されている加硫用プレス、金型、押出機など
を用いて、多くの場合前記組成物を120〜200℃の
温度で1〜60分間加熱することにより行われ、さ
らに加硫物の熱安定性や寸法安定性を増すため
に、加熱器などにより180〜250℃の温度で1〜48
時間加熱することが好ましい。 このようにして、本発明の含フツ素共重合体か
ら得られた加硫ゴムは、フツ素ゴムの特徴である
優れた耐熱性、耐薬品性及び耐油性を有している
上に、100%引張応力や引裂強度などの機械的強
度が極めて大きい。 次に実施例によつて本発明をさらに詳細に説明
する。 実施例 1 容積15aSus製オートクレーブに精製水5000g
と過硫酸アンモニウム8gを仕込み、オートクレ
ーブを閉じオートクレーブ内を十分に脱気後
HFIB63g、HFP189g、TFE55g、VdFを211gを
順々にオートクレーブ内に導入した。各共重合体
モノマーの仕込モル比は、VdF60モル%、
HFIB7モル% HFP23モル% TFE10モル%で
ある。 次いでオートクレーブを300rpmでかきまぜな
がら、オートクレーブの内温を70℃に昇温し、重
合反応を開始する。重合圧力は、初期圧12.5Kg/
cm2から順次低下してゆき、反応開始から最後に圧
力低下が観察されなくなるまでの時間は、3時間
であり、この間の圧力低下は11.0Kg/cm2であつ
た。 その後、オートクレーブを室温にまで冷却し、
未反応モノマーをパージする。得られたラテツク
スに5%MgC2水溶液を加え、固形分を分離
し、精製水にて十分に洗浄後、90℃の真空乾燥機
において24時間乾燥して、白色弾性共重合体
400gを得た。 生成共重合体の各単量体単位の組成は19F−
NMRより VdF:69.9モル% HFIB:6.1モル% HFP:13.4モル% TFE:10.6モル% である事が確認され、また固有粘度ηは0.82dl/
g(メチルエチルケトン溶媒中35℃)であり、さ
らにこの共重合体のムーニー粘度ML121℃ 1+10は72
であつた。 この共重合体100重量部に対し、MTカーボン
20重量部、MgO15重量部ヘキサメチレンジアミ
ンカーバメイト3重量部をロールで混練後、東洋
精機製オシレーテイングレオメーター(ODR)
により加硫物性を測定した。 さらにこの加硫配合物を150℃で30分間プレス
加硫後、200℃のオーブン中で24時間加熱して後
加硫を行つて試料を作成し、JIS−K−6301に従
がつて物性測定を行つた。 その結果を第1表に示す。 比較例 1 共重合体の各単量体単位の組成がVdF63.3モル
% HFP18.7モル%、TFE18.0モル%で表わされ
る3元共重合体を実施例1記載と同じ方法で製造
し、同じ配合で加硫した試料の物性を第1表に示
す。
A peak due to the CF3 group of the HFIB unit is seen in the chemical shift of [Formula]). Furthermore, the intrinsic viscosity of the fluorine-containing copolymer of the present invention (measured at 35°C in a methyl ethyl ketone solution) is 0.5 to
It needs to be 1.5 dl/g. If it deviates from this range, the intended effects of the present invention will not be fully exhibited. The fluorine-containing copolymer of the present invention can be obtained by a known vulcanization method for fluorine-containing elastic copolymers containing VdF units, that is, a method using a vulcanizing agent such as a polyamine compound, a polyhydroxy compound, or an organic peroxide. Can be vulcanized by In the case of vulcanization using the above polyamine compounds,
Such compounds include, for example, hexamethylene diamine,
Alkyl polyamines such as tetraethylenepentamine and triethylenetetramine, or their carbamic acids and cinnamylidenic acids are preferably used. For vulcanization using polyhydroxy compounds,
As the compound, polyhydroxy aromatic compounds such as hydroquinone, bisphenol A, bisphenol AF, and salts thereof are preferably used. Further, fluorine-containing aliphatic diols can also be used. When these polyhydroxy compounds are used as a vulcanizing agent, it is preferable to use, for example, a quaternary phosphorus compound or a quaternary ammonium compound together as a vulcanization accelerator. Furthermore, in the case of vulcanization using an organic peroxide, the peroxide may be, for example, 2,5-dimethyl-
2,5-di(t-butylperoxy)-hexane,
2,5-dimethyl-2,5-di(t-butylperoxy)-hexyne-3 and the like are preferably used. In this case, it is preferable to use a vulcanization aid in combination.
Suitable examples of the vulcanization aid include triallylisocyanuric acid and triallylcyanuric acid. The amount of the vulcanizing agent, vulcanizing aid, and vulcanizing accelerator used is usually in the range of 1 to 10 parts by weight per 100 parts by weight of the fluorine-containing elastomer. In addition, when vulcanizing the fluorine-containing copolymer of the present invention, other additives commonly used in conventional vulcanization methods, such as metal oxides such as magnesium oxide and lead oxide, hydroxide, etc. Metal hydroxides such as calcium, reinforcing agents such as carbon black and fine silica, etc. can be used. The fluorine-containing copolymer composition containing the above-mentioned vulcanizing agent and other additives is sufficiently uniformly mixed and then heated to a temperature at which a vulcanization reaction occurs to vulcanize it. The mixing is usually carried out using a rubber kneading roll or a Barbary mixer. Vulcanization is often carried out by vulcanizing the composition at a temperature of 120 to 200°C for 1 to 60 minutes using a vulcanization press, mold, extruder, etc. that are commonly used for vulcanization of rubber, plastic, etc. This is done by heating, and in order to further increase the thermal stability and dimensional stability of the vulcanizate, it is heated at a temperature of 180 to 250℃ using a heater etc.
Preferably, the mixture is heated for a period of time. In this way, the vulcanized rubber obtained from the fluorine-containing copolymer of the present invention has excellent heat resistance, chemical resistance, and oil resistance, which are characteristics of fluorine rubber, and also has 100% Mechanical strength such as % tensile stress and tear strength is extremely high. Next, the present invention will be explained in more detail with reference to Examples. Example 1 5000g of purified water in a 15a Sus autoclave
and 8g of ammonium persulfate, close the autoclave, and thoroughly degas the inside of the autoclave.
63 g of HFIB, 189 g of HFP, 55 g of TFE, and 211 g of VdF were sequentially introduced into the autoclave. The molar ratio of each copolymer monomer is VdF60 mol%,
HFIB 7 mol% HFP 23 mol% TFE 10 mol%. Next, while stirring the autoclave at 300 rpm, the internal temperature of the autoclave is raised to 70°C to start the polymerization reaction. Polymerization pressure is initial pressure 12.5Kg/
The pressure gradually decreased from cm 2 , and the time from the start of the reaction until no pressure drop was finally observed was 3 hours, and the pressure drop during this period was 11.0 Kg/cm 2 . Then, the autoclave was cooled to room temperature,
Purge unreacted monomers. A 5% MgC 2 aqueous solution was added to the obtained latex, the solid content was separated, thoroughly washed with purified water, and dried in a vacuum dryer at 90°C for 24 hours to obtain a white elastic copolymer.
Got 400g. The composition of each monomer unit of the resulting copolymer is 19F−
NMR confirmed that VdF: 69.9 mol% HFIB: 6.1 mol% HFP: 13.4 mol% TFE: 10.6 mol%, and the intrinsic viscosity η was 0.82 dl/
g (35°C in methyl ethyl ketone solvent), and the Mooney viscosity of this copolymer is ML121°C 1+10 is 72
It was hot. For 100 parts by weight of this copolymer, MT carbon
After kneading 20 parts by weight of MgO, 15 parts by weight, and 3 parts by weight of hexamethylene diamine carbamate using a roll, use an oscillating rheometer (ODR) made by Toyo Seiki.
Vulcanized physical properties were measured using the following method. Further, this vulcanized compound was press-vulcanized at 150℃ for 30 minutes, then heated in an oven at 200℃ for 24 hours to perform post-vulcanization to prepare samples, and the physical properties were measured according to JIS-K-6301. I went there. The results are shown in Table 1. Comparative Example 1 A terpolymer in which the composition of each monomer unit of the copolymer is represented by 63.3 mol% of VdF, 18.7 mol% of HFP, and 18.0 mol% of TFE was produced in the same manner as described in Example 1. Table 1 shows the physical properties of samples cured with the same formulation.

【表】 実施例 2 容積3のオートクレーブを使用し、仕込みモ
ル比をVdF60モル%、HFIB5モル%、HFP22.5
モル%、TFE12.5モル%とした以外は、実施例1
に記載した重合操作に従がつて重合及び重合後処
理を行つて、共重合体の各単量体単位の組成が
VdF70.0モル%、HFIB3.4モル%、HFP13.8モル
%、TFE12.8モル%であつて、固有粘度0.94dl/
gの白色弾性体132gを得た。この共重合体を実
施例1記載の方法で加硫を行い、物性測定した結
果を第2表に示す。 実施例 3 容積3のSus製オートクレーブに精製水
1500gと過硫酸アンモニウム4.5gを仕込みオート
クレーブ内を十分に脱気後、各モノマーガスのモ
ル比がVdF60モル%、HFIB7モル%、HFP23モ
ル%、TFE10モル%の混合ガスをオートクレー
ブ内圧が6Kg/cm2になるまで吹きこみ、次いでオ
ートクレーブを300rpmでかきまぜながら、オー
トクレーブ内温を70℃にして、この時の圧力を8
Kg/cm2に調整し、重合を開始した。 重合反応の進行に伴い低下する圧力を、仕込み
組成の混合モノマーガスを加圧ポンプで連続的に
送り込むことによつて補い、重合圧力を8Kg/cm2
に保ちながら重合を行つた。重合開始後5時間で
反応を停止し、実施例1記載の方法で後処理を行
い、白色弾性体253gを得た。 この共重合体の各単量体単位の組成は、
VdF67.5モル%、HFIB6.4モル%、HFP17.8モル
%、TFE8.2モル%であり、固有粘度1.09dl/g
であつた。 この共重合体を実施例1記載の方法及び配合で
加硫し、物性測定を行つた結果を第2表に示す。 実施例 4 共重合モノマーの仕込みモル比をVdF60モル
%、HFIB10モル%、HFP30モル%とする以外は
実施例3と同一の方法で重合を行い、共重合体の
各単量体単位の組成が、VdF67.3モル%、
HFIB6.5モル%、HFP26.2モル%で固有粘度0.68
dl/gの白色弾性共重合体を284g得た。 この共重合体を実施例1記載の方法及び配合で
加硫し、物性測定を行つた結果を第2表に示す。 比較例 2 共重合体の各単量体単位の組成がVdF74モル
%、HFP26モル%で表わされる2元共重合体を
実施例1と同様の重合方法、後処理及び加硫方法
に従つて処理して調製した試料の物性を第2表に
示す。
[Table] Example 2 Using an autoclave with a volume of 3, the charging molar ratio was VdF 60 mol%, HFIB 5 mol%, HFP 22.5
Example 1 except that mol% and TFE were 12.5 mol%.
The composition of each monomer unit of the copolymer is determined by performing polymerization and post-polymerization treatment according to the polymerization procedure described in
VdF70.0 mol%, HFIB3.4 mol%, HFP13.8 mol%, TFE12.8 mol%, and the intrinsic viscosity is 0.94 dl/
132 g of white elastic body was obtained. This copolymer was vulcanized by the method described in Example 1, and the physical properties were measured. The results are shown in Table 2. Example 3 Purified water in a Sus autoclave with a volume of 3
After charging 1500 g and 4.5 g of ammonium persulfate and thoroughly degassing the inside of the autoclave, a mixed gas with a molar ratio of each monomer gas of VdF 60 mol%, HFIB 7 mol%, HFP 23 mol%, and TFE 10 mol% was added to the autoclave at an internal pressure of 6 Kg/cm 2 Then, while stirring the autoclave at 300 rpm, raise the autoclave's internal temperature to 70°C and increase the pressure to 80°C.
The weight was adjusted to Kg/cm 2 and polymerization was started. The pressure that decreases as the polymerization reaction progresses is compensated for by continuously feeding the mixed monomer gas of the charged composition with a pressure pump, and the polymerization pressure is increased to 8 kg/cm 2
Polymerization was carried out while maintaining the temperature. The reaction was stopped 5 hours after the start of polymerization, and post-treatment was performed in the manner described in Example 1 to obtain 253 g of a white elastic body. The composition of each monomer unit of this copolymer is
VdF67.5 mol%, HFIB6.4 mol%, HFP17.8 mol%, TFE8.2 mol%, intrinsic viscosity 1.09 dl/g
It was hot. This copolymer was vulcanized using the method and formulation described in Example 1, and the physical properties were measured. The results are shown in Table 2. Example 4 Polymerization was carried out in the same manner as in Example 3 except that the molar ratio of copolymerization monomers was 60 mol% VdF, 10 mol% HFIB, and 30 mol% HFP, and the composition of each monomer unit of the copolymer was , VdF67.3 mol%,
Intrinsic viscosity 0.68 at HFIB6.5 mol%, HFP26.2 mol%
284 g of a white elastic copolymer of dl/g was obtained. This copolymer was vulcanized using the method and formulation described in Example 1, and the physical properties were measured. The results are shown in Table 2. Comparative Example 2 A binary copolymer in which the composition of each monomer unit of the copolymer is represented by 74 mol% of VdF and 26 mol% of HFP was treated according to the same polymerization method, post-treatment, and vulcanization method as in Example 1. Table 2 shows the physical properties of the samples prepared in this manner.

【表】 第1表及び第2表より次のことが理解される。 (1) 実施例1〜4で示されたHFIBを単量体単位
として含む本発明の含フツ素共重合体の加硫物
は、比較例1,2で示されるHFIB単位を含ま
ないVdF−HFP2元共重合体あるいはVdF−
HFP−TFE3元共重合体の加硫物に比べて、極
めて大きな100%引張応力、引裂強度を有して
いる。 (2) 実施例1と実施例2の比較により、HFIB単
位含量の多い実施例1の方が機械的強度改良の
効果が大きい。このことから機械的強度の改良
に対して、本発明の含フツ素共重合体中の
HFIB単位の寄与が大きいことが理解される。
ただしHFIB単位の含量を多くしすぎるとゴム
弾性に乏しくなるので、したがつてHFIB単位
の含量は10モル%以下にすることが好ましい。 (3) 実施例1と実施例3の比較により、重合操作
を一括仕込みでバツチ方式に重合を行つた共重
合体の加硫物の方が、一定圧で混合ガスを連続
して吹き込んで重合を行つた共重合体の加硫物
よりも100%引張応力、引裂強度の改良の効果
が大きい。 (4) 実施例1と比較例1の比較により、圧縮永久
ひずみ、熱時強度、熱老化テスト及び耐油性の
テストにおいて両者に差がみられないことから
本発明の共重合体は、耐熱性や耐油性などを損
うことなく、機械的強度の改良がなされたこと
が分る。 実施例 5 実施例1の共重合体ポリマー100重量部に対し、
MTカーボン30重量部、MgO3重量部、Ca(OH)
26重量部、キユラテイブ#20(有機ホスホニウム
塩33%、フロロエラストマー67%)1.8重量部、
キユラテイブ#30(ジヒドロキシ芳香族化合物50
%、フロロエラストマー50%)4.0重量部をロー
ル混練し、177℃で10分プレス加硫を行い、その
後232℃で24時間オーブン加硫し、ポリオール加
硫ゴムを製造した。この加硫配合物の加硫特性及
び加硫ゴムの機械的特性を第3表に示す。
[Table] The following can be understood from Tables 1 and 2. (1) The vulcanizates of the fluorine-containing copolymers of the present invention containing HFIB as a monomer unit shown in Examples 1 to 4 are different from VdF-, which does not contain HFIB units shown in Comparative Examples 1 and 2. HFP binary copolymer or VdF−
It has extremely high 100% tensile stress and tear strength compared to the vulcanized product of HFP-TFE ternary copolymer. (2) Comparison of Example 1 and Example 2 shows that Example 1, which has a higher HFIB unit content, has a greater effect of improving mechanical strength. From this, it is possible to improve the mechanical strength of the fluorine-containing copolymer of the present invention.
It is understood that the contribution of the HFIB unit is large.
However, if the content of HFIB units is too high, the rubber elasticity becomes poor, so it is preferable that the content of HFIB units is 10 mol% or less. (3) Comparing Example 1 and Example 3, it was found that the copolymer vulcanizate that was polymerized in batches was better than the copolymer vulcanizate that was polymerized by continuously blowing mixed gas at a constant pressure. The effect of improving tensile stress and tear strength by 100% is greater than that of a vulcanized copolymer that has been subjected to this process. (4) Comparison of Example 1 and Comparative Example 1 reveals that there is no difference between the two in compression set, heat strength, heat aging test, and oil resistance test. It can be seen that mechanical strength has been improved without impairing oil resistance or oil resistance. Example 5 For 100 parts by weight of the copolymer polymer of Example 1,
MT carbon 30 parts by weight, MgO3 parts by weight, Ca(OH)
2 6 parts by weight, Curateve #20 (organic phosphonium salt 33%, fluoroelastomer 67%) 1.8 parts by weight,
Curateve #30 (Dihydroxy Aromatic Compound 50
%, fluoroelastomer 50%) were roll-kneaded, press vulcanized at 177°C for 10 minutes, and then oven-vulcanized at 232°C for 24 hours to produce polyol vulcanized rubber. The vulcanization properties of this vulcanized compound and the mechanical properties of the vulcanized rubber are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 フツ化ビニリデン単位40〜80モル%、ヘキサ
フルオロイソブテン単位0.5〜20モル%及びヘキ
サフルオロプロペン単位5〜30モル%からなり、
かつメチルエチルケトン溶液中35℃で測定した固
有粘度が0.5〜1.5dl/gである含フツ素共重合
体。 2 フツ化ビニリデン単位40〜80モル%、ヘキサ
フルオロイソブテン単位0.5〜20モル%、ヘキサ
フルオロプロペン単位5〜20モル%及びテトラフ
ルオロエチレン単位5〜20モル%からなり、かつ
メチルエチルケトン溶液中35℃で測定した固有粘
度が0.5〜1.5dl/gである含フツ素共重合体。
[Scope of Claims] 1 Consists of 40 to 80 mol% vinylidene fluoride units, 0.5 to 20 mol% hexafluoroisobutene units, and 5 to 30 mol% hexafluoropropene units,
A fluorine-containing copolymer having an intrinsic viscosity of 0.5 to 1.5 dl/g when measured in a methyl ethyl ketone solution at 35°C. 2 Consists of 40 to 80 mol% of vinylidene fluoride units, 0.5 to 20 mol% of hexafluoroisobutene units, 5 to 20 mol% of hexafluoropropene units, and 5 to 20 mol% of tetrafluoroethylene units, and in a methyl ethyl ketone solution at 35 °C A fluorine-containing copolymer having a measured intrinsic viscosity of 0.5 to 1.5 dl/g.
JP12820883A 1983-07-14 1983-07-14 Fluorine-containing copolymer Granted JPS6020911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820883A JPS6020911A (en) 1983-07-14 1983-07-14 Fluorine-containing copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820883A JPS6020911A (en) 1983-07-14 1983-07-14 Fluorine-containing copolymer

Publications (2)

Publication Number Publication Date
JPS6020911A JPS6020911A (en) 1985-02-02
JPH0425290B2 true JPH0425290B2 (en) 1992-04-30

Family

ID=14979152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820883A Granted JPS6020911A (en) 1983-07-14 1983-07-14 Fluorine-containing copolymer

Country Status (1)

Country Link
JP (1) JPS6020911A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329013B2 (en) * 2001-04-12 2013-10-30 旭硝子株式会社 Method for producing high strength tetrafluoroethylene polymer
CN105358591A (en) * 2013-06-28 2016-02-24 索尔维特殊聚合物意大利有限公司 Fluoroelastomers

Also Published As

Publication number Publication date
JPS6020911A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
EP2195350B1 (en) Ultra low viscosity iodine containing amorphous fluoropolymers
JP4795685B2 (en) Peroxide curable fluoroelastomer
JP3103386B2 (en) Fluor elastic body and manufacturing method thereof
CN100441605C (en) Perfluoroelastomer compsns.
KR101595137B1 (en) Perfluoroelastomers with low carbonyl endgroup ratios
EP2443194B1 (en) Low temperature curable amorphous fluoropolymers
JP2717817B2 (en) An additive that co-helps release of the peroxide-curable rubber from the mold.
RU2337112C2 (en) Fluoroplastic polymers with nitrogen-containing vulcanisation centers
JPH05406B2 (en)
JPS63304009A (en) Production of peroxide-curable fluorine-containing elastomer
JPH0352907A (en) New fluoroelastomer having improved processability and preparation thereof
EP0278780B1 (en) Scorch-resistant, curable fluorinated elastomer
JP5962188B2 (en) Method for producing fluorine-containing elastomer
JP3718850B2 (en) Fluorine-containing elastic copolymer excellent in moldability, its production method and vulcanizing composition excellent in moldability
JPH0641494B2 (en) Crosslinkable fluorine-containing copolymer
KR20070012640A (en) Fluoropolymer coagulation method and composition
JPH0425290B2 (en)
JP3521430B2 (en) Fluorinated copolymer, method for producing the same, and fluorinated elastomer
JP2002525411A (en) Fluorinated rubber compounds containing fluorinated rubber that rapidly crosslinks
JP3864133B2 (en) Method for producing fluorine-containing copolymer and molding fluorine-containing copolymer obtained by the method
JP4759950B2 (en) Fluorine-containing elastomer and method for producing the same
JPS5952645B2 (en) Method for producing fluorine-containing elastomer
JPH07103287B2 (en) Fluorine rubber vulcanizing composition