JPH04252529A - Agc circuit in optical duplex communication - Google Patents
Agc circuit in optical duplex communicationInfo
- Publication number
- JPH04252529A JPH04252529A JP3025147A JP2514791A JPH04252529A JP H04252529 A JPH04252529 A JP H04252529A JP 3025147 A JP3025147 A JP 3025147A JP 2514791 A JP2514791 A JP 2514791A JP H04252529 A JPH04252529 A JP H04252529A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- capacitor
- agc
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 19
- 230000006854 communication Effects 0.000 title claims description 5
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 239000003990 capacitor Substances 0.000 claims abstract description 15
- 230000007175 bidirectional communication Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Landscapes
- Optical Communication System (AREA)
- Control Of Amplification And Gain Control (AREA)
- Bidirectional Digital Transmission (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は発光ダイオード(LED
)や半導体レーザ(LD)の如き単一の光素子を用いて
双方向通信を行う時分割方向制御方式におけるAGC(
自動利得制御)回路に関するものである。[Industrial Application Field] The present invention relates to light emitting diodes (LEDs).
AGC (
(automatic gain control) circuit.
【0002】0002
【従来の技術】発光ダイオード(LED)や半導体レー
ザ(LD)を発光素子及び受光素子として兼用した時分
割方向制御方式(いわゆるピンポン伝送方式)において
、LEDやLDの発光時の高レベル信号が受光回路に影
響し、受光モードでの受信特性を劣化させることがある
。このため、図4,図5,図6に示すような技術が従来
提案されていた。[Prior Art] In a time-division direction control method (so-called ping-pong transmission method) in which a light-emitting diode (LED) or a semiconductor laser (LD) is used as both a light-emitting element and a light-receiving element, a high-level signal when the LED or LD emits light is received. This may affect the circuit and deteriorate reception characteristics in light reception mode. For this reason, techniques as shown in FIGS. 4, 5, and 6 have been conventionally proposed.
【0003】図4に示す第1の従来例において、7はト
ランジスタ、8は前置増幅器、9はAGC増幅器、19
はAGC増幅器9の出力に得られる受信出力のレベルを
検出するレベル検出回路、20は検出レベルに従ってA
GC増幅器9の増幅度を制御するAGC帰還回路、21
は発光素子として用いられるLED、22は送信データ
をトランジスタ7のベースに印加するためのバッファ回
路、23は送信モード検出回路、24はスイッチである
。送信モードにおいて、送信データに対応してオンオフ
制御された送信光がLED21から発光する。受信モー
ドにおいては、LED21から受信光に対応する受信信
号が得られ、増幅器8,9を介して受信出力としてとり
出される。この第1の従来例において、送信モード検出
回路23で送信モードを検出し、この検出された送信モ
ード時にはスイッチ24をOFF(開)とし、送信信号
がAGC増幅器9に印加されないようにして、安定なA
GC動作を確保するように動作する。In the first conventional example shown in FIG. 4, 7 is a transistor, 8 is a preamplifier, 9 is an AGC amplifier, and 19
20 is a level detection circuit that detects the level of the received output obtained at the output of the AGC amplifier 9;
AGC feedback circuit for controlling the amplification degree of the GC amplifier 9, 21
22 is a buffer circuit for applying transmission data to the base of the transistor 7, 23 is a transmission mode detection circuit, and 24 is a switch. In the transmission mode, the LED 21 emits transmission light that is controlled on and off in accordance with the transmission data. In the reception mode, a reception signal corresponding to the reception light is obtained from the LED 21 and taken out as a reception output via the amplifiers 8 and 9. In this first conventional example, the transmission mode is detected by the transmission mode detection circuit 23, and when the transmission mode is detected, the switch 24 is turned OFF (open) to prevent the transmission signal from being applied to the AGC amplifier 9 and stabilize the transmission mode. Na A
Operates to ensure GC operation.
【0004】また、図5に示す第2の従来例では、送信
モード時のLED21の出力信号を前置増幅器8でとり
出した信号と、送信したはずの波形を抑圧信号発生回路
25で発生した信号とを加算回路26を用いて加算し、
相殺することによって送信モード時のAGC増幅器9へ
の入力遮断を行っている。Furthermore, in a second conventional example shown in FIG. 5, a preamplifier 8 extracts the output signal of the LED 21 in the transmission mode, and a suppression signal generating circuit 25 generates a waveform that should have been transmitted. and the signal using an adder circuit 26,
By canceling, the input to the AGC amplifier 9 is cut off during the transmission mode.
【0005】さらに、図6に示す第3の従来例は、モー
ド制御装置29で、スイッチ(SW1 ) 27とスイ
ッチ(SW2 ) 28を制御する。送信時には、スイ
ッチ27,28を共にOFF(開)とし、受信時には共
にON(閉)とする。これにより、受信時には半導体レ
ーザ6の信号が受信回路に入力しない回路となる。Furthermore, in the third conventional example shown in FIG. 6, a mode control device 29 controls a switch (SW1) 27 and a switch (SW2) 28. When transmitting, both switches 27 and 28 are turned OFF (open), and when receiving, they are both turned ON (closed). This results in a circuit in which the signal from the semiconductor laser 6 is not input to the receiving circuit during reception.
【0006】[0006]
【発明が解決しようとする課題】これらの従来回路は、
受信信号そのものをスイッチによりON/OFFしてい
るため、SWの電気特性、すなわちON時やOFF時の
過渡時の電圧スパイク、過渡時のオフセット変動等の影
響があるという欠点がある。また、図5の場合では、A
GCへの入力をタイミングをはかって遮断するために、
前置増幅器出力と抑圧信号が電圧レベル(符号は逆)だ
けでなく、時間的にも正確に一致している必要がある。
時間的にズレが生ずると、ずれた時間の部分が加算回路
26から出力し、電圧スパイクがAGC増幅器9に入力
され、遮断の効果がなくなる。従って、この回路では正
確な調整が必要で経済的ではない。[Problem to be solved by the invention] These conventional circuits have the following problems:
Since the received signal itself is turned on and off by a switch, there is a drawback that it is affected by the electrical characteristics of the SW, ie, voltage spikes during transitions when ON and OFF, offset fluctuations during transitions, etc. In addition, in the case of Fig. 5, A
In order to timely block the input to the GC,
The preamplifier output and the suppression signal must match not only in voltage level (opposite signs) but also in time. When a time lag occurs, the deviated time portion is output from the adder circuit 26, a voltage spike is input to the AGC amplifier 9, and the blocking effect is lost. Therefore, this circuit requires precise adjustment and is not economical.
【0007】本発明の目的は、単一の光素子を用いて双
方向通信を行う時分割制御方式における安定な受信を経
済的に達成することのできる双方向通信におけるAGC
回路を提供することにある。An object of the present invention is to provide an AGC in two-way communication that can economically achieve stable reception in a time-division control system that performs two-way communication using a single optical element.
The purpose is to provide circuits.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
に、本発明による双方向通信におけるAGC回路は、単
一の光素子を発光させる送信モードと該単一の光素子で
受光する受信モードとに時分割方向制御をして光双方向
通信を行う系の受信側に配置されたAGC回路において
、前記単一の光素子の出力側に配置された利得可変素子
と、該利得可変素子の出力側に得られる受信出力のレベ
ルを検知するレベル検出回路と、該レベル検出回路によ
り検出された前記受信出力のレベルに対応する電圧を蓄
積保持するキャパシタと、一定の直流電圧値を設定する
手段と、前記受信モードのときに前記キャパシタに蓄積
保持された電圧により前記利得可変素子の利得可変制御
をするとともに前記送信モードのときに前記直流電源の
一定の直流電圧により前記利得可変素子が低利得となる
ように前記キャパシタと前記直流電源とを切換える切換
え制御回路とを備えたことを特徴とする構成を有してい
る。[Means for Solving the Problem] In order to achieve this object, the AGC circuit in bidirectional communication according to the present invention has two modes: a transmission mode in which a single optical element emits light, and a reception mode in which light is received by the single optical element. In an AGC circuit disposed on the receiving side of a system that performs two-way optical communication by time-division direction control, a variable gain element disposed on the output side of the single optical element, and a variable gain element disposed on the output side of the single optical element; A level detection circuit that detects the level of the received output obtained on the output side, a capacitor that accumulates and holds a voltage corresponding to the level of the received output detected by the level detection circuit, and means for setting a constant DC voltage value. In the receiving mode, the gain of the variable gain element is controlled by the voltage accumulated and held in the capacitor, and in the transmitting mode, the variable gain element is controlled to have a low gain by the constant DC voltage of the DC power supply. The present invention has a configuration characterized in that it includes a switching control circuit that switches between the capacitor and the DC power source so that the following is true.
【0009】以下図面により本発明を詳細に説明する。
図1に本発明の原理図を示す。1は光素子であり、LD
,LEDなどである。2は光素子1を駆動するための駆
動回路、3は利得可変素子、4はメモリでバースト信号
を発生する。5は送信モードと受信モードとを切換え制
御するための制御信号を出力する制御回路で、この制御
信号によりメモリ4を制御してバースト状に光素子1を
発光させる。10は利得可変素子3の出力に得られる受
信出力のレベルに対応した出力をとり出すためのレベル
検出回路、11はスイッチ(SW)、12はキャパシタ
(C)である。図の接続から、利得可変素子3はキャパ
シタ12の電圧Vc または電池電圧Vb により利得
が変化する。レベル検出回路10で検出した信号レベル
でキャパシタ12を充電する。制御回路5からの制御信
号によりスイッチ11は動作し、送信時にB側に、受信
時にA側に設定される。電圧Vb は電池等の直流電源
により作成される一定の直流電圧であり利得可変素子3
の利得を十分低くする値である。光入力の受信時には検
出レベルに応じた制御電圧がキャパシタ12に蓄積され
、送信区間中も保持される。また、送信時には強制的に
スイッチ11により電圧Vb となり、送信信号は非常
に低い値でAGC動作する利得可変素子3から出力され
る。一方受信信号はAGC動作によりほぼ一定値になる
。送信信号よりも受信信号がある程度大きければ、AG
C回路の出力をコンパレータ(比較器)回路に入力する
事で、受信信号のみを取り出すことが可能である。これ
により、受信信号そのものをスイッチによりON/OF
Fしていないため、SWの電気特性の影響が少ない事、
調整が不要である事という利点がある。The present invention will be explained in detail below with reference to the drawings. FIG. 1 shows a diagram of the principle of the present invention. 1 is an optical element, LD
, LED, etc. 2 is a drive circuit for driving the optical element 1, 3 is a variable gain element, and 4 is a memory that generates a burst signal. Reference numeral 5 denotes a control circuit that outputs a control signal for switching between the transmission mode and the reception mode, and this control signal controls the memory 4 to cause the optical element 1 to emit light in a burst pattern. 10 is a level detection circuit for extracting an output corresponding to the level of the received output obtained from the output of the variable gain element 3; 11 is a switch (SW); and 12 is a capacitor (C). From the connections in the figure, the gain of the variable gain element 3 changes depending on the voltage Vc of the capacitor 12 or the battery voltage Vb. A capacitor 12 is charged with the signal level detected by a level detection circuit 10. The switch 11 is operated by a control signal from the control circuit 5, and is set to the B side when transmitting and to the A side when receiving. The voltage Vb is a constant DC voltage created by a DC power source such as a battery, and is a constant DC voltage generated by a DC power source such as a battery.
This is a value that makes the gain sufficiently low. When receiving optical input, a control voltage corresponding to the detection level is stored in the capacitor 12 and is maintained during the transmission period. Further, during transmission, the voltage is forcibly set to Vb by the switch 11, and the transmission signal is outputted from the variable gain element 3 which performs AGC operation at a very low value. On the other hand, the received signal becomes a substantially constant value due to the AGC operation. If the received signal is larger than the transmitted signal to some extent, the AG
By inputting the output of the C circuit to a comparator circuit, it is possible to extract only the received signal. This allows the received signal itself to be turned ON/OFF with a switch.
Since no F is applied, there is little influence from the electrical characteristics of the SW.
This has the advantage that no adjustment is required.
【0010】0010
【実施例】図2に実現手段としての回路構成の1例を示
す。前置増幅器8からの出力は利得可変素子としてのA
GC増幅器9に入る。この例では、AGC増幅器9の利
得調整端子gにVb =0で低利得に設定している。例
えば、市販のAGC増幅器(コムリニア社)の場合、端
子gの端子電圧が0.4ボルト以下では入力500mV
でも出力が20mV以下となる。端子gの端子電圧が1
.5ボルトでは、入力が10mVで出力が200mVと
なる。Embodiment FIG. 2 shows an example of a circuit configuration as an implementation means. The output from the preamplifier 8 is A as a variable gain element.
Enters GC amplifier 9. In this example, the gain adjustment terminal g of the AGC amplifier 9 is set to a low gain with Vb=0. For example, in the case of a commercially available AGC amplifier (Com Linear), if the terminal voltage of terminal g is 0.4 volts or less, the input voltage is 500 mV.
However, the output will be less than 20mV. The terminal voltage of terminal g is 1
.. At 5 volts, the input is 10 mV and the output is 200 mV.
【0011】図3に実現手段としての回路構成の他の例
を示す。この例では、スライス増幅器18をAGC増幅
器9の前に設置し、AGCに一定レベル以上(以下)の
入力が印加しない用に構成している。他の動作は、第1
の実施例と同様である。FIG. 3 shows another example of a circuit configuration as an implementation means. In this example, the slice amplifier 18 is installed in front of the AGC amplifier 9, and is configured to prevent inputs above (below) a certain level from being applied to the AGC. The other operations are the first
This is similar to the embodiment.
【0012】0012
【発明の効果】本発明により、単一の光素子を用いた時
分割方向制御双方向通信方式において、レベルの高い送
信信号を受信回路に影響を与えない安定なAGC回路動
作を実現することが可能である。また、本発明では実施
例で示したように簡単な回路素子で実現することができ
るため経済的に構成することが可能である。[Effects of the Invention] According to the present invention, stable AGC circuit operation can be realized in which a high level transmission signal does not affect the receiving circuit in a time-division direction control bidirectional communication system using a single optical element. It is possible. Furthermore, the present invention can be realized with simple circuit elements as shown in the embodiments, and therefore can be constructed economically.
【図1】本発明の原理を説明するためのブロック図であ
る。FIG. 1 is a block diagram for explaining the principle of the present invention.
【図2】[Figure 2]
【図3】本発明の実施例を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the present invention.
【図4】[Figure 4]
【図5】[Figure 5]
【図6】従来のAGC回路の例を示すブロック図である
。FIG. 6 is a block diagram showing an example of a conventional AGC circuit.
1 光素子 2 駆動回路 3 可変利得素子 4 メモリ 5 送信・受信制御回路 6 半導体レーザ(LD) 7 トランジスタ 8 前置増幅器 9 AGC増幅器 10 レベル検出回路 11 スイッチ 12 キャパシタ 13 バッファ回路 18 スライス増幅器 19 レベル検出回路 20 AGC帰還回路 21 発光ダイオード(LED) 22 バッファ回路 23 送信モード検出回路 24 スイッチ 25 抑圧信号発生回路 26 加算回路 27 スイッチ(SW1 ) 28 スイッチ(SW2 ) 29 モード制御装置 30 受信増幅器 1 Optical element 2 Drive circuit 3 Variable gain element 4 Memory 5 Transmission/reception control circuit 6 Semiconductor laser (LD) 7 Transistor 8 Preamplifier 9 AGC amplifier 10 Level detection circuit 11 Switch 12 Capacitor 13 Buffer circuit 18 Slice amplifier 19 Level detection circuit 20 AGC feedback circuit 21 Light emitting diode (LED) 22 Buffer circuit 23 Transmission mode detection circuit 24 Switch 25 Suppression signal generation circuit 26 Adder circuit 27 Switch (SW1) 28 Switch (SW2) 29 Mode control device 30 Receiving amplifier
Claims (1)
と該単一の光素子で受光する受信モードとに時分割方向
制御をして光双方向通信を行う系の受信側に配置された
AGC回路において、前記単一の光素子の出力側に配置
された利得可変素子と、該利得可変素子の出力側に得ら
れる受信出力のレベルを検知するレベル検出回路と、該
レベル検出回路により検出された前記受信出力のレベル
に対応する電圧を蓄積保持するキャパシタと、一定の直
流電圧値を設定する手段と、前記受信モードのときに前
記キャパシタに蓄積保持された電圧により前記利得可変
素子の利得可変制御をするとともに前記送信モードのと
きに前記直流電源の一定の直流電圧により前記利得可変
素子が低利得となるように前記キャパシタと前記直流電
源とを切換える切換え制御回路とを備えたことを特徴と
する光双方向通信におけるAGC回路。[Claim 1] A transmitting mode in which a single optical element emits light and a receiving mode in which the single optical element receives light are time-divisionally controlled and arranged on the receiving side of a system that performs optical bidirectional communication. In the AGC circuit, a variable gain element disposed on the output side of the single optical element, a level detection circuit that detects the level of the received output obtained on the output side of the variable gain element, and detection by the level detection circuit. a capacitor for storing and holding a voltage corresponding to the level of the received output, a means for setting a constant DC voltage value, and a gain of the variable gain element using the voltage stored and held in the capacitor during the reception mode. A switching control circuit that performs variable control and switches between the capacitor and the DC power source so that the variable gain element has a low gain due to a constant DC voltage of the DC power source when in the transmission mode. AGC circuit for optical two-way communication.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3025147A JP2860715B2 (en) | 1991-01-28 | 1991-01-28 | AGC circuit in optical bidirectional communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3025147A JP2860715B2 (en) | 1991-01-28 | 1991-01-28 | AGC circuit in optical bidirectional communication |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04252529A true JPH04252529A (en) | 1992-09-08 |
JP2860715B2 JP2860715B2 (en) | 1999-02-24 |
Family
ID=12157888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3025147A Expired - Fee Related JP2860715B2 (en) | 1991-01-28 | 1991-01-28 | AGC circuit in optical bidirectional communication |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2860715B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009246536A (en) * | 2008-03-28 | 2009-10-22 | Nippon Telegr & Teleph Corp <Ntt> | Amplifier circuit |
-
1991
- 1991-01-28 JP JP3025147A patent/JP2860715B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009246536A (en) * | 2008-03-28 | 2009-10-22 | Nippon Telegr & Teleph Corp <Ntt> | Amplifier circuit |
JP4691128B2 (en) * | 2008-03-28 | 2011-06-01 | 日本電信電話株式会社 | Amplifier circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2860715B2 (en) | 1999-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4355395A (en) | Injection lasers | |
US4996638A (en) | Method of feedback regulating a flyback power converter | |
JPH08172236A (en) | Apc circuit | |
US7356058B2 (en) | Adaptive laser diode driver and method | |
TW347606B (en) | Semiconductor laser drive circuit, semiconductor laser device, image recording device and optical disk device | |
EP0523188B1 (en) | Thermal control for laser diode used in outside plant communications terminal | |
US6965357B2 (en) | Light-emitting element drive circuit | |
JP2006229224A (en) | Method for determining laser threshold of laser diode | |
JPH08236850A (en) | Luminescence controller of optical device | |
JPH04252529A (en) | Agc circuit in optical duplex communication | |
HUP9700938A2 (en) | Data sender and receiver arrangement | |
NO976041L (en) | Laser Driver IC | |
JPH0645674A (en) | Laser diode driving circuit with temperature compensator | |
JPS61134133A (en) | Light repeater | |
JP3109467B2 (en) | Optical transmitter | |
JPS6152042A (en) | Semiconductor laser driver | |
JP3647966B2 (en) | Light intensity control device | |
JPH09505694A (en) | Method and circuit arrangement for controlling the light output of a laser diode | |
JPH07154016A (en) | High speed apc circuit | |
JPH01122182A (en) | Control method of laser diode | |
KR900002499Y1 (en) | The light control apparatus for the optical disc operating machines | |
JPS58171140A (en) | Constant current circuit | |
JPS62216285A (en) | Drive circuit for light-emitting element | |
JPS60148182A (en) | Burst optical-output stabilizing driving system | |
JPH08340303A (en) | Two-way optical transmission module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |