JPH04252216A - Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith - Google Patents

Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith

Info

Publication number
JPH04252216A
JPH04252216A JP2670391A JP2670391A JPH04252216A JP H04252216 A JPH04252216 A JP H04252216A JP 2670391 A JP2670391 A JP 2670391A JP 2670391 A JP2670391 A JP 2670391A JP H04252216 A JPH04252216 A JP H04252216A
Authority
JP
Japan
Prior art keywords
parts
graft copolymer
thermoplastic resin
weight
processability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2670391A
Other languages
Japanese (ja)
Inventor
Yutaka Toyooka
豊 岡  豊
Yoshiji Matsumoto
松 本 好 二
Yasuaki Ii
井 伊 康 明
Akira Sato
佐 藤  彰
Hideki Koizumi
小 泉 秀 樹
Masahiro Kaneda
兼 田 正 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2670391A priority Critical patent/JPH04252216A/en
Publication of JPH04252216A publication Critical patent/JPH04252216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To provide a graft copolymer for compounding to a thermoplastic resin to improve the moldability of the resin. CONSTITUTION:The objective graft copolymer having a reduced viscosity (etasp/c) of >=2 (isolated polymer) and effective for improving the moldability of a resin can be produced by the graft-polymerization of (A) 80-10 pts.wt. of one or more monomers selected from a styrene monomer, a methacrylic acid ester and an acrylic acid ester in the presence of (B) 20-90 pts.wt. (in terms of solid) of a rubber (a) latex of a non-crosslinked ethylene-propylene-nonconjugated diene copolymer. A thermoplastic resin composition having good moldability is produced by compounding 0.01-20 pts.wt. of the graft copolymer to 100 pts.wt. of a thermoplastic resin.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、熱可塑性樹脂組成物に
、形成加工時に溶融促進、ドロ−ダウンの防止等の加工
性の改良効果を与える性質を有するグラフト共重合体に
関する。更に本発明は、該グラフト共重合体を塩化ビニ
ル樹脂、ポリカ−ボネ−ト樹脂、ポリエステル樹脂、A
BS樹脂、スチレン系樹脂、メタクリル樹脂、ポリエチ
レン樹脂等の熱可塑性樹脂に配合してなる加工性の良い
熱可塑性樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graft copolymer having properties that improve the processability of thermoplastic resin compositions, such as promoting melting and preventing drawdown during processing. Furthermore, the present invention provides the graft copolymer with vinyl chloride resin, polycarbonate resin, polyester resin, A
The present invention relates to a thermoplastic resin composition with good processability, which is blended with a thermoplastic resin such as BS resin, styrene resin, methacrylic resin, or polyethylene resin.

【従来の技術】熱可塑性樹脂、特に塩化ビニル樹脂は各
種の物理的性質及び化学的性質が優れているために種々
の分野で広く用いられている。しかしながら塩化ビニル
樹脂は種々の意味で加工性が劣るという欠点を有し、こ
の解決方法として、可塑剤、メチルメタクリレ−トを主
成分とする共重合体の加工助剤、滑剤を添加配合するこ
とがおこなわれているが、一般的な解決方法とは成りえ
ていなかった。そこでこのような問題点を解決するため
、成形時の溶融促進、ドロ−ダウンの防止等の加工性、
更には成形品の光沢性、平滑性の改良を目的として、種
々の開発が進められており、例えば特公昭52−781
号公報、特公昭52−3668号公報、特公昭53−2
898号公報等に示される塩化ビニル系樹脂組成物が提
案されている。
2. Description of the Related Art Thermoplastic resins, particularly vinyl chloride resins, are widely used in various fields because of their excellent physical and chemical properties. However, vinyl chloride resin has the disadvantage of poor processability in various ways, and as a solution to this problem, plasticizers, copolymer processing aids mainly composed of methyl methacrylate, and lubricants are added and blended. This has been attempted, but it has not been a general solution. Therefore, in order to solve these problems, we have improved processability such as promoting melting during molding and preventing drawdown.
Furthermore, various developments are being carried out with the aim of improving the gloss and smoothness of molded products; for example, Japanese Patent Publication No. 52-781
Publication No. 52-3668, Special Publication No. 53-2
Vinyl chloride resin compositions disclosed in Japanese Patent No. 898 and the like have been proposed.

【発明が解決しようとする課題】しかし、特に塩化ビニ
ル樹脂は、加工時の加工温度が熱分解温度に近いので成
形加工領域が狭く、成形加工が極端に悪くなり、そのた
め生産性の向上、品質の向上、省エネルギ−の見地など
から特殊な加工機械を用いたり或は特別な技術を用いな
ければ期待できる物性のものを得ることが出来ない。そ
して上記の公報等に提案されている塩化ビニル樹脂組成
物では限界があり、市場の要求を充分に満足していると
は言い難い。本発明は、熱可塑性樹脂に配合してその加
工性を十分に改良することのできる加工助剤、並びに該
加工助剤を配合した加工性の優れた熱可塑性樹脂配合物
を提供することを目的とする。
[Problems to be Solved by the Invention] However, especially with vinyl chloride resin, the processing temperature during processing is close to the thermal decomposition temperature, so the molding area is narrow and the molding process is extremely poor, resulting in improved productivity and quality. Expected physical properties cannot be obtained unless a special processing machine or special technology is used in order to improve the performance and save energy. The vinyl chloride resin compositions proposed in the above-mentioned publications have limitations and cannot be said to fully satisfy market demands. The purpose of the present invention is to provide a processing aid that can be blended into a thermoplastic resin to sufficiently improve its processability, as well as a thermoplastic resin compound that is blended with the processing aid and has excellent processability. shall be.

【課題を解決するための手段】本発明者らは、上記目的
を満たす加工性改良効果を有する加工助剤を得るべく鋭
意検討した結果、非架橋のエチレン−プロピレン−非共
役ジエン系共重合体ゴムに、スチレン系単量体、メタク
リル酸エステル及びアルリル酸エステルからなる群から
選ばれた少なくとも1種の単量体を重合して得られるグ
ラフト共重合体であって、しかもこれをアセトン抽出し
たときの遊離重合体が特定範囲の還元粘度ηsp/cを
有するグラフト共重合体が優れた加工性改良効果を有し
、このグラフト共重合体を他の熱可塑性樹脂に特定量配
合することにより、加工性に優れた熱可塑性樹脂組成物
が得られることを見出し、本発明に到達した。すなわち
本発明は、非架橋のエチレン−プロピレン−非共役ジエ
ン共重合体ゴム(a)ラテックス20〜90重量部(固
形分として)の存在下に、80〜10重量部のスチレン
系単量体メタクリル酸エステル及びアクリル酸エステル
よりなる群から選ばれた少なくとも1種の単量体(b)
〔(a)+(b)の合計量100重量部〕を重合して得
られるグラフト共重合であって、アセトン抽出したとき
の遊離重合体の還元粘度ηsp/cが2以上(重合体0
.1gを100mlのクロロホルムに溶解し、25℃で
測定)であることを特徴とする加工性改良効果を有する
グラフト共重合体であり、また熱可塑性樹脂100重量
部に、上記の加工性改良効果を有するグラフト共重合体
0.01〜20重量部を配合してなる熱可塑性樹脂組成
物に係る。本発明で用いるエチレン−プロピレン−非共
役ジエン共重合体非架橋ゴムは、エチレン、プロピレン
及び第三成分としての、例えばジシクロペンタジエン、
エチリデンノルボルネン、1,4−ヘキサジエン、1,
5−ヘキサジエン、2−メチル−1,5ヘキサジエン、
1,4−シクロヘプタジエン、1,5−シクロオクタジ
エン等の一種以上の非共役ジエンとからなるエチレン−
プロピレン−非共役ジエンタ−ポリマ−(以下EPDM
と略称する)である。EPDM中の非共役ジエン成分と
しては、特にジシクロペンタジエンおよびエチリデンノ
ルボルネンの一種以上を用いたものが好ましい。EPD
M中のエチレンとプロピレンのモル比は、5:1から1
:3の範囲であることが好ましく、またEPDM中の不
飽和基の割合は、沃素価に換算して4〜50の範囲であ
ることが好ましい。EPDMのラテックスの製法に関し
ては特に制限はないが、乳化剤の存在下にEPDMに機
械的剪断力を与え、水中に微細に分散安定化させてラテ
ックス化するのが一般的である。EPDMラテックスの
粒子径は2μm以下であることが好ましい。2μmを超
えるものを用いた場合には、これにグラフト重合して得
たグラフト共重合体を他の熱可塑性樹脂に配合して成形
したとき、成形品の透明性及び光沢に影響を及ぼし、優
れた成形品が得られない。本発明で用いるEPDMは非
架橋である必要がある。このEPDMが架橋している場
合、成形時の成形性が劣り、加工性改良効果が得られず
好ましくない。また本発明において、グラフト共重合体
中の非架橋のエチレン−プロピレン−非共役ジエン共重
合体ゴム(a)の含有量は20〜90重量部(固形分と
して)好ましくは30〜80重量部である。含有量が2
0重量部未満の場合、本発明の目的である加工性改良効
果が得られず、また含有量が90重量部を超える場合、
成形加工後の成形品の表面光沢が劣る傾向がある。 本発明におけるグラフト共重合体は乳化重合法により製
造される。本発明のグラフト共重合体の製造は、EPD
M(a)のラテックス20〜90重量部(固形分として
)の存在下に、スチレン系単量体、メタクリル酸エステ
ル及びアクリル酸エステルよりなる群から選ばれた少な
くとも1種の単量体(b)80〜10重量部〔(a)+
(b)の合計量100重量部〕をラジカル重合開始剤の
存在下に、単量体(b)の全量を一時にまたは分割して
あるいは連続的にラテックス中に添加して重合させるこ
とにより行う。重合開始剤としては過硫酸カリウム、過
硫酸アンモニウム等の熱分解型開始剤、またはキュメン
ハイドロパ−オキサイド−鉄化合物−ピロリン酸ソ−ダ
−デキストロ−ズの組合わせである含糖ピロリン酸処方
等のレドックス系開始剤が使用できる。キュメンハイド
ロパ−オキサイドの代わりにtert−ブチルハイドロ
パ−オキサイド、ジイソプロピルベンゼンハイドロパ−
オキサイド等も使用可能である。ピロリン酸ソ−ダの代
わりにエチレンジアミン4酢酸ナトリウム塩(EDTA
−2Na)を用いることも可能である。またデキストロ
−ズの代わりにナトリウムホルムアルデヒドスルホキシ
レ−トを用いることも可能である。グラフト重合に際し
ては、追加の乳化剤を添加して重合を安定化しつつ実施
することが好ましい。乳化剤としては通常の乳化重合に
使用可能なアニオン性乳化剤であれば特に制限は無く使
用できるが、脂肪酸石鹸やロジン酸石鹸等が一般的であ
る。本発明におけるグラフト共重合体を製造する際に用
いる単量体(b)としては、該重合体の加工性改良効果
すなわち、成形時のドロ−ダウンを防止し、溶融速度を
早めて大型成形品の成形を可能とするためには、塩化ビ
ニル樹脂と相溶性の良好なメタクリル酸エステル及びア
クリル酸エステル、また塩化ビニル樹脂と相溶性が劣る
スチレン、α−メチルスチレン等が用いられ、そして高
分子量化することにより溶融粘度を増大させ、上記加工
性改良効果を発揮させることができる。還元粘度ηsp
/cは、2以上好ましくは15以下の範囲であればよい
。15以上の場合は塩化ビニル樹脂にブレンドした場合
、良好な分散性を示さず加工性改良効果が改善されない
ので好ましくない。還元粘度の調整は重合時に使用する
連鎖移動剤、触媒、及び重合温度で適宜行うことができ
る。また、本発明で規定する還元粘度ηsp/cは上記
のグラフト共重合体0.1gを100mlのクロロホル
ムに溶解し、オストワルド粘度計を用いて25℃で測定
したものである。上記グラフト重合体樹脂を、塩化ビニ
ル樹脂、ポリカ−ボネ−ト樹脂、ポリエステル樹脂、A
BS樹脂、メタクリル樹脂、ポリエチレン樹脂などの熱
可塑性樹脂100重量部当り0.01〜20重量部配合
することにより、該熱可塑性樹脂に加工性改良効果を付
与する、すなわち成形時のドロ−ダウンを防止し、大型
形成品の成形を可能にすることができ、しかも形状、光
沢、平滑性に優れた成形品を成形できる樹脂組成物にす
ることができる。グラフト重合体樹脂の配合量が20重
量部を超えると、成形時に樹脂の溶融粘度が大きすぎ、
発熱量が増大し、成形品の色やけ等が発生し好ましくな
い。本発明のグラフト共重合体樹脂を熱可塑性樹脂に添
加する方法は、常用の方法に従い混合すればよい。なお
、この樹脂組成物には必要に応じて、有機錫化合物、鉛
系、バリウム系、亜鉛系等の金属石鹸類、その他エポキ
シ系化合物等の安定剤;ステアリン酸、エステルワック
ス、パラフィンワックス、ステアリル、アルコ−ル等の
滑剤;フタル酸エステル類、リン酸エステル類、脂肪酸
エステル類、エポキシ系等の可塑剤;カ−ボンブラック
、酸化チタン等の着色剤;炭酸カルシウム、アスベスト
等の充填剤;炭酸アンモニア、重炭酸ソ−ダ等の無機発
泡剤;ニトロ系、スルホヒドラジッド系、アゾ系等の有
機発泡剤を配合してもよい。
[Means for Solving the Problems] As a result of intensive studies to obtain a processing aid that satisfies the above objectives and has the effect of improving processability, the present inventors have developed a non-crosslinked ethylene-propylene-nonconjugated diene copolymer. A graft copolymer obtained by polymerizing rubber with at least one monomer selected from the group consisting of a styrene monomer, a methacrylic acid ester, and an alluric acid ester, and which is extracted with acetone. A graft copolymer whose free polymer has a reduced viscosity ηsp/c in a specific range has an excellent processability improvement effect, and by blending a specific amount of this graft copolymer with another thermoplastic resin, It was discovered that a thermoplastic resin composition with excellent processability can be obtained, and the present invention was achieved. That is, the present invention provides 80 to 10 parts by weight of the styrene monomer methacrylate in the presence of 20 to 90 parts by weight (as solid content) of a non-crosslinked ethylene-propylene-nonconjugated diene copolymer rubber (a) latex. At least one monomer (b) selected from the group consisting of acid esters and acrylic esters
Graft copolymerization obtained by polymerizing [total amount of (a) + (b) 100 parts by weight], the reduced viscosity ηsp/c of the free polymer when extracted with acetone is 2 or more (polymer 0
.. 1g dissolved in 100ml of chloroform and measured at 25°C) is a graft copolymer that has a processability improving effect. The present invention relates to a thermoplastic resin composition containing 0.01 to 20 parts by weight of a graft copolymer having the following properties. The ethylene-propylene-nonconjugated diene copolymer non-crosslinked rubber used in the present invention includes ethylene, propylene, and a third component such as dicyclopentadiene.
ethylidene norbornene, 1,4-hexadiene, 1,
5-hexadiene, 2-methyl-1,5 hexadiene,
Ethylene consisting of one or more non-conjugated dienes such as 1,4-cycloheptadiene and 1,5-cyclooctadiene
Propylene non-conjugated dienter polymer (EPDM)
). As the non-conjugated diene component in EPDM, it is particularly preferable to use one or more of dicyclopentadiene and ethylidene norbornene. EPD
The molar ratio of ethylene and propylene in M is 5:1 to 1
:3, and the proportion of unsaturated groups in EPDM is preferably in the range of 4 to 50 in terms of iodine value. There are no particular restrictions on the method for producing EPDM latex, but it is common to apply mechanical shearing force to EPDM in the presence of an emulsifier to stabilize fine dispersion in water to form a latex. The particle size of the EPDM latex is preferably 2 μm or less. If a material with a diameter exceeding 2 μm is used, when the graft copolymer obtained by graft polymerization is blended with other thermoplastic resins and molded, it will affect the transparency and gloss of the molded product, resulting in poor quality. A molded product cannot be obtained. The EPDM used in the present invention needs to be non-crosslinked. If this EPDM is crosslinked, the moldability during molding will be poor, and the effect of improving processability will not be obtained, which is not preferable. Further, in the present invention, the content of the non-crosslinked ethylene-propylene-nonconjugated diene copolymer rubber (a) in the graft copolymer is preferably 20 to 90 parts by weight (as solid content), preferably 30 to 80 parts by weight. be. Content is 2
If the content is less than 0 parts by weight, the processability improvement effect that is the objective of the present invention cannot be obtained, and if the content exceeds 90 parts by weight,
The surface gloss of the molded product after molding tends to be poor. The graft copolymer in the present invention is produced by an emulsion polymerization method. The production of the graft copolymer of the present invention involves EPD
In the presence of 20 to 90 parts by weight (as solid content) of latex M(a), at least one monomer selected from the group consisting of styrene monomers, methacrylic esters, and acrylic esters (b ) 80 to 10 parts by weight [(a)+
100 parts by weight of monomer (b)] in the presence of a radical polymerization initiator, the entire amount of monomer (b) is added all at once, in portions, or continuously to latex and polymerized. . Examples of polymerization initiators include thermal decomposition type initiators such as potassium persulfate and ammonium persulfate, or sugar-containing pyrophosphate formulations that are a combination of cumene hydroperoxide, iron compound, sodium pyrophosphate, and dextrose. Redox initiators can be used. Tert-butyl hydroperoxide, diisopropylbenzene hydroperoxide instead of cumene hydroperoxide
Oxide etc. can also be used. Ethylenediaminetetraacetic acid sodium salt (EDTA) is used instead of sodium pyrophosphate.
-2Na) can also be used. It is also possible to use sodium formaldehyde sulfoxylate instead of dextrose. During graft polymerization, it is preferable to add an additional emulsifier to stabilize the polymerization. As the emulsifier, any anionic emulsifier that can be used in normal emulsion polymerization can be used without any particular restriction, but fatty acid soaps, rosin acid soaps, etc. are common. The monomer (b) used in the production of the graft copolymer of the present invention has the effect of improving the processability of the polymer, that is, preventing drawdown during molding, accelerating the melting rate, and producing large molded products. In order to make it possible to mold, methacrylic esters and acrylic esters, which have good compatibility with vinyl chloride resin, and styrene, α-methylstyrene, etc., which have poor compatibility with vinyl chloride resin, are used. By increasing the melt viscosity, the above-mentioned processability improvement effect can be exhibited. Reduced viscosity ηsp
/c may be in the range of 2 or more, preferably 15 or less. If it is 15 or more, it is not preferable because when blended with vinyl chloride resin, good dispersibility will not be exhibited and the processability improvement effect will not be improved. The reduced viscosity can be adjusted as appropriate by adjusting the chain transfer agent, catalyst, and polymerization temperature used during polymerization. Further, the reduced viscosity ηsp/c defined in the present invention is measured by dissolving 0.1 g of the above graft copolymer in 100 ml of chloroform and using an Ostwald viscometer at 25°C. The above graft polymer resin may be a vinyl chloride resin, a polycarbonate resin, a polyester resin, or
By blending 0.01 to 20 parts by weight per 100 parts by weight of a thermoplastic resin such as BS resin, methacrylic resin, or polyethylene resin, it gives the thermoplastic resin the effect of improving processability, that is, it reduces drawdown during molding. It is possible to make a resin composition that can prevent the above-mentioned problems and enable the molding of large-sized products, and can also be used to mold molded products with excellent shape, gloss, and smoothness. If the blending amount of the graft polymer resin exceeds 20 parts by weight, the melt viscosity of the resin will be too high during molding.
This is undesirable because the amount of heat generated increases and discoloration of the molded product occurs. The graft copolymer resin of the present invention may be added to a thermoplastic resin by mixing according to a conventional method. In addition, this resin composition may contain stabilizers such as organotin compounds, lead-based, barium-based, zinc-based metal soaps, and other epoxy compounds; stearic acid, ester wax, paraffin wax, and stearyl. , lubricants such as alcohol; plasticizers such as phthalate esters, phosphate esters, fatty acid esters, and epoxy systems; colorants such as carbon black and titanium oxide; fillers such as calcium carbonate and asbestos; Inorganic foaming agents such as ammonia carbonate and sodium bicarbonate; organic foaming agents such as nitro, sulfohydrazide and azo foams may also be blended.

【実施例】以下に実施例および比較例を示し、本発明を
更に詳述する。なお実施例、比較例中の「部」はすべて
重量部を示す。また各重合体の還元粘度ηsp/cは、
規定の乳化剤、重合開始剤、重合温度、連鎖移動剤を変
量として、重合して得られたグラフト重合体樹脂をアセ
トンで抽出して得られる遊離重合体の還元粘度ηsp/
cを測定し、ηsp/cとした。 実施例1 撹拌器および還流冷却器を具えた反応容器に、EPDM
ラテックス(平均粒径0.1μm)60部(固形分とし
て)、オレイン酸カリウム1.0部、クメンハイドロパ
−オキサイド0.2部、メチルメタクリレ−ト40部、
n−オクチルメルカプタン0.01部を仕込み、容器内
を窒素にて置換した後、撹拌下でナトリウムホルムアル
デヒドスルホキシレ−ト0.2部を投入した、反応容器
を70℃に昇温し、5時間加熱撹拌し、重合を終了した
。得られた重合体ラテックスを冷却後、硫酸を加え凝折
し、濾過洗浄、乾燥して、重合体粉末を得た。 実施例2〜8及び比較例1〜2 実施例1で得られたグラフト重合体(粉末重合体)を、
ポリ塩化ビニル樹脂(平均重合度700)100部に、
ブチル錫メルカプト1.5部、エポキシ系助剤1.0部
、滑剤0.3部と共に表1に示す配合割合で加え、ヘン
シェルミキサ−にて混合して、塩化ビニル樹脂組成物を
得た。この組成物を用いて下記の評価を行った。その結
果を表1に示す。 評価条件は次のとおりである。 押出成形性:25φm/m 1軸押出機を用いて、ノズ
ル径0.5mmφ、押出回転数50rpmで押出し、ノ
ズルから押出されるストランドを20秒で切断し、その
長さ及び径(巾)を測定した。長さが短い程、ドロ−ダ
ウン性が小さく、巾が広い程ダイスウェル挙動が良好で
二次加工性に優れる。 押出条件:C1=160℃  C2=170℃  C3
=180℃  D=180℃  回転数=50rpm 破断伸度:6インチロ−ルで作成したシ−トを、プレス
温度180℃、7分で2mm厚のシ−トを得た。そのシ
−トでD型ダンベン片(ISO 3号形)を作成し、引
っ張り試験機で120℃の雰囲気下で50mm/min
の速度で引っ張り試験を行った。 破断伸度が大きい程二次加工性が優れる。 外観:押出機で押出されたストランドの状態(表面特性
ブツ平滑性、光沢)を目視判定した。結果は◎が最高で
◎〜〇、〇、△、×で示した。
[Examples] The present invention will be explained in further detail with reference to Examples and Comparative Examples below. Note that all "parts" in Examples and Comparative Examples indicate parts by weight. In addition, the reduced viscosity ηsp/c of each polymer is
Reduced viscosity η sp / of the free polymer obtained by extracting the graft polymer resin obtained by polymerization with acetone using specified emulsifier, polymerization initiator, polymerization temperature, and chain transfer agent as variables.
c was measured and set as ηsp/c. Example 1 EPDM was added to a reaction vessel equipped with a stirrer and a reflux condenser.
Latex (average particle size 0.1 μm) 60 parts (as solid content), potassium oleate 1.0 part, cumene hydroperoxide 0.2 part, methyl methacrylate 40 parts,
After charging 0.01 part of n-octyl mercaptan and purging the inside of the container with nitrogen, 0.2 part of sodium formaldehyde sulfoxylate was added under stirring. The temperature of the reaction container was raised to 70°C. The mixture was heated and stirred for an hour to complete the polymerization. After cooling the obtained polymer latex, sulfuric acid was added thereto, the mixture was coagulated, filtered and washed, and dried to obtain a polymer powder. Examples 2 to 8 and Comparative Examples 1 to 2 The graft polymer (powder polymer) obtained in Example 1 was
100 parts of polyvinyl chloride resin (average degree of polymerization 700),
1.5 parts of butyltin mercapto, 1.0 part of epoxy auxiliary agent, and 0.3 part of lubricant were added in the proportions shown in Table 1, and mixed in a Henschel mixer to obtain a vinyl chloride resin composition. The following evaluation was performed using this composition. The results are shown in Table 1. The evaluation conditions are as follows. Extrusion moldability: 25φm/m Using a single-screw extruder, extrude with a nozzle diameter of 0.5mmφ and extrusion rotation speed of 50 rpm, cut the strand extruded from the nozzle in 20 seconds, and measure its length and diameter (width). It was measured. The shorter the length, the smaller the drawdown property, and the wider the width, the better the die swell behavior and the better the secondary processability. Extrusion conditions: C1 = 160°C C2 = 170°C C3
= 180°C D = 180°C Number of revolutions = 50 rpm Breaking elongation: A sheet of 2 mm thickness was obtained by pressing a sheet using a 6-inch roll at a pressing temperature of 180°C for 7 minutes. A D-type dumbbell piece (ISO No. 3 type) was made from the sheet, and a tensile tester was used to test it at 50 mm/min in an atmosphere of 120°C.
The tensile test was conducted at a speed of . The larger the elongation at break, the better the secondary workability. Appearance: The condition of the strand extruded by the extruder (surface characteristics, smoothness, gloss) was visually judged. The results are indicated by ◎ being the best and ◎~〇, 〇, △, and ×.

【表1】 実施例9〜15及び比較例3〜4 実施例1と同条件で表2に示組成で重合を行い、各種粉
体重合体を得た。この各種重合体3部を、ポリ塩化ビニ
ル樹脂(平均重合度700)100部、ブチルメルカプ
ト1.5部、エポキシ系助剤1.0部、滑剤0.3部と
共にヘンシェルミキサ−にて混合して塩化ビニル樹脂組
成物を得た。この組成物を用いて押出成形性(前記条件
)、破断伸度(前記条件)、外観(前記条件)の評価を
行った。その結果を表2に示す。なお、比較例3は、凝
集時にブロック化し粉体化できなかった。
[Table 1] Examples 9 to 15 and Comparative Examples 3 to 4 Polymerization was carried out under the same conditions as in Example 1 and with the compositions shown in Table 2 to obtain various powder polymers. 3 parts of these various polymers were mixed with 100 parts of polyvinyl chloride resin (average degree of polymerization 700), 1.5 parts of butyl mercapto, 1.0 part of epoxy auxiliary agent, and 0.3 part of lubricant in a Henschel mixer. A vinyl chloride resin composition was obtained. Using this composition, extrusion moldability (under the above conditions), elongation at break (under the above conditions), and appearance (under the above conditions) were evaluated. The results are shown in Table 2. In addition, in Comparative Example 3, the material was blocked during aggregation and could not be powdered.

【表2】 実施例16〜22及び比較例5〜11 下記の各熱可塑性樹脂100部に、実施例1で得た重合
体を3部配合したものと、配合しないものとを各々ヘン
シェルミキサ−で混合した。得られた混合物を1軸押出
機(25φm/m)を用いて、各樹脂ごとに下記の異な
る温度で押出量を計量(g/10min)し、押出成形
性の試験を行った。 また押出時の圧力(Kg−m)を測定した。押出量大で
圧力が小さい程滑性が大きい。 (1)ABS樹脂(ダイヤペットABS#3001;商
品名、三菱レイヨン(株)製) 成形温度:C1=180℃、C2=200℃、C3=2
00℃、ヘッド=200℃、ダイス=200℃ (2)スチレン樹脂(スチロ−ルNF−20;商品名、
出光石油化学(株)製) 成形温度:C1=160℃、C2=180℃、C3=2
00℃、ヘッド=200℃、ダイス=210℃ (3)ポリカ−ボネ−ト樹脂(ノバレックス7022:
商品名、三菱化成工業(株)製) 成形温度:C1=230℃、C2=260℃、C3=2
70℃、ヘッド=270℃、ダイス=280℃ (4)ポリエチレン樹脂(ハイゼックス7000F;商
品名、三井石油化学工業(株)製) 成形温度:C1=150℃、C2=165℃、C3=1
75℃、ヘッド=175℃、ダイス=175℃ (5)ポリエステル樹脂(ダイヤナイトPA−200:
商品名、三菱レイヨン(株)製) 成形温度:C1=280℃、C2=280℃、C3=2
80℃、ヘッド=260℃、ダイス=260℃ (6)ポリフェニレンエ−テル樹脂:PPE(ノリル 
731J GEプラスチック(株)製) 成形温度:C1=200℃、C2=260℃、C3=2
60℃、ヘッド=260℃、ダイス=260℃ (7)塩化ビニル樹脂(ゼオン PVC 重合度700
)成形温度:C1=160℃、C2=170℃、C3=
180℃、ヘッド=175℃、ダイス=180℃
[Table 2] Examples 16 to 22 and Comparative Examples 5 to 11 100 parts of each of the following thermoplastic resins were blended with 3 parts of the polymer obtained in Example 1, and 3 parts of the polymer obtained in Example 1 were blended, and 100 parts of each of the following thermoplastic resins were mixed in a Henschel mixer. mixed with. Using a single screw extruder (25φm/m), the resulting mixture was tested for extrusion moldability by measuring the amount of extrusion (g/10 min) for each resin at different temperatures as shown below. Moreover, the pressure (Kg-m) during extrusion was measured. The larger the extrusion amount and the lower the pressure, the greater the slipperiness. (1) ABS resin (Diapet ABS#3001; trade name, manufactured by Mitsubishi Rayon Co., Ltd.) Molding temperature: C1 = 180°C, C2 = 200°C, C3 = 2
00℃, head = 200℃, die = 200℃ (2) Styrene resin (Styrene NF-20; trade name,
(manufactured by Idemitsu Petrochemical Co., Ltd.) Molding temperature: C1 = 160°C, C2 = 180°C, C3 = 2
00°C, head = 200°C, die = 210°C (3) Polycarbonate resin (Novarex 7022:
Product name, manufactured by Mitsubishi Chemical Industries, Ltd.) Molding temperature: C1 = 230°C, C2 = 260°C, C3 = 2
70°C, head = 270°C, die = 280°C (4) Polyethylene resin (Hyzex 7000F; trade name, manufactured by Mitsui Petrochemical Industries, Ltd.) Molding temperature: C1 = 150°C, C2 = 165°C, C3 = 1
75°C, head = 175°C, die = 175°C (5) Polyester resin (Dianite PA-200:
Product name, manufactured by Mitsubishi Rayon Co., Ltd.) Molding temperature: C1 = 280°C, C2 = 280°C, C3 = 2
80°C, head = 260°C, die = 260°C (6) Polyphenylene ether resin: PPE (Noryl
731J GE Plastics Co., Ltd.) Molding temperature: C1 = 200°C, C2 = 260°C, C3 = 2
60℃, head = 260℃, die = 260℃ (7) Vinyl chloride resin (Zeon PVC polymerization degree 700
) Molding temperature: C1=160°C, C2=170°C, C3=
180℃, head = 175℃, die = 180℃

【表3】[Table 3]

【発明の効果】以上の表1〜表3から明らかなように、
本発明のグラフト重合体を各種熱可塑性樹脂に配合する
ことにより、各種熱可塑性樹脂の成形時の押出成形性、
成形品の高温伸度を向上させることができ、更に成形品
の外観(表面特性、ブツ、平滑性、光沢)等が良好であ
る。 また、本発明のグラフト重合体を各種熱可塑性樹脂に配
合すると、形成加工時の溶融促進、ドロ−ダウンの防止
等の加工性の改良効果を与えられ、大型成形品の成形が
可能になり、しかも生産性を向上できる効果を有する。
[Effect of the invention] As is clear from Tables 1 to 3 above,
By blending the graft polymer of the present invention with various thermoplastic resins, extrusion moldability during molding of various thermoplastic resins,
The high-temperature elongation of the molded product can be improved, and the appearance (surface characteristics, bumps, smoothness, gloss), etc. of the molded product are good. Furthermore, when the graft polymer of the present invention is blended with various thermoplastic resins, it has the effect of improving processability such as promoting melting and preventing drawdown during forming processing, making it possible to mold large-sized molded products. Moreover, it has the effect of improving productivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】非架橋のエチレン−プロピレン−非共役ジ
エン共重合体ゴム(a)ラテックス20〜90重量部(
固形分として)の存在下に、80〜10重量部のスチレ
ン系単量体、メタクリル酸エステル及びアクリル酸エス
テルよりなる群から選ばれた少なくとも1種の単量体(
b)〔(a)+(b)の合計量100重量部〕を重合し
て得られるグラフト共重合体であって、アセトン抽出し
たときの遊離重合体の還元粘度ηsp/cが2以上(重
合体0.1gを100mlのクロロホルムに溶解し、2
5℃で測定)であることを特徴とする加工性改良効果を
有するグラフト共重合体。
Claim 1: 20 to 90 parts by weight of non-crosslinked ethylene-propylene-nonconjugated diene copolymer rubber (a) latex (
80 to 10 parts by weight of at least one monomer selected from the group consisting of styrenic monomers, methacrylic esters, and acrylic esters (as solid content).
b) A graft copolymer obtained by polymerizing [total amount of (a) + (b) 100 parts by weight], which has a reduced viscosity ηsp/c of 2 or more (polymer) when extracted with acetone. Dissolve 0.1 g of the combined substance in 100 ml of chloroform,
A graft copolymer having an effect of improving processability (measured at 5°C).
【請求項2】熱可塑性樹脂100重量部に、請求項1記
載の加工性改良効果を有するグラフト共重合体0.01
〜20重量部を配合してなる熱可塑性樹脂組成物。
[Claim 2] 0.01 parts by weight of the graft copolymer having the processability improving effect according to Claim 1 per 100 parts by weight of the thermoplastic resin.
A thermoplastic resin composition containing ~20 parts by weight.
JP2670391A 1991-01-29 1991-01-29 Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith Pending JPH04252216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2670391A JPH04252216A (en) 1991-01-29 1991-01-29 Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2670391A JPH04252216A (en) 1991-01-29 1991-01-29 Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith

Publications (1)

Publication Number Publication Date
JPH04252216A true JPH04252216A (en) 1992-09-08

Family

ID=12200752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2670391A Pending JPH04252216A (en) 1991-01-29 1991-01-29 Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith

Country Status (1)

Country Link
JP (1) JPH04252216A (en)

Similar Documents

Publication Publication Date Title
US4774287A (en) Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
JP6573933B2 (en) Acrylic processing aid and vinyl chloride resin composition containing the same
KR960004124B1 (en) Thermoplastic resin composition
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
US3624183A (en) Graft copolymer products and method of making same
CA2180892A1 (en) Styrenic polymer composition
KR950013150B1 (en) Vinyl chloride resin composition
JPS602335B2 (en) Blend composition of thermoplastic polymer and multiphase acrylic composite polymer
JPH02272050A (en) Transparent thermoplastic resin composition
KR101997521B1 (en) Acrylic processing material, preparation method thereof and vinyl chloride resin composition comprising the same
KR100785613B1 (en) Acrylic Copolymer Composition of Vinyl Chloride Resin, Method for Preparing the Same and Vinyl Chride Resin Composition Comprising the Same
JPH04252216A (en) Graft copolymer having processability-improving effect and thermoplastic resin composition compounded therewith
JPH04266958A (en) Vinyl chloride-based resin composition
KR102006725B1 (en) Acrylic processing aid and vinyl chloride resin composition comprising the same
JPH04252217A (en) Graft copolymer having slipperiness-imparting effect and thermoplastic resin composition compounded therewith
US4486569A (en) Polyvinyl chloride composition
JPH0442420B2 (en)
JPH06240086A (en) Production of vinyl chloride resin composition
JP3256453B2 (en) Modifier consisting of copolymer with good thermal stability
JP3202803B2 (en) Method for producing polyolefin resin composition
JPS62240352A (en) Aromatic polycarbonate composition
JP3274934B2 (en) Method for producing polyolefin resin composition
JP3443753B2 (en) Thermoplastic resin, method for producing the same, and resin composition containing the same
JPS6147743A (en) Polyphenylene ether composition
JPH044245A (en) Modified flame-retardant resin composition