JPH0425205B2 - - Google Patents

Info

Publication number
JPH0425205B2
JPH0425205B2 JP59017170A JP1717084A JPH0425205B2 JP H0425205 B2 JPH0425205 B2 JP H0425205B2 JP 59017170 A JP59017170 A JP 59017170A JP 1717084 A JP1717084 A JP 1717084A JP H0425205 B2 JPH0425205 B2 JP H0425205B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
barium
weight
sulfate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59017170A
Other languages
Japanese (ja)
Other versions
JPS60166207A (en
Inventor
Osamu Watanabe
Tadashi Muromoto
Yoji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1717084A priority Critical patent/JPS60166207A/en
Publication of JPS60166207A publication Critical patent/JPS60166207A/en
Publication of JPH0425205B2 publication Critical patent/JPH0425205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明は、抽出法リン酸中の硫酸イオンの除去
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing sulfate ions from phosphoric acid by extraction method.

黄リンを出発原料として製造された「乾式法リ
ン酸」に対し、リン鉱石の硫酸分解によつて得た
粗リン酸を精製して製造されたリン酸を「湿式法
リン酸」という。この湿式法リン酸のうち、溶媒
抽出法によつて精製して製造されたものを「抽出
法リン酸」という。
In contrast to "dry method phosphoric acid," which is produced using yellow phosphorus as a starting material, phosphoric acid produced by refining crude phosphoric acid obtained by decomposing phosphate rock with sulfuric acid is called "wet method phosphoric acid." Among these wet method phosphoric acids, those produced by purification by solvent extraction are referred to as "extraction method phosphoric acids."

粗リン酸の精製法としては、化学沈澱法、溶剤
抽出法、イオン交換法、結晶化法に大別される
が、現在工業化されているプロセスは、溶剤抽出
法が主流である。溶剤抽出法は、各種のアルコー
ル、ケトン、エーテル及びリン酸エステル等の有
機溶剤によつてオルトリン酸を選択的に抽出させ
るが、その抽出性及び不純物との選択性は溶剤に
よつて大きく左右される。溶剤抽出法の一般的な
特徴としては、Fe、Al、Ca等の陽イオン不純物
の除去に優れているが、SO4、F等の陰イオン不
純物の除去に関しては十分とはいえない。このた
め、これらの不純物の除去には、溶剤抽出法の
前・後処理として、化学的沈澱法等を組合せてい
るのが実情である。近年、特公昭54−31478号公
報の様にアミン系溶剤をもちいてSO4、F等の陰
イオン不純物を溶剤相に抽出させて除去する方法
も提案されているが、品質的には、工業用、食品
用、医薬用まで精製できる技術として完成してい
ない。
Methods for purifying crude phosphoric acid are broadly classified into chemical precipitation, solvent extraction, ion exchange, and crystallization, but the solvent extraction method is currently the most industrialized process. In the solvent extraction method, orthophosphoric acid is selectively extracted using various organic solvents such as alcohols, ketones, ethers, and phosphoric acid esters, but the extractability and selectivity with respect to impurities are greatly influenced by the solvent. Ru. A general feature of the solvent extraction method is that it is excellent in removing cationic impurities such as Fe, Al, and Ca, but is not sufficient in removing anionic impurities such as SO 4 and F. For this reason, in order to remove these impurities, the current situation is to combine chemical precipitation methods and the like as pre- and post-treatments to the solvent extraction method. In recent years, a method has been proposed in which anionic impurities such as SO 4 and F are extracted into the solvent phase using an amine solvent as in Japanese Patent Publication No. 54-31478, but in terms of quality, it is not suitable for industrial use. The technology has not yet been perfected to purify it for commercial, food, or pharmaceutical use.

又、結晶化法は、陽イオン不純物及び陰イオン
不純物共に効果があることが知られ、理論的には
最も優れた方法と考えられているが、粗リン酸中
の不純物の種類により含有量が大きく異なるた
め、再結晶を繰返さなければならない点及び母液
の精製が必要な点で工業的に採用されていない。
In addition, the crystallization method is known to be effective for both cationic and anionic impurities, and is theoretically considered the best method, but the content may vary depending on the type of impurity in the crude phosphoric acid. Because of the large difference, it has not been adopted industrially because it requires repeated recrystallization and purification of the mother liquor.

以上の様に湿式法リン酸の製造は、種々の精製
法を組合せることによつて、品質的には、工業
用、食品用、医薬用に従来使用されていた乾式リ
ン酸並になり、製造コストにおいても、最近のエ
ネルギー事情により、電力価格の極めて安価な地
域を除けば、乾式法より湿式法が有利になりつつ
ある。この様な状況において、乾式法リン酸の品
質を目標にしなければならない項目としてSO4
あり、乾式法リン酸のSO4は、SO4/P2O5=10重
量ppm以下である。
As mentioned above, the production of wet phosphoric acid combines various purification methods, resulting in a quality comparable to that of dry phosphoric acid, which has traditionally been used for industrial, food, and pharmaceutical purposes. In terms of manufacturing costs, due to the recent energy situation, the wet method is becoming more advantageous than the dry method, except in regions where electricity prices are extremely low. Under such circumstances, SO 4 is an item that must be targeted for the quality of dry process phosphoric acid, and the SO 4 of dry process phosphoric acid is SO 4 /P 2 O 5 = 10 weight ppm or less.

硫酸イオンの除去法としては、数多く提案され
ているが、実質的に完全に硫酸イオンを除去する
には、リン酸中にバリウム化合物を添加し、非常
に難溶性塩である硫酸バリウムを生成させ炉去す
ることが最も確実でしかも一般に知られている。
Many methods have been proposed for removing sulfate ions, but in order to virtually completely remove sulfate ions, a barium compound is added to phosphoric acid to generate barium sulfate, which is a very sparingly soluble salt. Removal in a furnace is the most reliable and generally known method.

しかしこの方法も、硫酸バリウムの結晶が極め
て微細な結晶であり、溶解度積の関係より残存す
るバリウムイオンが無視できないため、実用上次
の様な種々の問題を生じる。
However, this method also causes various practical problems, such as the following, because barium sulfate crystals are extremely fine crystals and residual barium ions cannot be ignored due to the solubility product.

(1) リン酸中の硫酸イオンを実質的に完全に除去
しようとするほど、リン酸中にバリウムイオン
が溶解し、製品リン酸を汚染する。
(1) The more sulfate ions in phosphoric acid are substantially completely removed, the more barium ions dissolve in phosphoric acid and contaminate the product phosphoric acid.

(2) リン酸中の硫酸イオンの異なる製品リン酸を
貯槽で混合し、長期間放置すると硫酸バリウム
の超微細な結晶が生成し、肉眼でも確認できる
濁りを生じる。
(2) Products with different sulfate ions in phosphoric acid When phosphoric acid is mixed in a storage tank and left for a long period of time, ultrafine crystals of barium sulfate are formed, creating turbidity that can be seen with the naked eye.

(3) そのため、操作上は、製品中の硫酸イオン濃
度を厳しくチエツクしなければならないという
品質管理が要求される。
(3) Therefore, operational quality control is required in which the concentration of sulfate ions in the product must be strictly checked.

(4) 又、未反応のバリウムイオンの残存があると
上記の白濁現象が顕著であるため、24時間以上
好ましくは、36時間以上もの熟成を行なう必要
がある。
(4) Furthermore, if unreacted barium ions remain, the above-mentioned clouding phenomenon becomes noticeable, so it is necessary to carry out aging for 24 hours or more, preferably 36 hours or more.

(5) 上記の方法で得られた製品リン酸をアルミの
化学研磨液又は二次塩類にもちいる時、副原料
より硫酸イオンが混入すると、数日間の放置で
硫酸バリウムの超微細な結晶が生成し、肉眼で
も確認できる濁りが生じ、商品価値を低くした
り、製造工程にトラブルを起こす。特にアルミ
の化学研磨液の製造時には、硫酸銅、硫酸ニツ
ケル又は硫酸を添加するため、上記の白濁現象
が顕著に現われ、機能評価も劣る結果になる。
(5) When the product phosphoric acid obtained by the above method is used for aluminum chemical polishing liquid or secondary salts, if sulfate ions are mixed in from the auxiliary raw materials, ultrafine crystals of barium sulfate will form after being left for several days. This produces cloudiness that can be seen with the naked eye, lowering the product's value and causing problems in the manufacturing process. In particular, when producing a chemical polishing solution for aluminum, copper sulfate, nickel sulfate, or sulfuric acid is added, which causes the above-mentioned clouding phenomenon to occur significantly, resulting in poor functional evaluation.

(6) 又、上記の方法で使用するバリウム化合物
は、製品の品質への影響を考慮して、一般に
は、炭酸バリウム、水酸化バリウム等に限定さ
れるが、これらの工業薬品中には、バリウムと
同類のストロンチウムが0.5〜1.0%程度存在す
るため製品リン酸中に1〜20重量ppmのストロ
ンチウムが混入する。
(6) In addition, the barium compounds used in the above method are generally limited to barium carbonate, barium hydroxide, etc. in consideration of the impact on product quality, but these industrial chemicals include Since strontium, which is similar to barium, exists in an amount of about 0.5 to 1.0%, 1 to 20 ppm by weight of strontium is mixed into the product phosphoric acid.

(硫酸ストロンチウムの溶解度積は、硫酸バリウ
ムに比較して約1000倍であるが、反応条件によつ
ては、混入するストロンチウムの約60〜80%が硫
酸バリウムと共沈する。) 本発明者らは、上記の技術課題を解決するため
に鋭意研究した結果、結晶化法で硫酸イオン濃度
SO4/P2O5=10重量ppm以下まで除去可能であり
同時に微量のバリウムイオンとストロンチウムイ
オンも実質的に完全に除去可能であること及びバ
リウム化合物による硫酸イオン除去操作も軽減で
き、上述の白濁現象も防止できる知見をえて本発
明を完成したものである。
(The solubility product of strontium sulfate is about 1000 times that of barium sulfate, but depending on the reaction conditions, about 60 to 80% of the mixed strontium co-precipitates with barium sulfate.) As a result of intensive research to solve the above technical issues, we have found that the sulfate ion concentration can be reduced by crystallization method.
SO 4 /P 2 O 5 = 10 weight ppm or less can be removed, and trace amounts of barium ions and strontium ions can also be removed virtually completely. Also, the operation for removing sulfate ions using barium compounds can be reduced, and the above-mentioned The present invention was completed based on the knowledge that cloudiness can also be prevented.

すなわち本発明は、抽出法リン酸中の硫酸イオ
ンをSO4/P2O5=10重量ppm以下に除去するにあ
たりP2O5濃度58重量%以上に保持して、該リン
酸液にバリウム化合物を添加し、生成した硫酸バ
リウムを去した後、冷却してH3PO4・1/
2H2Oの結晶と母液とを生成させ、結晶を母液か
ら分離し、洗浄する抽出法リン酸中の硫酸イオン
の除去法を提供する。
That is, in the present invention, in order to remove sulfate ions in phosphoric acid by extraction method to SO 4 /P 2 O 5 = 10 weight ppm or less, the P 2 O 5 concentration is maintained at 58 weight % or more, and barium is added to the phosphoric acid solution. After adding the compound and removing the generated barium sulfate, it is cooled and converted into H 3 PO 4・1/
An extraction method for producing 2H 2 O crystals and a mother liquor, separating the crystals from the mother liquor, and washing the crystals. A method for removing sulfate ions in phosphoric acid is provided.

以下、本発明をさらに詳細に説明する。本発明
に使用される湿式法リン酸は、リン鉱石を硫酸で
分解された粗リン酸を出発原料とする。粗リン酸
中には、リン鉱石に由来する各種の金属不純物等
のほか、分解時の過剰の硫酸に由来する硫酸イオ
ンが通常SO4として1〜5重量%含有されてい
る。この粗リン酸中の硫酸イオンの除去法として
リン鉱石、消石灰等の安価なカルシウム化合物を
添加し、硫酸イオンを石膏として除去する方法が
ある。しかし、石膏はなおかなりの溶解度をもつ
ため硫酸イオンは、1000〜2000重量ppm程度残存
し、それより低くすることは困難である。
The present invention will be explained in more detail below. The wet process phosphoric acid used in the present invention uses crude phosphoric acid obtained by decomposing phosphate rock with sulfuric acid as a starting material. In addition to various metal impurities derived from phosphate rock, crude phosphoric acid usually contains 1 to 5% by weight of sulfate ions derived from excess sulfuric acid during decomposition as SO 4 . As a method for removing sulfate ions from this crude phosphoric acid, there is a method of adding an inexpensive calcium compound such as phosphate rock or slaked lime to remove the sulfate ions as gypsum. However, since gypsum still has a considerable solubility, sulfate ions remain at about 1000 to 2000 ppm by weight, and it is difficult to reduce the solubility below that level.

又、この様に処理したリン酸液を各種のアルコ
ール、ケトン、エーテル、リン酸エステル等の有
機溶剤をもちいて抽出処理することにより、抽出
法リン酸がえられる。この溶媒抽出法は、各種の
金属不純物の除去は、優れているが、得られた希
薄リン酸をP2O5濃度62%まで濃縮して、硫酸イ
オン濃度を調べると500重量ppm〜2000重量ppm
である。さらにこの濃縮酸を冷却して、
H3PO4・1/2H2Oの結晶を得ても結晶化率によ
り異なるが、SO4/P2O5=35〜90重量ppmで、結
晶の成長をゆつくり行ない、結晶量の2倍量の純
リン酸で結晶を洗浄してもSO4/P2O5=15〜
55ppmが限界である。その結果溶剤抽出操作後の
硫酸イオン除去法として結晶化法をもちいて、
SO4/P2O5=10重量ppm以下まで精製するには、
2〜3回の再結晶化を行なわなければならない。
In addition, extracted phosphoric acid can be obtained by extracting the phosphoric acid solution thus treated using various organic solvents such as alcohols, ketones, ethers, and phosphoric esters. This solvent extraction method is excellent in removing various metal impurities, but when the obtained dilute phosphoric acid is concentrated to a P 2 O 5 concentration of 62% and the sulfate ion concentration is examined, it is 500 ppm to 2000 ppm by weight. ppm
It is. Furthermore, this concentrated acid is cooled,
Even if crystals of H 3 PO 4 1/2H 2 O are obtained, crystal growth is performed slowly at SO 4 /P 2 O 5 = 35 to 90 ppm by weight, although it depends on the crystallization rate. Even if the crystals are washed with twice the amount of pure phosphoric acid, SO 4 /P 2 O 5 = 15 ~
The limit is 55ppm. As a result, we used the crystallization method to remove sulfate ions after solvent extraction.
To purify SO 4 /P 2 O 5 to less than 10 ppm by weight,
Two to three recrystallizations have to be carried out.

この様に再結晶を繰返すことは、H3PO4
1/2H2Oの溶解熱が40Kcal/Kgと大きいためエ
ネルギーを多消費ししかも母液の精製処理を増加
させる。本発明は、一段の結晶化で実施するため
に、バリウム化合物で硫酸イオンを除去する「反
応工程」を「結晶化工程」の前に組合せ、最終の
製品リン酸の硫酸イオン濃度をSO4/P2O5=10重
量ppm以下にできる。
Repeating recrystallization in this way means that H 3 PO 4
Since the heat of dissolution of 1/2 H 2 O is as large as 40 Kcal/Kg, it consumes a lot of energy and also increases the purification process of the mother liquor. In order to carry out one-stage crystallization, the present invention combines a "reaction step" in which sulfate ions are removed with a barium compound before the "crystallization step", and the sulfate ion concentration of the final product phosphoric acid is reduced by SO 4 / P 2 O 5 = 10 ppm by weight or less.

次に本発明を工程順に詳細に説明する。 Next, the present invention will be explained in detail in order of steps.

(1) 反応工程 本工程は、抽出法リン酸にバリウム化合物
を、添加し、一段の結晶化で、SO4/P2O5=10
重量ppm以下になる様に硫酸イオン濃度を
SO4/P2O5=500重量ppm以下好ましくは、330
重量ppm以下まで除去する。
(1) Reaction process In this process, a barium compound is added to the extraction method phosphoric acid, and through one-step crystallization, SO 4 /P 2 O 5 = 10
Adjust the sulfate ion concentration to less than ppm by weight.
SO 4 /P 2 O 5 = 500 ppm by weight or less, preferably 330
Remove to weight ppm or less.

バリウム化合物は炭酸バリウム、水酸化バリ
ウム、リン酸バリウム、硫化バリウム等が良
い。添加する形態についてはこれらの物質を純
水又は、リン酸中に溶解して使用する方が容易
に品質管理が行なえる。
Preferred barium compounds include barium carbonate, barium hydroxide, barium phosphate, barium sulfide, and the like. As for the form in which these substances are added, quality control can be easily carried out if these substances are dissolved in pure water or phosphoric acid.

反応方式は、回分式、連続式のいづれでも良
いが、未反応のバリウムイオンが多少残存又は
シヨートパスしても後述の結晶化工程で除去で
きるので連続式でも、バリウム化合物の添加量
を硫酸イオンと当量点付近で厳しく管理する必
要がない。
The reaction method can be either a batch method or a continuous method, but even if some unreacted barium ions remain or are shot, they can be removed in the crystallization step described later, so even in a continuous method, the amount of barium compound added can be adjusted to match the amount of sulfate ions. There is no need for strict control near the equivalence point.

さらに当量点付近での反応でないため、反応
時間は、平均滞在時間として、6時間以上好ま
しくは12時間以上保持すれば良い。
Further, since the reaction does not occur near the equivalence point, the reaction time may be maintained for 6 hours or more, preferably 12 hours or more as an average residence time.

リン酸液のP2O5濃度は、硫酸バリウムの溶
解度及び後述の結晶化工程での工業的な結晶化
率を考慮すればP2O5濃度は58重量%以上好ま
しくは、62重量%〜66重量%が良い。P2O5
度が67重量%になると粘度が高くなるため、微
細な硫酸バリウムの結晶の去がむずかしくな
る。
Considering the solubility of barium sulfate and the industrial crystallization rate in the crystallization process described below, the P 2 O 5 concentration of the phosphoric acid solution is 58% by weight or more, preferably 62% by weight or more. 66% by weight is good. When the P 2 O 5 concentration reaches 67% by weight, the viscosity increases, making it difficult to remove fine barium sulfate crystals.

又、処理液の温度は、リン酸の凝固点、粘度
及び材質を考慮して30〜60℃好ましくは、40〜
50℃が良い。
In addition, the temperature of the treatment liquid is preferably 30 to 60°C, preferably 40 to 60°C, considering the freezing point of phosphoric acid, viscosity, and material.
50℃ is good.

(2) 結晶化工程 前述の反応工程で得られたリン酸を冷却晶出
装置(例えば撹拌槽形)に連続供給しP2O5
度、結晶化率にもよるが冷却水又は冷媒により
液温を0〜25℃に維持する。H3PO4・1/
2H2Oの結晶成長は大きいので、晶出装置での
平均滞在時間を3〜6時間維持すれば粒径5〜
10mmの結晶が得られる。
(2) Crystallization process The phosphoric acid obtained in the above reaction process is continuously supplied to a cooling crystallizer (e.g., stirred tank type), and is liquefied with cooling water or a refrigerant depending on the P 2 O 5 concentration and crystallization rate. Maintain temperature between 0 and 25°C. H 3 PO 4・1/
Since the crystal growth of 2H 2 O is large, if the average residence time in the crystallizer is maintained for 3 to 6 hours, the particle size can be reduced to 5 to 5.
10 mm crystals are obtained.

得られた結晶を回転数3000rpmの遠心分離機
で母液と分離した後、結晶量に対して重量比
0.1以上好ましくは0.15〜0.25の純リン酸(洗浄
結晶を溶解したリン酸)で洗浄し洗浄結晶をえ
る。特に純リン酸のH3PO4濃度は90重量%以
下にし、結晶の一部を溶解させるほうが洗浄効
果が大きい。又洗浄用にもちいた純リン酸と分
離された母液の一部を晶出装置へ循環し槽内結
晶懸垂密度を250〜350Kg/m3に維持する。分離
された母液の残部は、バリウムイオン濃度によ
つては、数日間の放置によつて白濁するので、
そのまま又は、濃縮後、反応工程へ循環して硫
酸イオン、バリウムイオン及びストロンチウム
イオンを除去する。
After separating the obtained crystals from the mother liquor in a centrifuge with a rotation speed of 3000 rpm, the weight ratio to the amount of crystals was determined.
Cleaned crystals are obtained by washing with pure phosphoric acid (phosphoric acid in which washed crystals are dissolved) of 0.1 or more, preferably 0.15 to 0.25. In particular, the cleaning effect is greater if the H 3 PO 4 concentration of pure phosphoric acid is 90% by weight or less to dissolve some of the crystals. Further, pure phosphoric acid used for washing and a part of the separated mother liquor are circulated to the crystallizer to maintain the crystal suspension density in the tank at 250 to 350 kg/m 3 . Depending on the barium ion concentration, the remainder of the separated mother liquor will become cloudy after being left for several days.
Sulfate ions, barium ions, and strontium ions are removed by circulation as it is or after concentration to a reaction process.

次に、本発明の実施例を示す。又、例中の
「%」及び「ppm」は重量基準を表わす。
Next, examples of the present invention will be shown. Moreover, "%" and "ppm" in the examples represent weight basis.

実施例 1 南アフリカ産リン鉱石(BPL80)を硫酸分解
し、石膏を分離後濃縮した粗リン酸を出発原料と
して、湿式法リン酸の製造を行なつた。粗リン酸
の組成は、次に示すものであつた。
Example 1 Phosphoric acid was produced by a wet method using crude phosphoric acid obtained by decomposing South African phosphate rock (BPL80) with sulfuric acid, separating gypsum, and concentrating it as a starting material. The composition of the crude phosphoric acid was as shown below.

P2O5 54.2% SO4 1.21% Fe 0.41% Mg 1.12% 次に上記粗リン酸を抽出工程へ供給し、溶剤イ
ソアミルアルコールで精製した。抽出工程は、36
段のミキサー・セトラー型の抽出器で構成され、
抽出段(2段)の流量比(溶剤相の流量/水溶液
相の流量)を4.4、洗浄段(20段)の流量比(溶
剤相の流量/リフラツクスの流量)を10.3、逆抽
出段(12段)の流量比(溶剤相の流量/純水)を
5.8で行なつた。その結果収率は67%であり、抽
残液は、溶剤回収を行なつて肥料用とした。
P 2 O 5 54.2% SO 4 1.21% Fe 0.41% Mg 1.12% Next, the above crude phosphoric acid was supplied to an extraction step and purified using the solvent isoamyl alcohol. The extraction process consists of 36
Consists of a stage mixer/settler type extractor,
The flow rate ratio (solvent phase flow rate/aqueous solution phase flow rate) of the extraction stage (2 stages) was 4.4, the flow rate ratio (solvent phase flow rate/reflux flow rate) of the washing stage (20 stages) was 10.3, and the back extraction stage (12 stage) flow rate ratio (solvent phase flow rate/pure water)
I did it in 5.8. As a result, the yield was 67%, and the raffinate was used for fertilizer by recovering the solvent.

次に抽出工程でえられた希薄リン酸(P2O5
度29%)を溶剤回収後、後述の結晶化工程で得ら
れた母液の一部と混合し、−680mmHgの減圧下で
濃縮し、次の組成の濃縮リン酸をえた。
Next, the dilute phosphoric acid (P 2 O 5 concentration 29%) obtained in the extraction process was recovered as a solvent, mixed with a portion of the mother liquor obtained in the crystallization process described later, and concentrated under reduced pressure of -680 mmHg. , I obtained concentrated phosphoric acid with the following composition.

P2O5 66.7% SO4 0.23% えられた濃縮リン酸を1000g/hrで完全混合型
の反応槽(容量8)へ供給し、底部より、炭酸
バリウムを溶解したリン酸液(Ba5.15%、
Sr620ppm、P2O525.5%)59g/hrを添加した。
このスラリーをケイソウ土でプレコートした加圧
式リーフフイルターで過し、次の組成の清澄な
リン酸液をえた。
P 2 O 5 66.7% SO 4 0.23% The obtained concentrated phosphoric acid was supplied at 1000 g/hr to a complete mixing type reaction tank (capacity 8), and a phosphoric acid solution (Ba5.15 %,
Sr620ppm, P2O5 25.5 %) 59g/hr was added.
This slurry was passed through a pressurized leaf filter precoated with diatomaceous earth to obtain a clear phosphoric acid solution having the following composition.

P2O5 64.7% SO4 170ppm Ba 5.4ppm Sr 8.7ppm この清澄なリン酸液を撹拌槽形の晶出装置(有
効容積11)に供給し、さらに後述の遠心分離機
で分離された母液及び結晶の洗浄用に用いた純リ
ン酸も供給し、冷却水により液温21〜22℃に維持
した。
P 2 O 5 64.7% SO 4 170ppm Ba 5.4ppm Sr 8.7ppm This clear phosphoric acid solution is supplied to a stirred tank type crystallizer (effective volume 11), and the mother liquor and Pure phosphoric acid used for washing the crystals was also supplied, and the liquid temperature was maintained at 21-22°C with cooling water.

その結果得られた結晶(H3PO4・1/2H2O)
と母液のスラリーを遠心分離機(回転数
3000rpm)で母液を分離した後、洗浄用の純リン
酸(P2O5濃度61.7%)を結晶量に対して(重量基
準)約0.14〜0.18使用して結晶を洗浄した。
The resulting crystal (H 3 PO 4・1/2H 2 O)
and mother liquor slurry in a centrifuge (rotation speed
After separating the mother liquor at 3000 rpm), the crystals were washed using pure phosphoric acid for washing (P 2 O 5 concentration 61.7%) of about 0.14 to 0.18 (by weight) based on the amount of crystals.

この洗浄結晶を温水で溶解させ、純リン酸
(P2O5濃度61.7%)を時間当り715gえて、その内
時間当り115gを結晶の洗浄用とした。又、母液
(P2O561.9%、SO4360ppm)及び洗浄用にもちい
た純リン酸は、晶出装置へ循環したが母液の一部
(時間当り500g)を濃縮工程へ循環した。
The washed crystals were dissolved in warm water, and 715 g of pure phosphoric acid (P 2 O 5 concentration 61.7%) was added per hour, of which 115 g per hour was used for washing the crystals. Further, the mother liquor (61.9% P 2 O 5 , 360 ppm SO 4 ) and pure phosphoric acid used for washing were circulated to the crystallizer, but a portion of the mother liquor (500 g per hour) was circulated to the concentration step.

本実施例で得られた純リン酸の組成は、次に示
すものであつた。
The composition of the pure phosphoric acid obtained in this example was as shown below.

P2O5 61.7% SO4 SO4/P2O5=2ppm以下 Ba 0.2ppm以下 Sr 0.2ppm以下 又、この純リン酸1Kgに試薬硫酸銅(特級)を
添加して硫酸イオン500ppmに調整し、1日間放
置しても肉眼で濁りはなかつた。比較として反応
工程よりえられた清澄なリン酸に同様なテストを
行なつた結果、肉眼でも濁りが確認できたし、室
温下でそのままの状態で1ケ月間放置した時も白
濁があつた。
P 2 O 5 61.7% SO 4 SO 4 /P 2 O 5 = 2 ppm or less Ba 0.2 ppm or less Sr 0.2 ppm or less Add the reagent copper sulfate (special grade) to 1 kg of this pure phosphoric acid to adjust the sulfate ion concentration to 500 ppm. There was no turbidity visible to the naked eye even after leaving it for one day. For comparison, a similar test was conducted on the clear phosphoric acid obtained from the reaction process, and as a result, cloudiness was visible to the naked eye, and cloudiness remained even when left as it was at room temperature for one month.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明による抽出法リン酸製造法の1
例のフローシートを示すものである。
The drawing shows 1 of the extraction method phosphoric acid production method according to the present invention.
An example flow sheet is shown.

Claims (1)

【特許請求の範囲】 1 抽出法リン酸中の硫酸イオンSO4/P2O5=10
重量ppm以下に除去するにあたり、P2O5濃度58
重量%以上に保持し、該リン酸液にバリウム化合
物を添加して溶存硫酸イオンをSO4/P2O5=500
重量ppm以下に低減させ、生成した硫酸バリウム
を濾去した後(以下、「反応工程」という)、冷却
してH3PO4・1/2H2Oの結晶と母液とを生成さ
せ、結晶を母液から分離し、洗浄すること(以
下、「結晶化工程」という)を特徴とする抽出法
リン酸中の硫酸イオンの除去法。 2 結晶化工程で分離された母液を反応工程へ循
環させる特許請求の範囲第1項記載の抽出法リン
酸中の硫酸イオンの除去法。
[Claims] 1. Extraction method Sulfate ion in phosphoric acid SO 4 /P 2 O 5 = 10
P 2 O 5 concentration 58 to remove to weight ppm or less
% by weight or more, and add a barium compound to the phosphoric acid solution to remove dissolved sulfate ions to SO 4 /P 2 O 5 = 500.
After reducing the weight to less than ppm and filtering out the generated barium sulfate (hereinafter referred to as the "reaction step"), it is cooled to produce crystals of H 3 PO 4 1/2H 2 O and a mother liquor. An extraction method for removing sulfate ions from phosphoric acid, which is characterized by separation from the mother liquor and washing (hereinafter referred to as "crystallization step"). 2. A method for removing sulfate ions from phosphoric acid using the extraction method according to claim 1, wherein the mother liquor separated in the crystallization step is recycled to the reaction step.
JP1717084A 1984-02-03 1984-02-03 Method for removing sulfuric acid ion in phosphoric acid manufactured by wet process Granted JPS60166207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1717084A JPS60166207A (en) 1984-02-03 1984-02-03 Method for removing sulfuric acid ion in phosphoric acid manufactured by wet process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1717084A JPS60166207A (en) 1984-02-03 1984-02-03 Method for removing sulfuric acid ion in phosphoric acid manufactured by wet process

Publications (2)

Publication Number Publication Date
JPS60166207A JPS60166207A (en) 1985-08-29
JPH0425205B2 true JPH0425205B2 (en) 1992-04-30

Family

ID=11936477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1717084A Granted JPS60166207A (en) 1984-02-03 1984-02-03 Method for removing sulfuric acid ion in phosphoric acid manufactured by wet process

Country Status (1)

Country Link
JP (1) JPS60166207A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700774B2 (en) * 2010-11-04 2015-04-15 国立大学法人 宮崎大学 Method for obtaining inorganic phosphorus compounds from incineration ash of livestock manure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516090A (en) * 1978-07-20 1980-02-04 Bayer Ag Azo reactive dyestuff*its manufacture and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516090A (en) * 1978-07-20 1980-02-04 Bayer Ag Azo reactive dyestuff*its manufacture and use

Also Published As

Publication number Publication date
JPS60166207A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
CN111057848A (en) Method for extracting lithium from lithium-containing solution by solvent extraction
US4632813A (en) Process for the production of water soluble ammonium phosphates
US4299804A (en) Removal of magnesium and aluminum impurities from wet process phosphoric acid
EP4335823A1 (en) Manganese sulfate purification and crystallization method
CN106756023A (en) The method that depth separates calcium and magnesium impurity in manganese sulfate
CN114988380A (en) Method for producing food-grade monopotassium phosphate and co-producing high-purity gypsum by using feed-grade calcium hydrophosphate
CN113120941A (en) Method for extracting high-purity scandium oxide from scandium-containing nickel cobalt hydroxide in short process
US2764472A (en) Brine purification
US4044106A (en) Reclamation of phosphate from bright dip drag-out
US5093089A (en) Process for the separation of sulphate
CN113355538A (en) Terbium oxide extraction process for treating ion ore by combining hydrochloric acid and organic extractant
CN109534369B (en) Membrane integrated lithium chloride preparation equipment and method thereof
CN115676788B (en) High-purity potassium dihydrogen phosphate and preparation method thereof
JPH042524B2 (en)
US3933972A (en) Process for preparing pure sodium bichromate
US4524057A (en) Production of concentrated phosphoric acid and hemihydrated calcium sulfate
CN1025953C (en) Producing method for high-pruity barium carbonate
EP0432610B1 (en) Concurrent production of citric acid and alkali citrates
EP0189831B1 (en) Cobalt recovery method
JPH0425205B2 (en)
US4327061A (en) Method of stabilizing wet process phosphoric acid for solvent extraction
EP0392823A2 (en) Recovery of glycine and Glauber's salt from waste crystal liquors
JPS5924725B2 (en) Wet method for purifying phosphoric acid
US4155984A (en) Recovery of H2 SO4 acid
CN114540643A (en) Method for preparing ammonium metavanadate from vanadium-phosphorus-containing arsenic slag