JPH04250883A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH04250883A
JPH04250883A JP41479490A JP41479490A JPH04250883A JP H04250883 A JPH04250883 A JP H04250883A JP 41479490 A JP41479490 A JP 41479490A JP 41479490 A JP41479490 A JP 41479490A JP H04250883 A JPH04250883 A JP H04250883A
Authority
JP
Japan
Prior art keywords
silicic acid
cod
water
polymerized silicic
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41479490A
Other languages
Japanese (ja)
Inventor
Katsuhisa Kubo
勝寿 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP41479490A priority Critical patent/JPH04250883A/en
Publication of JPH04250883A publication Critical patent/JPH04250883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To lower the COD of the treated water to the level lower than the level obtainable with the conventional methods by first adding an inorg. flocculating agent to waste water to flocculate its turbidity components, then adding a mixture composed of the metal salt and polymerized silicic acid which can form the hydroxide of a polynuclear complex salt in the presence of water thereto to flocculate the soluble COD. CONSTITUTION:The waste water is first subjected to a flocculation treatment to flocculate its turbidity components by adding the inorg. flocculating agent (e.g.: alum) thereto. The mixture composed of the metal salt (e.g.: aluminum chloride) and polymerized silicic acid which can form the hydroxide of the polynuclear complex salt in the presence of water is added thereto to flocculate the soluble COD component. This polymerized silicic acid can be produced by using, for example, commercially marketed water glass as a raw material and polymerizing this water glass under an acidic condition. This method is applied to the treatment of waste water and the waste water of waste paper in particular and can remove the soluble COD components which are difficult to remove by the conventional flocculation treatments. The COD of the treated water is thus lowered to the level lower than the level of the conventional methods.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は廃水、特に故紙廃水の処
理方法の改良に関するものである。さらに詳しくいえば
、本発明は、故紙廃水などの廃水中に含まれているCO
D成分を凝集処理により効果的に除去し、該廃水のCO
Dを効率よく低下させる方法に関するものである。 【0002】 【従来の技術】従来、故紙を原料としてトイレットペー
パー、新聞紙、段ボールなどが製造されているが、これ
らの製造工程から排出される廃水には、例えばパルプか
す、カーボンブラックや填料、顔料などのインク成分、
脱インク剤として用いられている界面活性剤や長鎖脂肪
酸、糊料として用いられているデンプンやポリビニルア
ルコールなど、種々の成分が含まれているため、該廃水
はBODやCODが極めて高く、そのままでは河川や海
に放流することはできない。そのため、通常該廃水に凝
集処理を施してBODやCODを低下させることが行わ
れており、そしてこの凝集処理には、一般に無機凝集剤
と高分子凝集剤が用いられている。前者の無機凝集剤は
廃水中の濁度成分を荷電中和して、微細フロックを形成
させるとともに、溶解性成分も一部捕捉する作用を有し
ており、一方、高分子凝集剤は無機凝集剤によって形成
された微細フロックを大きなフロックにする作用を有し
ている。したがって、COD成分の除去は無機凝集剤の
作用によるものであるが、この無機凝集剤として一般に
用いられている液体硫酸アルミニウム(硫酸バンド)は
、濁度成分の凝集除去には有効であるものの、溶解性C
OD成分の除去性能が低く、処理水のCODを所望の値
まで低下させるには添加量を多くする必要があり、しか
も廃水中に含まれている成分の種類によっては、多量に
添加してもCODを十分に低下させることができないと
いう欠点を有している。このような故紙廃水中のCOD
成分を新たな設備を設けることなく除去する方法として
、重合ケイ酸(活性ケイ酸ともいう)を用いる方法がか
つては検討されたこともある。硫酸バンドと重合ケイ酸
を併用することにより、凝集フロック径が硫酸バンドの
みで処理した場合に比べて大きくなるためフロックの沈
降が促進され、その結果濁度をもたらすCOD成分が除
去され、濁度が低下するとともにCODも低下する。 しかしながら、この方法は、溶解性COD成分の除去率
が高くない上、重合ケイ酸の調製には熟練を要し、かつ
該重合ケイ酸はゲル化しやすく、長期保存ができないな
どの欠点があり、現在ではほとんど利用されていないの
が実状である。他方、重合ケイ酸と水中で水酸化物を形
成しうる金属の可溶性塩を混合して、あるいは別々に廃
水に添加することで、従来の無機凝集剤より大きなフロ
ックを形成させる水処理方法が最近提案されている(特
開昭63−130189号公報)。この方法においては
、該重合ケイ酸は除濁用の凝集主剤として、他の無機凝
集剤と併用することなく、単独で用いられている。 【0003】 【発明が解決しようとする課題】本発明は、廃水、特に
故紙廃水中に含まれているCOD成分を凝集処理により
効果的に除去し、該廃水中のCODを効率よく低下させ
る方法を提供することを目的としてなされたものである
。 【0004】 【課題を解決するための手段】本発明者は前記目的を達
成するために鋭意研究を重ねた結果、重合ケイ酸のシラ
ノール基が水素結合能を有することに着目し、まず廃水
に無機凝集剤を添加して凝集処理を施したのち、この処
理水に、水の存在で多核錯塩の水酸化物を形成しうる金
属塩と重合ケイ酸との混合物を凝集助剤として添加する
ことにより、溶解性COD成分を効果的に除去すること
ができ、その目的を達成しうることを見い出し、この知
見に基づいて本発明を完成するに至った。 【0005】すなわち、本発明は、廃水に無機凝集剤を
添加して凝集処理したのち、その処理水に水の存在で多
核錯塩の水酸化物を形成しうる金属塩と重合ケイ酸との
混合物を添加して、さらにCOD成分を除去することを
特徴とする廃水の処理方法を提供するものである。 【0006】以下、本発明を詳細に説明する。 【0007】本発明方法において用いられる重合ケイ酸
は従来公知の方法、例えば市販の水ガラスを原料として
用い、酸性条件下で重合させることにより、調製するこ
とができる。重合ケイ酸中のSi含有量は4重量%以下
、好ましくは0.5〜2重量%の範囲にあるのが望まし
い。この量が4重量%を超えると極めてゲル化しやすく
なるし、0.5重量%未満では重合速度が遅く、貯蔵タ
ンクも大きなものが必要となる。重合時のpHは3〜4
が好ましく、このpHが4を超えると重合速度が著しく
速くなり、ゲル化しやすくなるし、3未満では重合速度
が遅く実用的でない。また、酸性にするために添加する
酸としては、塩酸や硫酸などの無機酸が有利である。有
機酸はCOD源となり好ましくない。 【0008】このようにして調製された重合ケイ酸は、
さらに無機酸を加えてpHを2以下に調整することによ
り、ゲル化を遅らせることができ、例えば室温(20℃
)で貯蔵した場合、2週間以上ゲル化しない。 【0009】この重合ケイ酸に混合する金属塩は、水の
存在で多核錯塩の水酸化物を形成しうるものであり、こ
のようなものとしては、例えばアルミニウム塩や鉄塩な
どが挙げられるが、特にアルミニウム塩が好適である。 この金属塩は粉末のまま重合ケイ酸と混合してもよいし
、無機酸に溶解して重合ケイ酸と混合してもよい。 【0010】重合ケイ酸と前記金属塩との混合割合につ
いては、重合ケイ酸中のケイ素原子と金属塩中の金属原
子との原子比が0.2〜5になるような割合で両者を混
合することが望ましい。 【0011】本発明方法においては、廃水にまず無機凝
集剤を添加して凝集処理を施し、次いで、この処理水に
重合ケイ酸と該金属塩との混合物を添加することが必要
である。無機凝集剤を添加する前に重合ケイ酸と金属塩
との混合物を添加すると、重合ケイ酸が濁度成分に作用
して、消費されてしまい、溶解性COD成分の除去が不
十分となる。該無機凝集剤としては、通常故紙廃水など
の凝集処理に慣用されている硫酸バンドが好ましく用い
られる。 【0012】重合ケイ酸と金属塩との混合物の添加量は
、廃水中の溶解性COD成分の量にもよるが、通常重合
ケイ酸中のケイ素原子と金属塩中の金属原子との合計量
が2〜10mg/リットルの範囲になるように選ばれる
。 【0013】このようにして処理された廃水は、必要に
応じpH調整したのち、公知の高分子凝集剤を添加して
微細フロックを大きくする処理が施され、この生成フロ
ックは沈殿や浮上などの常法により分離される。 【0014】本発明方法によると、溶解性COD成分が
重合ケイ酸により効果的に除去されるが、その除去機構
は、重合ケイ酸のシラノール基がCOD成分と水素結合
して共沈することにより、あるいは重合ケイ酸が不溶化
する際にCOD成分を巻き込むことにより、溶解性CO
D成分が除去されるものと推察される。 【0015】 【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。 製造例1  重合ケイ酸溶液の製造     【0016】市販の水ガラス3号(Si含有量
28〜30wt%)28mlを、0.3N塩酸水溶液4
50mlに撹拌しながら加えたのち、1N−塩酸でpH
4に調整し、20℃で4時間撹拌を続け、重合ケイ酸を
得た。次いで、1N−塩酸水溶液でpH2にしてから水
を加え、全量を500mlとした。この溶液中のSi含
有量は1.05wt%である。 【0017】実施例1〜3 製造例1で得られた重合ケイ酸溶液100mlに塩化ア
ルミニウム(AlCl3・6H2O)をSi/Al原子
比が0.22、0.89及び3.7になるように加え、
撹拌、溶解したのち、それぞれ全量を200mlとした
。これを薬剤A、B及びCとする。Y製紙(トイレット
ペーパー製造)の廃水を用い、次に示すジャーテストに
よって薬剤のCOD成分除去性能を評価した。 【0018】すなわち、該廃水500mlをビーカーに
採り、硫酸バンド500mg/リットル(Alとして2
1.0mg/リットル)を加え、150rpmで2分間
撹拌したのち、薬剤A(実施例1)、B(実施例2)又
はC(実施例3)を加え、さらに150rpmで2分間
撹拌した。 この際のpHは7.1であった。次に、アニオン性高分
子凝集剤1mg/リットルを加え、150rpmで1分
間、続いて50rpmで2分間撹拌し、フロックを形成
させたのち、15分間放置してフロックを沈降させ、上
澄液の濁度(波長660nm、50mmセル)とCOD
Mnを測定した。その結果を第1表に示す。 【0019】比較例1 製造例1で得られた重合ケイ酸100mlを純水で20
0mlに希釈し、薬剤Dとした。 【0020】実施例1において薬剤Aの代わりに薬剤D
を第1表に示す量用いたこと以外は、実施例1と同様に
処理した。その結果を第1表に示す。 【0021】比較例2 実施例1において、薬剤Aの代わりに硫酸バンドを第1
表に示す量用いたこと以外は、実施例1と同様に処理し
た。その結果を第1表に示す。 【0022】比較例3 実施例1で用いた廃水500mlをビーカーに採り、比
較例1で用いた薬剤Dを第1表に示す量加え、150r
pmで2分間撹拌したのち、硫酸バンド500rpm(
Alとして21.0mg/リットル)を加え、さらに1
50rpmで2分間撹拌した。これ以降は実施例1と同
様に処理した。その結果を第1表に示す。 【0023】 【表1】 【0024】第1表の比較例2から明らかなように、硫
酸バンドのみの処理では、添加量を多くしてもCODを
下げることは困難である。Al含有重合ケイ酸を凝集助
剤として併用することにより、硫酸バンド単独で処理し
た場合より、処理水CODが低下し、また、添加する金
属量も低減しうることが分かる。さらに、第1表から、
重合ケイ酸にAlを混合しない場合(比較例1)には、
硫酸バンドのみの処理より効果が悪く、重合ケイ酸を硫
酸バンドより先に添加した場合(比較例3)には、CO
Dを低下させることができないことが分かる。 【0025】実施例4 S製紙(段ボール製造)の廃水を実施例2で用いた薬剤
Bを使用して処理した。処理条件は硫酸バンド添加量2
00mg/リットル(Alとして8.4mg/リットル
)、pH6.5とし、かつ薬剤Bの添加量を第2表に示
すようにした以外は、実施例1と同様に処理した。その
結果を第2表に示す。 【0026】比較例4 実施例4において、薬剤Bと硫酸バンドの添加順序を逆
にしたこと以外は、実施例4と同様に処理した。この結
果を第2表に示す。 【0027】比較例5 実施例4において、Al含有重合ケイ酸の代わりに硫酸
バンドを第2表に示す量添加したこと以外には、実施例
4と同様に処理した。その結果を第2表に示す。 【0028】 【表2】 【0029】第2表から明らかなように、硫酸バンドの
みの処理よりもAl含有重合ケイ酸を凝集助剤として併
用する方が処理水CODを低減しうることが分かる。ま
た、硫酸バンドを先に添加し、次いでAl含有重合ケイ
酸を添加する方が、逆の場合よりCOD除去効果がある
ことも分かる。 【0030】比較例6 薬剤BのみでS製紙廃水を実施例4と同様に処理した。 添加量11.0mg/リットル(Si+Alとして)で
の処理水のCODは61.0mg/リットルであり、硫
酸バンド8.4mg/リットル(Alとして)処理水の
COD58.4mg/リットルよりも高かった。 【0031】 【発明の効果】本発明の廃水の処理方法によると、従来
の凝集処理方法では困難であった溶解性COD成分の除
去が可能であり、従来法より処理水CODを低減させる
ことができる。
Description: FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in the treatment of wastewater, particularly waste paper wastewater. More specifically, the present invention aims to reduce CO contained in wastewater such as wastepaper wastewater.
The D component is effectively removed by coagulation treatment, and the CO of the wastewater is
This invention relates to a method for efficiently lowering D. [0002] Conventionally, toilet paper, newspaper, cardboard, etc. have been manufactured using waste paper as a raw material, but the wastewater discharged from these manufacturing processes contains, for example, pulp residue, carbon black, fillers, and pigments. Ink ingredients such as
Since the wastewater contains various components such as surfactants and long-chain fatty acids used as deinking agents, and starch and polyvinyl alcohol used as thickeners, the BOD and COD of this wastewater are extremely high and it cannot be used as is. It cannot be discharged into rivers or the sea. Therefore, the wastewater is usually subjected to flocculation treatment to reduce BOD and COD, and inorganic flocculants and polymer flocculants are generally used in this flocculation treatment. The former inorganic flocculant neutralizes the charge of turbidity components in wastewater, forming fine flocs, and also captures some of the soluble components.On the other hand, polymer flocculants have the effect of inorganic flocculation. It has the effect of turning fine flocs formed by the agent into large flocs. Therefore, the removal of COD components is due to the action of an inorganic flocculant, and although liquid aluminum sulfate (sulfuric acid band), which is commonly used as an inorganic flocculant, is effective in removing the coagulation of turbidity components, Solubility C
The removal performance of OD components is low, and it is necessary to add a large amount to reduce the COD of treated water to the desired value. It has the disadvantage that COD cannot be lowered sufficiently. COD in such waste paper wastewater
A method using polymerized silicic acid (also called activated silicic acid) was once considered as a method for removing components without installing new equipment. By using sulfuric acid band and polymerized silicic acid together, the floc diameter becomes larger than when treated with sulfuric acid band alone, promoting sedimentation of the flocs, and as a result, COD components that cause turbidity are removed, reducing turbidity. As the COD decreases, so does the COD. However, this method has disadvantages such as not only the removal rate of soluble COD components is not high, but also the preparation of polymerized silicic acid requires skill, and the polymerized silicic acid easily gels and cannot be stored for a long time. The reality is that it is hardly used at present. On the other hand, recently, a water treatment method has been developed in which polymerized silicic acid and soluble salts of metals that can form hydroxides in water are mixed or separately added to wastewater to form larger flocs than conventional inorganic flocculants. It has been proposed (Japanese Unexamined Patent Publication No. 130189/1989). In this method, the polymerized silicic acid is used alone as a main flocculant for turbidity removal without being used in combination with any other inorganic flocculant. [0003] The present invention provides a method for effectively removing COD components contained in wastewater, particularly waste paper wastewater, by coagulation treatment, and efficiently reducing COD in the wastewater. It was made with the purpose of providing. [Means for Solving the Problems] As a result of intensive research to achieve the above object, the present inventors focused on the fact that the silanol groups of polymerized silicic acid have hydrogen bonding ability, and first applied the method to wastewater. After performing flocculation treatment by adding an inorganic flocculant, to this treated water, a mixture of a metal salt and polymerized silicic acid that can form a polynuclear complex salt hydroxide in the presence of water is added as a flocculation aid. The inventors have discovered that soluble COD components can be effectively removed and the objective can be achieved by this method, and based on this knowledge, the present invention has been completed. That is, the present invention involves adding an inorganic flocculant to wastewater for flocculation treatment, and then treating the treated water with a mixture of a metal salt and polymerized silicic acid that can form a hydroxide of a polynuclear complex salt in the presence of water. The present invention provides a method for treating wastewater characterized by adding COD components and further removing COD components. The present invention will be explained in detail below. The polymerized silicic acid used in the method of the present invention can be prepared by a conventionally known method, for example, by using commercially available water glass as a raw material and polymerizing it under acidic conditions. It is desirable that the Si content in the polymerized silicic acid is 4% by weight or less, preferably in the range of 0.5 to 2% by weight. If this amount exceeds 4% by weight, gelation will occur extremely easily, and if it is less than 0.5% by weight, the polymerization rate will be slow and a large storage tank will be required. pH during polymerization is 3-4
is preferable; if the pH exceeds 4, the polymerization rate will be extremely high and gelation will occur easily; if the pH is less than 3, the polymerization rate will be slow and impractical. Further, as the acid added to make it acidic, inorganic acids such as hydrochloric acid and sulfuric acid are advantageous. Organic acids are undesirable as they become a COD source. The polymerized silicic acid thus prepared is
By further adding an inorganic acid to adjust the pH to 2 or less, gelation can be delayed, for example at room temperature (20°C).
), it will not gel for more than 2 weeks. The metal salt mixed with this polymerized silicic acid can form a polynuclear complex salt hydroxide in the presence of water, and examples of such salts include aluminum salts and iron salts. , particularly aluminum salts. This metal salt may be mixed with the polymerized silicic acid as a powder, or may be dissolved in an inorganic acid and mixed with the polymerized silicic acid. Regarding the mixing ratio of the polymerized silicic acid and the metal salt, the two are mixed in such a ratio that the atomic ratio of silicon atoms in the polymerized silicic acid to metal atoms in the metal salt is 0.2 to 5. It is desirable to do so. [0011] In the method of the present invention, it is necessary to first add an inorganic flocculant to wastewater to perform flocculation treatment, and then add a mixture of polymerized silicic acid and the metal salt to this treated water. If a mixture of polymerized silicic acid and metal salt is added before adding the inorganic flocculant, the polymerized silicic acid acts on the turbidity component and is consumed, resulting in insufficient removal of the soluble COD component. As the inorganic flocculant, sulfuric acid chloride, which is commonly used in the flocculation treatment of waste paper wastewater, etc., is preferably used. [0012] The amount of the mixture of polymerized silicic acid and metal salt added depends on the amount of soluble COD components in the wastewater, but is usually the total amount of silicon atoms in the polymerized silicic acid and metal atoms in the metal salt. is selected so that it is in the range of 2 to 10 mg/liter. [0013] After the pH of the wastewater treated in this way is adjusted as necessary, a known polymer flocculant is added to increase the size of fine flocs. Separated by conventional methods. According to the method of the present invention, the soluble COD component is effectively removed by the polymerized silicic acid, but the removal mechanism is that the silanol groups of the polymerized silicic acid hydrogen bond with the COD component and co-precipitate. , or by involving COD components when polymerized silicic acid becomes insolubilized, soluble CO
It is presumed that component D is removed. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Production Example 1 Production of Polymerized Silicic Acid Solution 28 ml of commercially available water glass No. 3 (Si content 28-30 wt%) was mixed with 0.3 N hydrochloric acid aqueous solution 4
After adding to 50ml with stirring, adjust the pH with 1N hydrochloric acid.
4 and continued stirring at 20° C. for 4 hours to obtain polymerized silicic acid. Next, the pH was adjusted to 2 with a 1N aqueous hydrochloric acid solution, and then water was added to bring the total volume to 500 ml. The Si content in this solution is 1.05 wt%. Examples 1 to 3 Aluminum chloride (AlCl3.6H2O) was added to 100 ml of the polymerized silicic acid solution obtained in Production Example 1 so that the Si/Al atomic ratio was 0.22, 0.89, and 3.7. In addition,
After stirring and dissolving, the total volume was adjusted to 200 ml. These are designated as drugs A, B, and C. Using wastewater from Y Paper Manufacturing (toilet paper manufacturing), the COD component removal performance of the drug was evaluated by the following jar test. That is, 500 ml of the waste water was taken into a beaker, and 500 mg/liter of sulfuric acid band (2
After adding 1.0 mg/liter) and stirring at 150 rpm for 2 minutes, drug A (Example 1), B (Example 2) or C (Example 3) was added, and the mixture was further stirred at 150 rpm for 2 minutes. The pH at this time was 7.1. Next, 1 mg/liter of anionic polymer flocculant was added and stirred at 150 rpm for 1 minute, then at 50 rpm for 2 minutes to form flocs, and then left for 15 minutes to settle the flocs, and the supernatant liquid was Turbidity (wavelength 660nm, 50mm cell) and COD
Mn was measured. The results are shown in Table 1. Comparative Example 1 100 ml of polymerized silicic acid obtained in Production Example 1 was diluted with pure water for 20 ml.
It was diluted to 0 ml and designated as drug D. In Example 1, drug D was substituted for drug A.
The process was carried out in the same manner as in Example 1, except that the amounts shown in Table 1 were used. The results are shown in Table 1. Comparative Example 2 In Example 1, sulfuric acid was used instead of drug A.
The process was carried out in the same manner as in Example 1, except that the amounts shown in the table were used. The results are shown in Table 1. Comparative Example 3 500 ml of the wastewater used in Example 1 was taken into a beaker, and the amount of chemical D used in Comparative Example 1 shown in Table 1 was added, and the mixture was heated for 150 ml.
After stirring for 2 minutes at
21.0 mg/liter as Al) and further 1
Stirred for 2 minutes at 50 rpm. From this point onwards, the same treatment as in Example 1 was carried out. The results are shown in Table 1. [0023] [Table 1] [0024] As is clear from Comparative Example 2 in Table 1, it is difficult to lower the COD by treatment with only sulfate band even if the amount added is increased. It can be seen that by using Al-containing polymerized silicic acid as a coagulation aid, the COD of the treated water is lower than when treated with sulfuric acid alone, and the amount of metals added can also be reduced. Furthermore, from Table 1,
When Al is not mixed with polymerized silicic acid (Comparative Example 1),
The effect was worse than treatment with sulfate band only, and when polymerized silicic acid was added before sulfate band (Comparative Example 3), CO
It can be seen that D cannot be lowered. Example 4 Wastewater from S paper manufacturing (corrugated board manufacturing) was treated using the chemical B used in Example 2. The processing conditions are sulfuric acid band addition amount 2
The treatment was carried out in the same manner as in Example 1, except that the pH was adjusted to 00 mg/liter (8.4 mg/liter as Al), the pH was 6.5, and the amount of drug B added was as shown in Table 2. The results are shown in Table 2. Comparative Example 4 The same procedure as in Example 4 was carried out except that the order of addition of drug B and sulfuric acid was reversed. The results are shown in Table 2. Comparative Example 5 The same procedure as in Example 4 was carried out except that sulfate was added in the amount shown in Table 2 instead of the Al-containing polymerized silicic acid. The results are shown in Table 2. [0028] [Table 2] [0029] As is clear from Table 2, it can be seen that the COD of treated water can be reduced more by using Al-containing polymerized silicic acid as a flocculation aid than by treatment with sulfuric acid alone. . It can also be seen that adding sulfate first and then adding Al-containing polymerized silicic acid has a better COD removal effect than the reverse case. Comparative Example 6 S papermaking wastewater was treated in the same manner as in Example 4 using only chemical B. The COD of the treated water at an addition amount of 11.0 mg/liter (as Si+Al) was 61.0 mg/liter, which was higher than the COD of the treated water of 8.4 mg/liter (as Al) of sulfuric acid band, which was 58.4 mg/liter. Effects of the Invention: According to the wastewater treatment method of the present invention, it is possible to remove soluble COD components, which was difficult with conventional coagulation treatment methods, and the COD of treated water can be reduced more than in conventional methods. can.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃水に無機凝集剤を添加して凝集処理した
のち、その処理水に、水の存在で多核錯塩の水酸化物を
形成しうる金属塩と重合ケイ酸との混合物を添加して、
さらにCOD成分を除去することを特徴とする廃水の処
理方法。
Claim 1: After an inorganic flocculant is added to wastewater for flocculation treatment, a mixture of a metal salt and polymerized silicic acid that can form a polynuclear complex salt hydroxide in the presence of water is added to the treated water. hand,
A method for treating wastewater, further comprising removing COD components.
JP41479490A 1990-12-27 1990-12-27 Treatment of waste water Pending JPH04250883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41479490A JPH04250883A (en) 1990-12-27 1990-12-27 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41479490A JPH04250883A (en) 1990-12-27 1990-12-27 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPH04250883A true JPH04250883A (en) 1992-09-07

Family

ID=18523233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41479490A Pending JPH04250883A (en) 1990-12-27 1990-12-27 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPH04250883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279638A (en) * 2004-03-02 2005-10-13 Tokuyama Corp Method for treating papermaking waste water and method for utilizing silica sol in papermaking
CN103172152A (en) * 2013-04-07 2013-06-26 庞红信 Preparation method of modified polymerized ferric sulfate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279638A (en) * 2004-03-02 2005-10-13 Tokuyama Corp Method for treating papermaking waste water and method for utilizing silica sol in papermaking
CN103172152A (en) * 2013-04-07 2013-06-26 庞红信 Preparation method of modified polymerized ferric sulfate
CN103172152B (en) * 2013-04-07 2014-08-13 庞红信 Preparation method of modified polymerized ferric sulfate

Similar Documents

Publication Publication Date Title
US3066095A (en) Water purification agents and method of using same
US2217466A (en) Composition of matter for water treatment
JPH1133560A (en) Flocculation treatment of cmp waste solution
JPH0390000A (en) Sludge treatment
JPH04250883A (en) Treatment of waste water
JP4689186B2 (en) Fluorine-containing water treatment method
US4035259A (en) Method for preparation of inorganic flocculating composition
JPS5949078B2 (en) Sludge treatment method
JP6028826B2 (en) Flocculant for waste water treatment and waste water agglomeration method
JPH05339383A (en) Process of precipitation of aqueous plastic dispersion containing polyvinyl alcohol
JPH0278499A (en) Treatment of sludge
JP3731834B2 (en) Coagulation treatment method, coagulant
JPS5982911A (en) Composition for flocculating agent
JP2548936B2 (en) Water-soluble coolant waste treatment method
JPS62277200A (en) Treatment for flocculating sludge
JPH01284314A (en) Flocculant for water treatment
JP2938270B2 (en) Waste paper pulp wastewater treatment method
JP3225266B2 (en) Algae-containing water treatment method
JPH1190111A (en) Flocculant and its production
JP2000154013A (en) Production of activated silica
JPH08206699A (en) Dehydrating method for anaerobic digestion sludge
JPS6071083A (en) Removal of heavy metal in waste water
JP2009279512A (en) Coagulation method
EP1774088A1 (en) Method for removing lignin from water
JPH1076275A (en) Wastewater treatment agent