JPH04250801A - Method and apparatus for distillation - Google Patents

Method and apparatus for distillation

Info

Publication number
JPH04250801A
JPH04250801A JP14491A JP14491A JPH04250801A JP H04250801 A JPH04250801 A JP H04250801A JP 14491 A JP14491 A JP 14491A JP 14491 A JP14491 A JP 14491A JP H04250801 A JPH04250801 A JP H04250801A
Authority
JP
Japan
Prior art keywords
section
liquid
recovery
vapor
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14491A
Other languages
Japanese (ja)
Inventor
Yasushi Tomisaka
富阪 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14491A priority Critical patent/JPH04250801A/en
Publication of JPH04250801A publication Critical patent/JPH04250801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To efficiently cool the condenser and to heat the reboiler by separating the feed steam into a gas and liquid, passing the separated liquid through the condenser under a reduced pressure state and passing the steam being at the lower place of the condensation part through the reboiler. CONSTITUTION:The liquid separated with a gas-liquid separator 12 is fed in the condenser cooling path 17 and is introduced into the condenser 20 under a reduced pressure state. Here the liquid evaporates by heat exchange with the distilled fraction. As the liquid evaporates and moves to the upper place of a recovering tower 28, the distilled fraction condenses. The remaining liquid in the bottom place of the recovery tower 28 moves to the reboiler 35 through a path 34 and the steam in the lower place of a condensation tower 16 enters the reboiler 35 through a reboiler heating path 38. By exchanging the heat of the steam with the prescribed liquid in the reboiler 35, the liquid evaporates and returns in the recovery tower 28 through the path 36. Simultaneously the steam is condensed with the reboiler 34 and it is introduced at the top part of the recovery tower 28 together with a condensation tower bottom liquid FWE. The steam FR at the top place of the recovery tower 28 is compressed with a heat pump 29 and is fed to the lower place of the condensation tower 18 together with the feed steam.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蒸留分離を行うための
方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for carrying out distillative separation.

【0002】0002

【従来の技術】従来、一般に知られている蒸留システム
は、濃縮部及び回収部を有する蒸留塔を備え、この蒸留
塔の上部にある蒸気をコンデンサで再凝縮させるととも
に、下部にある液をリボイラで再蒸発させながら、導入
された蒸気の蒸留が進められるようになっている。
2. Description of the Related Art Conventionally known distillation systems are equipped with a distillation column having a concentration section and a recovery section, and the vapor at the top of this distillation column is recondensed in a condenser, and the liquid at the bottom is sent to a reboiler. The introduced steam is distilled while being re-evaporated.

【0003】さらに近年は、上記コンデンサおよびリボ
イラの熱負荷を軽減するために、図5に示されるような
濃縮塔90及び回収塔93の2つの濃縮塔を備えた蒸留
装置が提案されるに至っている。
Furthermore, in recent years, in order to reduce the heat load on the condenser and reboiler, a distillation apparatus equipped with two concentrating columns, a concentrating column 90 and a recovery column 93, as shown in FIG. 5, has been proposed. There is.

【0004】図において、フィード蒸気は濃縮塔90の
下部に導入され、この濃縮塔90内を上昇する間にその
一部が回収塔93と熱交換して冷却液化され、残部は塔
頂のコンデンサ91で液化される。その一部は留出物と
して取り出され、残りは還流液として濃縮塔90に戻る
。この濃縮塔90の底液は、減圧された後に回収塔93
の頂部に供給される。この液は、回収塔93を下降する
うちに濃縮塔90と熱交換して一部が蒸発し、また一部
は塔底のリボイラ94で蒸発し、残りは缶出物として抜
き出される。また、塔頂部の蒸気は圧縮器95で圧縮さ
れた後、還流液として濃縮塔90の下部に供給される。
In the figure, feed vapor is introduced into the lower part of a concentrating column 90, and while rising in the concentrating column 90, a part of it exchanges heat with a recovery column 93 and is cooled and liquefied, and the remainder is sent to a condenser at the top of the column. It is liquefied at 91. A part of it is taken out as a distillate, and the rest returns to the concentration column 90 as a reflux liquid. The bottom liquid of this concentration column 90 is depressurized and then transferred to a recovery column 93.
is supplied to the top of the While descending through the recovery tower 93, a portion of this liquid evaporates through heat exchange with the concentration tower 90, a portion of which evaporates in the reboiler 94 at the bottom of the tower, and the remainder is extracted as bottoms. Further, the vapor at the top of the column is compressed by a compressor 95 and then supplied to the lower part of the concentrating column 90 as a reflux liquid.

【0005】[0005]

【発明が解決しようとする課題】上記図5に示される装
置では、濃縮塔90と回収塔93との内部熱交換の分だ
けコンデンサ91及びリボイラ94の熱負荷が低減され
るものの、これらの熱源は依然として蒸留系外部から与
えられているので、その熱負荷が無視できないほどの量
であることに変りはなく、より一層の削減が課題となっ
ている。
In the apparatus shown in FIG. 5, the heat load on the condenser 91 and reboiler 94 is reduced by the internal heat exchange between the concentration column 90 and the recovery column 93; is still applied from outside the distillation system, so the heat load remains a non-negligible amount, and further reduction is an issue.

【0006】さらに、上記圧縮器95で蒸気を圧縮する
際にも高品位のエネルギを必要としており、この圧縮蒸
気量を削減することができれば、経済性はより高まるこ
ととなる。
[0006]Furthermore, high-grade energy is also required when compressing the steam in the compressor 95, and if the amount of compressed steam can be reduced, the economical efficiency will be further improved.

【0007】本発明は、このような事情に鑑み、コンデ
ンサ及びリボイラの熱負荷を蒸留系内の熱で賄うことが
でき、さらに好ましくは、回収部から濃縮部へ送られる
蒸気の圧縮負荷を大幅に削減することができる蒸留方法
及び装置を提供することを目的とする。
In view of these circumstances, the present invention enables the heat load of the condenser and reboiler to be covered by the heat within the distillation system, and more preferably significantly reduces the compression load of the vapor sent from the recovery section to the concentration section. It is an object of the present invention to provide a distillation method and apparatus that can reduce the number of distillations.

【0008】[0008]

【課題を解決するための手段】本発明は、フィード蒸気
を濃縮部の下部に導入し、この蒸気を濃縮部内で上昇さ
せ、かつこの濃縮部の上部にある蒸気をコンデンサで凝
縮させて濃縮部内を下降させるとともに、この濃縮部の
下部にある液を減圧状態で回収部の上部に導入してこの
回収部内で下降させ、この回収部の下部から缶出液を抽
出し、かつこの回収部の下部にある液をリボイラで蒸発
させ、さらに、この回収部の上部にある蒸気を加圧して
上記濃縮部の下部に導入するようにした蒸留方法におい
て、上記フィード蒸気を気液分離し、分離した蒸気を上
記濃縮部の下部に導入するとともに、分離した液を減圧
状態で上記コンデンサに導入し、ここで蒸発させた後に
上記回収部の上部に導入する一方、上記濃縮部の下部に
ある蒸気を上記リボイラに導入し、ここで液化させた後
に上記回収部の上部に導入するものである(請求項1)
[Means for Solving the Problems] The present invention introduces feed steam into the lower part of the concentrating section, causes this steam to rise in the concentrating section, and condenses the steam at the upper part of the concentrating section in the concentrating section. At the same time, the liquid at the bottom of this concentration section is introduced under reduced pressure into the top of the recovery section and lowered in this recovery section, and the bottoms are extracted from the bottom of this recovery section. In a distillation method in which the liquid at the bottom is evaporated in a reboiler, and the vapor at the top of the recovery section is pressurized and introduced into the bottom of the concentration section, the feed vapor is separated into gas and liquid. Steam is introduced into the lower part of the concentrating section, and the separated liquid is introduced under reduced pressure into the condenser, where it is evaporated and then introduced into the upper part of the collecting section, while the vapor in the lower part of the concentrating section is introduced into the upper part of the collecting section. It is introduced into the reboiler, where it is liquefied, and then introduced into the upper part of the recovery section (Claim 1).
.

【0009】ここで、上記濃縮部と回収部とは互いに熱
交換を行わせることがより好ましい(請求項2)。また
、上記濃縮部から液を抽出して上記回収部の頂部に導入
するとともに、この回収部の頂部から蒸気を排出させる
ことによって、後述のようなより優れた効果を得ること
ができる(請求項3)。
[0009] Here, it is more preferable that the concentration section and the recovery section exchange heat with each other (Claim 2). Further, by extracting the liquid from the concentration section and introducing it into the top of the recovery section, and discharging steam from the top of the recovery section, better effects as described below can be obtained (claims 3).

【0010】また、上記方法を実現するための装置とし
ては、濃縮部及び回収部(互いに熱交換を行うものであ
ればより好ましい)と、上記濃縮部の下部にフィード蒸
気を導入するための導入部と、上記濃縮部の上部にある
蒸気を凝縮させるコンデンサと、この濃縮部の底部にあ
る液を減圧状態で上記回収部の上部に導入するための第
1の還流通路と、上記回収部の底部から缶出液を回収す
るための回収部と、上記回収部の底部にある液を蒸発さ
せるリボイラと、上記回収部の上部にある蒸気を上記濃
縮部の下部に加圧状態で導入するための第2の還流通路
とを備えた蒸留装置において、上記フィード蒸気を気液
分離する分離手段と、分離された蒸気を上記濃縮部の下
部に導入するための導入通路と、分離された液を減圧状
態で上記コンデンサに導入し、ここで蒸発させて上記回
収部の上部に導入するためのコンデンサ冷却通路と、上
記濃縮部の下部にある蒸気を上記リボイラに導入し、こ
こで液化させて上記回収部の上部に導入するためのリボ
イラ加熱通路とを備えたもの(請求項4)、さらには、
上記濃縮部内の液を抽出して上記回収部の頂部に導入す
るための液移送通路と、上記回収部の頂部から蒸気を排
出するための排出通路とを備えたもの(請求項6)が好
適である。
[0010] Furthermore, the apparatus for realizing the above method includes a concentration section and a recovery section (preferably those that exchange heat with each other), and an introduction section for introducing feed steam into the lower part of the concentration section. a condenser for condensing vapor in the upper part of the concentrating part; a first reflux passage for introducing the liquid at the bottom of the concentrating part into the upper part of the collecting part under reduced pressure; a recovery section for recovering the bottom liquid from the bottom; a reboiler for evaporating the liquid at the bottom of the recovery section; and a reboiler for introducing the steam at the top of the recovery section into the bottom of the concentration section under pressure. a second reflux passage; a separation means for separating the feed vapor into gas and liquid; an introduction passage for introducing the separated vapor into the lower part of the concentration section; A condenser cooling passage for introducing steam into the condenser under reduced pressure, evaporating it here, and introducing it into the upper part of the recovery section; and introducing steam at the lower part of the concentrating section to the reboiler, where it is liquefied and then introduced into the upper part of the recovery section. A reboiler heating passage for introducing into the upper part of the recovery part (claim 4), and further,
Preferably, the device includes a liquid transfer passage for extracting the liquid in the concentration section and introducing it into the top of the recovery section, and a discharge passage for discharging steam from the top of the recovery section (Claim 6). It is.

【0011】[0011]

【作用】上記構成によれば、フィード蒸気から分離され
た液がコンデンサに導入され、ここで蒸発することによ
り、その蒸発潜熱でコンデンサの冷却が行われる。一方
、この濃縮部の下部にある蒸気が上記リボイラに導入さ
れ、ここで液化されることにより、その凝縮潜熱でリボ
イラが加熱される。すなわち、コンデンサ及びリボイラ
の熱源は装置内の熱で賄われることになる。
According to the above structure, the liquid separated from the feed vapor is introduced into the condenser and evaporated there, thereby cooling the condenser with its latent heat of vaporization. On the other hand, the steam in the lower part of the concentration section is introduced into the reboiler, where it is liquefied, thereby heating the reboiler with its latent heat of condensation. In other words, the heat sources for the condenser and reboiler are supplied with heat within the device.

【0012】さらに、上記濃縮部と回収部との間で熱交
換を行わせることにより、この熱交換の分だけ熱負荷は
さらに低減されることとなる。
Furthermore, by performing heat exchange between the concentration section and the recovery section, the heat load is further reduced by the amount of heat exchange.

【0013】また、上記濃縮部から液を抽出して上記回
収部の頂部に導入するとともに、上記回収部の頂部から
蒸気を排出するようにすれば、コンデンサの下流側から
蒸気を排出させる場合に比べ、回収部頂部から濃縮部下
部に蒸気を圧送する量が削減される。
[0013] Furthermore, if the liquid is extracted from the concentration section and introduced into the top of the recovery section, and the steam is discharged from the top of the recovery section, when the steam is discharged from the downstream side of the condenser, In comparison, the amount of steam to be pumped from the top of the recovery section to the bottom of the concentration section is reduced.

【0014】[0014]

【実施例】図1は、本発明方法を実施するための装置の
一例を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus for carrying out the method of the present invention.

【0015】この装置は、缶出液蒸発器10、気液分離
器(分離手段)12、濃縮塔16、および回収塔28を
備えており、濃縮塔16の上部にはコンデンサ20が設
けられるとともに、回収塔28の下部にはリボイラ35
が設けられ、上記両塔16,28は熱交換部30を介し
て互いに熱交換(内部熱交換)を行うように構成されて
いる。
This apparatus is equipped with a bottoms evaporator 10, a gas-liquid separator (separation means) 12, a concentration column 16, and a recovery column 28, and a condenser 20 is provided above the concentration column 16. , a reboiler 35 is installed at the bottom of the recovery tower 28.
The towers 16 and 28 are configured to exchange heat with each other (internal heat exchange) via a heat exchange section 30.

【0016】この装置において、フィード蒸気は缶出液
蒸発器10に送られ、その一部は後述の缶出液の蒸発に
伴い液化される。残部は気液分離器12で気液分離され
、蒸気は導入通路14を通じて濃縮塔16の底部に供給
される。この蒸気は、回収塔28と熱交換しながら濃縮
塔16内を上昇し、留出留分としてコンデンサ20に送
り込まれる。
In this apparatus, the feed vapor is sent to the bottoms liquid evaporator 10, and a part of it is liquefied as the bottoms evaporates as described below. The remainder is separated into gas and liquid by the gas-liquid separator 12, and the vapor is supplied to the bottom of the concentrating column 16 through the introduction passage 14. This vapor rises within the concentration column 16 while exchanging heat with the recovery column 28, and is sent to the condenser 20 as a distillate fraction.

【0017】一方、上記気液分離器12で分離された液
はコンデンサ冷却通路17に入り、減圧状態でコンデン
サ20に導入され、ここで上記留出留分と熱交換するこ
とにより、この液が蒸発して回収塔28の上部に導入さ
れるとともに、上記留出留分が凝縮される。この凝縮分
は還流液として濃縮塔16の頂部に戻され、残部の蒸気
は留出物として排出通路24を介して装置外部に取り出
される。
On the other hand, the liquid separated by the gas-liquid separator 12 enters the condenser cooling passage 17 and is introduced into the condenser 20 under reduced pressure, where it exchanges heat with the distillate fraction to cool the liquid. It is evaporated and introduced into the upper part of the recovery tower 28, and the distilled fraction is condensed. This condensed fraction is returned to the top of the concentration column 16 as a reflux liquid, and the remaining vapor is taken out of the apparatus as a distillate via the discharge passage 24.

【0018】上記濃縮塔16の底部にある液FWEは、
第1の還流通路27を通じて回収塔28の上部に導入さ
れ、さらに、上記コンデンサ冷却通路17を通って蒸発
した蒸気、及びコンデンサ20をバイパスするバイパス
通路26を通る液も回収塔28の上部に導入される。
The liquid FWE at the bottom of the concentration column 16 is
The vapor that has evaporated through the first reflux passage 27 and the liquid that has passed through the bypass passage 26 that bypasses the condenser 20 is also introduced into the upper part of the recovery column 28. be done.

【0019】この回収塔28の上部に導入された蒸気は
、塔内を下降するうちに濃縮塔16と熱交換し、液の一
部は蒸発し、塔底からは缶出液Fwが回収通路32を通
じて缶出液蒸発器10内に導入され、ここで蒸発して缶
出留分として回収される。
The steam introduced into the upper part of the recovery column 28 exchanges heat with the concentration column 16 as it descends inside the column, a part of the liquid evaporates, and the bottoms Fw flows from the bottom of the column into the recovery passage. 32 into the bottoms evaporator 10, where it is evaporated and recovered as a bottoms fraction.

【0020】回収塔28の底部の残りの液は、通路34
を通じてリボイラ35に導入される。一方、このリボイ
ラ35には、上記濃縮塔16の下部の蒸気がリボイラ加
熱通路38を通じて導入されるようになっており、この
蒸気と上記液とがリボイラ35で熱交換することにより
、上記液が蒸発し、通路36を通じて回収塔28内に戻
されるとともに、上記蒸気はリボイラ34で凝縮され、
上記濃縮塔底液FWEとともに回収塔28の頂部に導入
される。
The remaining liquid at the bottom of the recovery column 28 is transferred to the passage 34.
It is introduced into the reboiler 35 through. On the other hand, the steam from the lower part of the concentration column 16 is introduced into the reboiler 35 through the reboiler heating passage 38, and as this steam and the liquid exchange heat in the reboiler 35, the liquid The vapor is evaporated and returned to the recovery tower 28 through the passage 36, and the vapor is condensed in the reboiler 34.
The concentrated column bottom liquid FWE is introduced into the top of the recovery column 28.

【0021】この回収塔28の頂部にある蒸気FR は
、ヒートポンプ29で圧縮された後、第2の還流通路3
1を通じてフィード蒸気とともに濃縮塔18の下部に供
給される。
The steam FR at the top of the recovery tower 28 is compressed by the heat pump 29 and then passed through the second reflux passage 3.
1 and is supplied to the lower part of the concentrating column 18 together with the feed vapor.

【0022】以上のように、この方法及び装置では、気
液分離器12で分離した液をコンデンサ20に送りこみ
、その蒸発潜熱でコンデンサ20を冷却するとともに、
濃縮塔16の下部の蒸気をリボイラ35に送りこみ、そ
の凝縮潜熱でリボイラ35を加熱するようにしているの
で、特別な熱源を系外に求めることなく、系内の熱によ
ってコンデンサ20及びリボイラ35の熱負荷を賄うこ
とができる。また、コンデンサ20の温度調節は、この
コンデンサ20をバイパスする液の流量、すなわち上記
バイパス通路26の流量を調節することによって容易に
実行することができる。
As described above, in this method and apparatus, the liquid separated by the gas-liquid separator 12 is sent to the condenser 20, and the condenser 20 is cooled by the latent heat of vaporization.
The steam from the lower part of the concentrating column 16 is sent to the reboiler 35, and the reboiler 35 is heated by the latent heat of condensation, so the condenser 20 and the reboiler 35 are heated by the heat within the system without requiring a special heat source outside the system. can cover the heat load of Further, the temperature of the condenser 20 can be easily adjusted by adjusting the flow rate of the liquid that bypasses the condenser 20, that is, the flow rate of the bypass passage 26.

【0023】次に、第2実施例を図2に基づいて説明す
る。
Next, a second embodiment will be explained based on FIG. 2.

【0024】上記第1実施例では、コンデンサ20の出
口から蒸気を留出物として排出させるようにしているが
、この実施例では、上記回収塔28の上部において蒸気
の抽出位置よりも上方の部分に蒸発部42を設けるとと
もに、上記濃縮塔16の上部の液を液移送通路44を通
じて上記蒸発部42の頂部に導入し、この蒸発部42の
頂部から排出通路24を通じて残部の蒸気FDを排出さ
せるようにしている。また、第2の還流通路31にはヒ
ートポンプ29及びアフタクーラ46を直列に配すると
ともに、これらの上流側通路と下流側通路とを熱交換器
48を介して相互熱交換させるようにしている。
In the first embodiment, vapor is discharged as a distillate from the outlet of the condenser 20, but in this embodiment, the portion above the vapor extraction position in the upper part of the recovery tower 28 is An evaporation section 42 is provided in the evaporation section 42, and the liquid at the upper part of the concentration column 16 is introduced into the top of the evaporation section 42 through the liquid transfer passage 44, and the remaining vapor FD is discharged from the top of the evaporation section 42 through the discharge passage 24. That's what I do. Further, a heat pump 29 and an aftercooler 46 are arranged in series in the second reflux passage 31, and the upstream passage and the downstream passage are configured to mutually exchange heat through a heat exchanger 48.

【0025】このような方法及び装置によれば、図1に
示されるようにコンデンサ20の出口から蒸気を排出さ
せる場合に比べ、第2の還流通路31を通じて蒸気を還
流させる量、すなわちヒートポンプ29による蒸気の必
要圧縮量が削減され、これによって装置全体の圧縮所要
エネルギを削減することができる。
According to such a method and apparatus, compared to the case where steam is discharged from the outlet of the condenser 20 as shown in FIG. The amount of steam required to be compressed is reduced, thereby reducing the compression energy requirements of the entire system.

【0026】図3は、前記図1及び図2に示される装置
におけるフィードの軽質留分濃度とヒートポンプ流量と
の関係を窒素−酸素の2成分系について求めたものを示
したグラフである。図中、破線60は、図1に示される
装置について理論式により求められた関係を示し、実線
62は、図2に示される装置について理論式により求め
られた関係を示しており、実線64は、図2に示される
装置についてコンピュータシュミレーションにより求め
られた関係を示している。この図からわかるように、い
ずれの装置においても、軽質留分濃度の増加に伴ってヒ
ートポンプ流量は減少するが、図2の装置は図1の装置
に比してヒートポンプ流量の減少はより顕著であり、よ
り少ないエネルギで蒸留を行えることが伺える。
FIG. 3 is a graph showing the relationship between the light fraction concentration of the feed and the heat pump flow rate in the apparatus shown in FIGS. 1 and 2 for a two-component system of nitrogen and oxygen. In the figure, a broken line 60 indicates a relationship determined by a theoretical formula for the device shown in FIG. 1, a solid line 62 indicates a relationship determined by a theoretical formula for the device shown in FIG. , shows the relationship determined by computer simulation for the device shown in FIG. As can be seen from this figure, in both devices, the heat pump flow rate decreases as the light distillate concentration increases, but the decrease in the heat pump flow rate in the device in Figure 2 is more pronounced than in the device in Figure 1. This suggests that distillation can be performed with less energy.

【0027】また図4は、図1の装置及び図2の装置に
おいて互いに等しい圧力下で操作したときの、図1の装
置における消費エネルギE1に対する図2の装置におけ
る消費エネルギE2の比E2/E1、及び図1の装置に
おける圧縮所要エネルギL1に対する図2の装置におけ
る圧縮所要エネルギL2の比L2/L1をそれぞれ破線
66及び実線68で示したものである。この図から明ら
かなように、軽質留分濃度が20%〜80%の範囲では
、両装置の消費エネルギ比E2/E1がほとんど1、す
なわち両所要エネルギE2,E1がほとんど等しいのに
対し、圧縮所要エネルギ比L2/L1は軽質留分濃度の
増加に伴って著しく減少している。これは、軽質留分濃
度が高くなるほど、図2の装置がエネルギを蒸気圧縮に
費やす割合が小さくなり、その分、エネルギが分離に効
率よく用いられていることを示している。
FIG. 4 also shows the ratio E2/E1 of the energy consumption E2 in the device of FIG. 2 to the energy consumption E1 of the device of FIG. 1 when the device of FIG. 1 and the device of FIG. 2 are operated under equal pressure. , and the ratio L2/L1 of the required compression energy L2 in the device of FIG. 2 to the required compression energy L1 in the device of FIG. 1 are shown by a broken line 66 and a solid line 68, respectively. As is clear from this figure, when the light fraction concentration is in the range of 20% to 80%, the energy consumption ratio E2/E1 of both devices is almost 1, that is, the required energies E2 and E1 are almost equal, whereas the compression The required energy ratio L2/L1 decreases significantly with increasing light fraction concentration. This shows that the higher the light fraction concentration, the smaller the proportion of energy that the apparatus of FIG. 2 spends on vapor compression, and the more efficiently the energy is used for separation.

【0028】このような結果が得られることは、両装置
において排出される蒸気FDのエネルギを比べることに
よっても予測し得るものである。すなわち、図1の装置
ではコンデンサ20から出た比較的高圧の蒸気が排出さ
れているのに対し、図2の装置では、回収塔28頂部の
低圧の蒸気が排出されるようになっており、両蒸気の圧
力差、すなわちエネルギ差の分がそのまま、図2の装置
において蒸留のためのエネルギとして有効に消費されて
いることが理解できる。
The fact that such a result is obtained can also be predicted by comparing the energy of the steam FD discharged in both devices. That is, in the device shown in FIG. 1, relatively high pressure steam coming out of the condenser 20 is discharged, whereas in the device shown in FIG. 2, low pressure steam from the top of the recovery tower 28 is discharged. It can be seen that the pressure difference between the two vapors, that is, the energy difference, is effectively consumed as is as energy for distillation in the apparatus shown in FIG.

【0029】なお、上記各実施例では、濃縮塔16及び
回収塔28との間で熱交換を行わせるものを示したが、
本発明方法及び装置では、このような熱交換を行わなく
ても従来の方法及び装置に比べて熱負荷を大幅に削減す
ることが可能である。ただし、上記熱交換を行えば熱負
荷がより低減されることはいうまでもない。
In each of the above embodiments, heat exchange is performed between the concentration column 16 and the recovery column 28, but
In the method and apparatus of the present invention, it is possible to significantly reduce the heat load compared to conventional methods and apparatuses even without such heat exchange. However, it goes without saying that if the heat exchange described above is performed, the heat load will be further reduced.

【0030】なお、本発明において蒸留の対象となる物
質は、その種類を特に限定されず、従来の蒸留装置にお
いて蒸留が行われている種々のものについて適用するこ
とができる。
The substance to be distilled in the present invention is not particularly limited in type, and the present invention can be applied to various substances that are distilled in conventional distillation apparatuses.

【0031】[0031]

【発明の効果】以上のように本発明は、濃縮部及び回収
部を備え、かつ濃縮部の上部及び回収部の下部にコンデ
ンサ及びリボイラをそれぞれ配したものにおいて、上記
フィード蒸気を気液分離し、分離した蒸気を上記濃縮部
の下部に導入するとともに、分離した液を減圧状態で上
記コンデンサに通した後に上記回収部の上部に導入し、
かつ上記濃縮部の下部にある蒸気を上記リボイラに通し
た後に上記回収部の上部に導入するようにしたものであ
るので、特に外部から熱源を取り込むことなく、系内の
熱を利用して上記コンデンサの冷却及びリボイラの加熱
を極めて効率よく行うことができる効果がある。
[Effects of the Invention] As described above, the present invention has a condensing section and a recovery section, and a condenser and a reboiler are disposed above the concentrating section and below the recovery section, respectively, in which the feed vapor is separated into gas and liquid. , introducing the separated vapor into the lower part of the concentration section, and introducing the separated liquid into the upper part of the recovery section after passing it through the condenser under reduced pressure,
In addition, since the steam in the lower part of the concentrating section is passed through the reboiler and then introduced into the upper part of the recovery section, the heat within the system is used to reduce the This has the effect of extremely efficiently cooling the condenser and heating the reboiler.

【0032】さらに、上記濃縮部から液を抽出して上記
回収部の頂部に導入するとともに、上記回収部の頂部か
ら蒸気を排出することにより、蒸気をより低エネルギの
状態で排出することができ、少ないエネルギで効率よく
蒸留を進めることができる効果がある。
Furthermore, by extracting the liquid from the concentration section and introducing it into the top of the recovery section, and discharging the steam from the top of the recovery section, the steam can be discharged in a lower energy state. This has the effect of allowing efficient distillation to proceed with less energy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例における蒸留装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of a distillation apparatus in a first embodiment of the present invention.

【図2】本発明の第2実施例における蒸留装置の全体構
成図である。
FIG. 2 is an overall configuration diagram of a distillation apparatus in a second embodiment of the present invention.

【図3】前記各装置におけるフィードの軽質留分濃度と
ヒートポンプ流量との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the light distillate concentration of the feed and the heat pump flow rate in each of the above devices.

【図4】前記各装置におけるフィードの軽質留分濃度と
、両装置の所要エネルギ比及び消費エネルギ比との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the light distillate concentration of the feed in each of the devices and the required energy ratio and consumed energy ratio of both devices.

【図5】従来の蒸留装置の一例を示す全体構成図である
FIG. 5 is an overall configuration diagram showing an example of a conventional distillation apparatus.

【符号の説明】[Explanation of symbols]

12  気液分離器(分離手段) 14  導入通路 16  濃縮塔 17  コンデンサ冷却通路 20  コンデンサ 24  排出通路 27  第1の還流通路 28  回収塔 31  第2の還流通路 32  回収通路 35  リボイラ 38  リボイラ加熱通路 42  蒸発部 44  液移送通路 12 Gas-liquid separator (separation means) 14 Introduction passage 16 Concentration column 17 Condenser cooling passage 20 Capacitor 24 Discharge passage 27 First reflux passage 28 Collection tower 31 Second reflux passage 32 Collection passage 35 Reboiler 38 Reboiler heating passage 42 Evaporation section 44 Liquid transfer passage

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  フィード蒸気を濃縮部の下部に導入し
、この蒸気を濃縮部内で上昇させ、かつこの濃縮部の上
部にある蒸気をコンデンサで凝縮させて濃縮部内を下降
させるとともに、この濃縮部の下部にある液を減圧状態
で回収部の上部に導入してこの回収部内で下降させ、こ
の回収部の下部から缶出液を抽出し、かつこの回収部の
下部にある液をリボイラで蒸発させ、さらに、この回収
部の上部にある蒸気を加圧して上記濃縮部の下部に導入
するようにした蒸留方法において、上記フィード蒸気を
気液分離し、分離した蒸気を上記濃縮部の下部に導入す
るとともに、分離した液を減圧状態で上記コンデンサに
導入し、ここで蒸発させた後に上記回収部の上部に導入
する一方、上記濃縮部の下部にある蒸気を上記リボイラ
に導入し、ここで液化させた後に上記回収部の上部に導
入することを特徴とする蒸留方法。
Claim 1: Feed vapor is introduced into the lower part of the concentrating section, the vapor is raised in the concentrating section, and the vapor at the upper part of the concentrating section is condensed in a condenser and lowered in the concentrating section, and the vapor is raised in the concentrating section. The liquid at the bottom of the recovery section is introduced under reduced pressure into the top of the recovery section and lowered in this recovery section, the bottom liquid is extracted from the bottom of this recovery section, and the liquid at the bottom of this recovery section is evaporated in a reboiler. In addition, in a distillation method in which the vapor in the upper part of the recovery part is pressurized and introduced into the lower part of the concentrating part, the feed vapor is separated into gas and liquid, and the separated vapor is introduced into the lower part of the concentrating part. At the same time, the separated liquid is introduced under reduced pressure into the condenser, where it is evaporated and then introduced into the upper part of the recovery section, while the vapor in the lower part of the concentration section is introduced into the reboiler, where it is evaporated. A distillation method characterized in that the liquefaction is introduced into the upper part of the recovery section.
【請求項2】  請求項1記載の蒸留方法において、上
記濃縮部と回収部との間で熱交換を行わせることを特徴
とする蒸留方法。
2. The distillation method according to claim 1, wherein heat exchange is performed between the concentration section and the recovery section.
【請求項3】  請求項1または2記載の蒸留方法にお
いて、上記濃縮部から液を抽出して上記回収部の頂部に
導入するとともに、この回収部の頂部から蒸気を排出さ
せることを特徴とする蒸留方法。
3. The distillation method according to claim 1 or 2, wherein the liquid is extracted from the concentration section and introduced into the top of the recovery section, and vapor is discharged from the top of the recovery section. Distillation method.
【請求項4】  濃縮部及び回収部と、上記濃縮部の下
部にフィード蒸気を導入するための導入部と、上記濃縮
部の上部にある蒸気を凝縮させるコンデンサと、この濃
縮部の底部にある液を減圧状態で上記回収部の上部に導
入するための第1の還流通路と、上記回収部の底部から
缶出液を回収するための回収部と、上記回収部の底部に
ある液を蒸発させるリボイラと、上記回収部の上部にあ
る蒸気を上記濃縮部の下部に加圧状態で導入するための
第2の還流通路とを備えた蒸留装置において、上記フィ
ード蒸気を気液分離する分離手段と、分離された蒸気を
上記濃縮部の下部に導入するための導入通路と、分離さ
れた液を減圧状態で上記コンデンサに導入し、ここで蒸
発させて上記回収部の上部に導入するためのコンデンサ
冷却通路と、上記濃縮部の下部にある蒸気を上記リボイ
ラに導入し、ここで液化させて上記回収部の上部に導入
するためのリボイラ加熱通路とを備えたことを特徴とす
る蒸留装置。
4. A concentrating section and a recovery section, an introduction section for introducing feed steam into the lower part of the concentrating section, a condenser for condensing the vapor at the upper part of the concentrating section, and a condenser at the bottom of the concentrating section. a first reflux passage for introducing the liquid into the upper part of the recovery section under reduced pressure, a recovery section for recovering the bottom liquid from the bottom of the recovery section, and evaporating the liquid at the bottom of the recovery section. and a second reflux passage for introducing the vapor in the upper part of the recovery part into the lower part of the concentrating part in a pressurized state, the separation means for separating the feed vapor into gas and liquid. an introduction passage for introducing the separated vapor into the lower part of the concentration section; and an introduction passage for introducing the separated liquid under reduced pressure into the condenser, where it is evaporated and introduced into the upper part of the recovery section. A distillation apparatus comprising: a condenser cooling passage; and a reboiler heating passage for introducing the vapor in the lower part of the concentration section into the reboiler, where it is liquefied and introduced into the upper part of the recovery section.
【請求項5】  請求項4記載の蒸留装置において、上
記濃縮部と回収部とが互いに熱交換を行うように構成さ
れていることを特徴とする蒸留装置。
5. The distillation apparatus according to claim 4, wherein the concentration section and the recovery section are configured to exchange heat with each other.
【請求項6】  請求項4または5記載の蒸留装置にお
いて、上記濃縮部内の液を抽出して上記回収部の頂部に
導入するための液移送通路と、上記回収部の頂部から蒸
気を排出するための排出通路とを備えたことを特徴とす
る蒸留装置。
6. The distillation apparatus according to claim 4 or 5, comprising: a liquid transfer passage for extracting the liquid in the concentrating section and introducing the extracted liquid into the top of the recovery section; and discharging steam from the top of the recovery section. A distillation apparatus characterized by comprising a discharge passage for.
JP14491A 1991-01-07 1991-01-07 Method and apparatus for distillation Pending JPH04250801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14491A JPH04250801A (en) 1991-01-07 1991-01-07 Method and apparatus for distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14491A JPH04250801A (en) 1991-01-07 1991-01-07 Method and apparatus for distillation

Publications (1)

Publication Number Publication Date
JPH04250801A true JPH04250801A (en) 1992-09-07

Family

ID=11465832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14491A Pending JPH04250801A (en) 1991-01-07 1991-01-07 Method and apparatus for distillation

Country Status (1)

Country Link
JP (1) JPH04250801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043199A1 (en) * 2009-10-05 2011-04-14 独立行政法人産業技術総合研究所 Heat-exchange-type distillation apparatus
JP2012232244A (en) * 2011-04-28 2012-11-29 Mitsumaru Kagaku Kk Batch type internally thermal exchanging type distillation device
JP2013169499A (en) * 2012-02-20 2013-09-02 Toyo Eng Corp Heat exchange type distillation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043199A1 (en) * 2009-10-05 2011-04-14 独立行政法人産業技術総合研究所 Heat-exchange-type distillation apparatus
US8440056B2 (en) 2009-10-05 2013-05-14 National Institute Of Advanced Industrial Science And Technology Heat integrated distillation apparatus
JP2012232244A (en) * 2011-04-28 2012-11-29 Mitsumaru Kagaku Kk Batch type internally thermal exchanging type distillation device
JP2013169499A (en) * 2012-02-20 2013-09-02 Toyo Eng Corp Heat exchange type distillation apparatus

Similar Documents

Publication Publication Date Title
CA2388791C (en) Methods and apparatus for high propane recovery
US6477859B2 (en) Integrated heat exchanger system for producing carbon dioxide
KR100291684B1 (en) How to separate air
RU2396242C2 (en) Method of methanol recuperation
RU2500450C2 (en) Perfected heat pump for high-purity bottom product
EP3983104B1 (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump
CN1058468A (en) Cryognic air separation system with dual feed air side condensers
KR950006408A (en) Liquid oxygen pumping method and apparatus
JPH0655001A (en) Method for multiple column distillation with thermal connection between columns
JPH08240380A (en) Separation of air
JPH11241881A (en) Operating method for low pressure side distillation column of double distillation column unit
JPH04250801A (en) Method and apparatus for distillation
WO1997001068A1 (en) Method and apparatus for separating argon
US4530708A (en) Air separation method and apparatus therefor
JP3929799B2 (en) Method and apparatus for producing ultra high purity oxygen
JPS59206001A (en) Recovery of highly volatile part in solvent by evaporating solution product
EP2788700B1 (en) Air separation method and apparatus
US3208231A (en) Rectification of liquid mixtures boiling at low temperatures
KR100390054B1 (en) Method for producing lower purity oxygen by cryogenic rectification
JPH0587445A (en) Condensate evaporator and circuit therefor
JP3082092B2 (en) Oxygen purification method and apparatus
RU2167814C2 (en) Method of further purification of carbon dioxide from low-boiling impurities
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JPS60500972A (en) Low-temperature recirculating distillation with multiple latent heat exchange
CN114087848A (en) Method and apparatus for separating 13C16O from natural CO