JPH04249736A - Concentrating vessel of eluate for infrared spectral measurement - Google Patents

Concentrating vessel of eluate for infrared spectral measurement

Info

Publication number
JPH04249736A
JPH04249736A JP2415796A JP41579690A JPH04249736A JP H04249736 A JPH04249736 A JP H04249736A JP 2415796 A JP2415796 A JP 2415796A JP 41579690 A JP41579690 A JP 41579690A JP H04249736 A JPH04249736 A JP H04249736A
Authority
JP
Japan
Prior art keywords
sample holding
eluate
holding recess
infrared
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2415796A
Other languages
Japanese (ja)
Inventor
Sunao Miyazaki
直 宮崎
Kazuhiro Kawasaki
一弘 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2415796A priority Critical patent/JPH04249736A/en
Publication of JPH04249736A publication Critical patent/JPH04249736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly-sensitive measurement of a sample of a minute amount by educing a solute locally, regarding a concentrating vessel of an eluate which receives the eluate flowing out of a column of a high performance liquid chromatograph(HPLC) and concentrates the eluate by evaporating a solvent thereof. CONSTITUTION:A sample holding recession 28 of which the area of a cross section turns small toward the bottom is formed in a base 26, the surface of the bottom has a light-reflecting property and the surface of the sample holding recession 28 is coated with a water-repellent substance 30.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高速液体クロマトグラ
フ(HPLC)のカラムから流出した溶出液を受け、該
溶出液の溶媒を蒸発させて濃縮させる溶出液濃縮容器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eluate concentration container for receiving eluate flowing out from a column of a high performance liquid chromatograph (HPLC) and concentrating the eluate by evaporating its solvent.

【0002】0002

【従来の技術】HPLCで試料を成分に分離したものを
赤外分光法で同定、構造決定する手法は、少しずつ用い
られてきている。この手法は、ガスクロマトグラフィー
/赤外分光法においては一般的なものとして確立されて
いるが、HPLC/赤外分光法では未だ一般的なものと
して技術的に確立されていない。その理由は、HPLC
の移動相溶媒が、一般に赤外領域にかなり強い吸収バン
ドを数多く持っているため、溶出液中に僅かに含まれて
いる分離成分の赤外吸収スペクトルは、多くの場合、溶
媒の吸収にかくれてしまい、溶出液をそのままの状態で
、溶出液から分離成分(溶質)を検出するのは困難であ
るからである。
2. Description of the Related Art Techniques for identifying and determining the structure of components of a sample separated by HPLC using infrared spectroscopy are gradually being used. Although this technique has been established as a general method in gas chromatography/infrared spectroscopy, it has not yet been technically established as a general method in HPLC/infrared spectroscopy. The reason is that HPLC
Mobile phase solvents generally have a number of fairly strong absorption bands in the infrared region, so the infrared absorption spectrum of the separated components contained in a small amount in the eluate is often hidden by the absorption of the solvent. This is because it is difficult to detect separated components (solutes) from the eluate while the eluate is in its original state.

【0003】そこで、この溶媒の影響を除去する方法が
いくつか試し見られている。現在、技術的に確立してい
る方法としては、次の2つがある。
[0003] Several methods have therefore been tried to eliminate the influence of this solvent. There are currently two technically established methods:

【0004】(1)差スペクトル法 これは、HPLCからの溶出液をフローセルに導いて赤
外分光測定し、予め測定しておいた溶媒のスペクトルと
の差スペクトルを求める方法である。
(1) Difference spectrum method This is a method in which the eluate from HPLC is introduced into a flow cell and subjected to infrared spectroscopy to obtain a difference spectrum from a previously measured spectrum of the solvent.

【0005】しかし、この方法においても、溶媒の影響
は避けられず、特に、溶媒に強い赤外吸収バンドがある
場合には、溶質のその波長域での赤外スペクトルの検出
は不可能である。また、フローセルの厚みを薄くして、
溶媒の赤外吸収の影響を減少させると、分離成分も減少
してしまい、溶質の赤外スペクトルの検出が不可能とな
る。
[0005] However, even in this method, the influence of the solvent cannot be avoided, and in particular, if the solvent has a strong infrared absorption band, it is impossible to detect the infrared spectrum of the solute in that wavelength range. . In addition, by reducing the thickness of the flow cell,
When the influence of infrared absorption of the solvent is reduced, the separated components are also reduced, making it impossible to detect the infrared spectrum of the solute.

【0006】(2)移動相除去方法 そこで、次のような方法が提案されている(特願昭61
−147393号、米国特許第4,841,145号)
(2) Mobile phase removal method Therefore, the following method has been proposed (Japanese Patent Application No. 1983).
-147393, U.S. Patent No. 4,841,145)
.

【0007】第9A図に示す如く、表面が赤外線を反射
するサンプリングプレート10に試料保持凹部12を形
成し、HPLCのカラムからの溶出液14を試料保持凹
部12内に滴下させる。そして、溶出液14の溶媒を蒸
発させ、第9B図に示す如く、溶質16を析出させる。 溶質16に赤外線IRを照射すると、赤外線IRは、溶
質16を通り、試料保持凹部12で反射し、さらに溶質
16を通って出てくる。この入射赤外線IR及び出射赤
外線IRの強度を波数の関数として検出して、赤外スペ
クトルを得る。
As shown in FIG. 9A, a sample holding recess 12 is formed in a sampling plate 10 whose surface reflects infrared rays, and an eluent 14 from an HPLC column is dropped into the sample holding recess 12. Then, the solvent of the eluate 14 is evaporated, and the solute 16 is precipitated as shown in FIG. 9B. When the solute 16 is irradiated with infrared IR, the infrared IR passes through the solute 16, is reflected by the sample holding recess 12, and further passes through the solute 16 and comes out. The intensities of the incident infrared IR and the outgoing infrared IR are detected as a function of wave number to obtain an infrared spectrum.

【0008】この方法によれば、溶媒の種類や測定波長
域の制限を受けないという長所がある。
This method has the advantage that it is not subject to limitations on the type of solvent or the measurement wavelength range.

【0009】[0009]

【発明が解決しようとする課題】ところが、微量分析の
場合、すなわち、溶出液14中の溶質16の濃度が極め
て低い場合や、カラムで分離された成分の再混合を避け
るために1回で採集する溶出液14を微量にした場合に
は、赤外線IRの照射点での試料量が充分でないため、
高感度測定ができない。
However, in the case of trace analysis, that is, when the concentration of the solute 16 in the eluate 14 is extremely low, or in order to avoid remixing the components separated by the column, it is necessary to collect the If the amount of eluate 14 to be used is small, the amount of sample at the infrared IR irradiation point is not sufficient.
High-sensitivity measurements cannot be made.

【0010】この原因の1つは、溶出液14と接触して
いる試料保持凹部12の全面にわたって、溶質16が析
出するからである。この問題は、試料保持凹部12の形
状を円錐状にすれば解決されそうであるが、実際には解
決できない。これは、次のような理由による。
One of the reasons for this is that the solute 16 is deposited over the entire surface of the sample holding recess 12 that is in contact with the eluate 14. This problem may be solved by making the sample holding recess 12 conical, but it cannot actually be solved. This is due to the following reasons.

【0011】■試料保持凹部12に溶出液14を滴下す
ると、溶出液14の表面と試料保持凹部12の表面との
接触部分から溶質16の析出が始まる。
(2) When the eluate 14 is dropped into the sample holding recess 12, the solute 16 begins to precipitate from the contact area between the surface of the eluate 14 and the surface of the sample holding recess 12.

【0012】■結晶の成長には核が必要であるため、最
初に析出した溶質を核として、溶質16が析出する。
(2) Since a nucleus is necessary for the growth of a crystal, solute 16 is precipitated using the first solute precipitated as a nucleus.

【0013】■サンプリングプレート10は、赤外線を
反射する材料として金属が使用されるが、金属の表面は
液体との接触角が第9B図に示す如く小さく、溶出液1
4の周部が薄く広がる。このため、最初に析出した所に
析出されやすくなっている。
■ The sampling plate 10 is made of metal as a material that reflects infrared rays, but the metal surface has a small contact angle with the liquid as shown in FIG. 9B, and the eluate 1
The periphery of number 4 spreads out thinly. For this reason, it tends to be deposited where it was first deposited.

【0014】したがって、試料保持凹部12の底面には
溶質16が僅かしか析出せず、試料保持凹部12の側面
に試料の析出が集中することになる。
Therefore, only a small amount of solute 16 is deposited on the bottom surface of the sample holding recess 12, and the sample precipitation is concentrated on the side surfaces of the sample holding recess 12.

【0015】なお、平面上に溶出液14を滴下した場合
には、試料保持凹部12内に溶出液14を滴下した場合
よりも溶出液14が広がるので、問題外である。
Note that if the eluate 14 is dropped onto a flat surface, this is out of the question since the eluate 14 will spread more than if the eluate 14 is dropped into the sample holding recess 12.

【0016】一方、微量試料の測定には、赤外顕微鏡が
用いられる。この場合、赤外線で試料が照射される面積
は100μm×100μm程度であるため、溶質16を
100μm×100μm程度以下に局在させたほうが望
ましい。
On the other hand, an infrared microscope is used to measure a minute amount of sample. In this case, since the area of the sample irradiated with infrared rays is approximately 100 μm×100 μm, it is preferable to localize the solute 16 within approximately 100 μm×100 μm.

【0017】また、赤外分光法では、吸光度は試料の厚
みが大きいほど大きくなるので、できるだけ試料の厚み
を大きくする必要がある。この為には、試料が広がらな
いようにしなければならない。
Furthermore, in infrared spectroscopy, the absorbance increases as the sample thickness increases, so it is necessary to make the sample thickness as large as possible. For this purpose, it is necessary to prevent the sample from spreading.

【0018】本発明の目的は、このような本発明者によ
る問題点分析に基づき、HPLCから流出した溶出液の
溶媒を蒸発させ、かつ、溶質を局所的に析出させること
により、微量試料の高感度測定を可能にする赤外スペク
トル測定用溶出液濃縮容器を提供することにある。
Based on the analysis of the problems by the present inventors, the purpose of the present invention is to evaporate the solvent of the eluate flowing out from HPLC and locally precipitate the solute, thereby increasing the concentration of a trace amount of sample. An object of the present invention is to provide an eluate concentration container for infrared spectrum measurement that enables sensitivity measurement.

【0019】[0019]

【課題を解決するための手段及びその作用】この目的を
達成する為に、横断面の面積が底面に近づくほど小さく
なっている試料保持凹部が基材に形成され、該底面が光
反射性を有し、該試料保持凹部表面が撥水性物質である
、本発明に係る赤外スペクトル測定用溶出液濃縮容器を
提供する。
[Means for Solving the Problems and Their Effects] In order to achieve this objective, a sample holding recess whose cross-sectional area becomes smaller as it approaches the bottom surface is formed in the base material, and the bottom surface has light reflective properties. Provided is an eluate concentration container for infrared spectrum measurement according to the present invention, in which the surface of the sample holding recess is made of a water-repellent material.

【0020】この溶出液濃縮容器に採集した溶出液は、
溶媒を蒸発させると、試料保持凹部の底部に凝縮し、濃
縮が行われる。
[0020] The eluate collected in this eluate concentration container is
When the solvent evaporates, it condenses at the bottom of the sample holding recess, resulting in concentration.

【0021】上記試料保持凹部は、例えば、底面が平坦
で、該底面の面積が赤外顕微鏡から収束照射される赤外
線の収束断面の面積程度である。
[0021] The sample holding recess has, for example, a flat bottom surface, and the area of the bottom surface is approximately the area of a convergent cross section of infrared rays emitted from an infrared microscope.

【0022】この構成の場合、赤外照射光の正反射光を
受光することができ、また、大部分の試料を赤外線収束
部に存在させることができるので、微量試料の高感度測
定が可能となる。
[0022] With this configuration, it is possible to receive the specularly reflected light of the infrared irradiation light, and most of the sample can be present in the infrared convergence section, making it possible to perform highly sensitive measurements of trace amounts of samples. Become.

【0023】上記基材は、例えば、光沢性金属であり、
試料保持凹部が撥水性物質でコーティングされている。
[0023] The base material is, for example, a shiny metal,
The sample holding recess is coated with a water-repellent material.

【0024】この構成の場合、制作が容易であるので、
溶出液濃縮容器が安価なる。
[0024] This configuration is easy to produce, so
Eluate concentration containers are cheaper.

【0025】上記基材は、例えば、撥水性物質であり、
試料保持凹部の底面は光沢性金属である。
[0025] The base material is, for example, a water-repellent material,
The bottom surface of the sample holding recess is made of shiny metal.

【0026】この構成の場合、金属面上に撥水性物質が
コーティングされていないので、コーティング物質の赤
外吸収やコーティング物質との化学反応が問題とならず
、広範囲の試料に適用することができる。
In the case of this configuration, since the metal surface is not coated with a water-repellent substance, infrared absorption of the coating substance and chemical reaction with the coating substance are not a problem, and it can be applied to a wide range of samples. .

【0027】上記基材は、例えば、試料保持凹部の底部
が円錐状の形状記憶合金であり、該底部を平坦にした状
態が記憶されている。
[0027] The base material is, for example, a shape memory alloy in which the bottom of the sample holding recess is conical, and the state in which the bottom is flat is memorized.

【0028】この構成の場合、試料は試料保持凹部の円
錐状底部により局所的に集中して析出し、しかも、赤外
スペクトル測定の際に溶出液濃縮容器を加熱して記憶形
状に戻すことにより、照射赤外線の正反射光を受光する
ことができ、高感度測定することができる。
In the case of this configuration, the sample is locally concentrated and precipitated at the conical bottom of the sample holding recess, and moreover, during infrared spectrum measurement, the eluate concentration container is heated to return it to its memorized shape. , can receive specularly reflected light of irradiated infrared rays, and can perform high-sensitivity measurements.

【0029】上記試料保持凹部は、例えば、前記基材に
所定間隔をおいて複数個形成されている。
[0029] For example, a plurality of the sample holding recesses are formed on the base material at predetermined intervals.

【0030】この構成の場合、間欠的に連続して試料を
溶出液濃縮容器に採集することができる。また、場合に
よっては、試料を採集しながら、他方において同時に、
試料保持凹部内の析出試料に対し赤外スペクトル測定を
行うことができる。
[0030] With this configuration, samples can be collected intermittently and continuously into the eluate concentration container. Also, in some cases, while collecting the sample, at the same time,
Infrared spectrum measurement can be performed on the precipitated sample within the sample holding recess.

【0031】上述の溶出液濃縮容器は反射測定に用いら
れるが、横断面の面積が底面に近づくほど小さくなって
いる試料保持凹部が、赤外線透過物質の基材に形成され
、該試料保持凹部表面が撥水性物質である溶出液濃縮容
器を用いれば、透過測定が可能となる。
The eluate concentration container described above is used for reflection measurement, and a sample holding recess whose cross-sectional area becomes smaller as it approaches the bottom is formed in the base material of the infrared transmitting material, and the surface of the sample holding recess is Transmission measurement becomes possible by using an eluate concentration container in which the material is water-repellent.

【0032】[0032]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0033】図1(A)、(B)及び(C)に示すよう
な、横断面の面積が底面に近づくほど小さくなっている
円錐状カップ18、半球状カップ20又はボート状カッ
プ22を用意する。HPLCから流出した溶出液をこれ
らで採集しても、上述の如く溶質が広がって析出するた
め、濃縮や凝縮の効果がない。そこで、これらカップ1
8、20、22の凹部表面に撥水性物質をコーティング
する。このようにすれば、採集した溶出液は、溶媒を蒸
発させると、カップ18、20、22の凹部中心部に凝
縮して、濃縮が行われる。
Prepare a conical cup 18, a hemispherical cup 20, or a boat-shaped cup 22, as shown in FIGS. 1(A), (B), and (C), in which the cross-sectional area becomes smaller as it approaches the bottom surface. do. Even if the eluate flowing out from HPLC is collected using these, the solute spreads and precipitates as described above, so there is no concentration or condensation effect. So, these 1 cup
The surfaces of the recesses 8, 20, and 22 are coated with a water-repellent material. In this way, when the solvent in the collected eluate is evaporated, it condenses in the center of the recesses of the cups 18, 20, and 22, thereby performing concentration.

【0034】次に、凝縮された試料の赤外顕微鏡測定に
ついて説明する。
Next, infrared microscopic measurement of the condensed sample will be explained.

【0035】凝縮析出された試料を何らかの方法で取り
出して測定する方法と、直接、カップ内試料に対し測定
する方法とがある。しかし、試料濃縮目的は微量試料を
測定することにあるので、試料をカップから取り出すこ
とは困難であり、直接、カップ内試料に対し測定する必
要がある。
There are two methods: one is to take out the condensed sample for measurement, and the other is to directly measure the sample in the cup. However, since the purpose of sample concentration is to measure a trace amount of sample, it is difficult to remove the sample from the cup, and it is necessary to directly measure the sample in the cup.

【0036】カップ内試料を測定するには、反射法と透
過法とがある。最初に、反射法について説明する。
[0036] There are two methods for measuring the sample inside the cup: a reflection method and a transmission method. First, the reflection method will be explained.

【0037】1).反射法 (1)第1実施例 図2は、反射法で用いられる溶出液濃縮容器24を示す
。この溶出液濃縮容器24は、直方体の基材26に円錐
状の試料保持凹部28が形成されている。
1). Reflection method (1) First embodiment FIG. 2 shows an eluate concentration container 24 used in the reflection method. This eluate concentration container 24 has a rectangular parallelepiped base material 26 and a conical sample holding recess 28 formed therein.

【0038】基材26は、反射率を高くして高感度測定
を行うために、金属、特に表面が研磨されたアルミニュ
ームまたはステンレス等が適している。
The base material 26 is preferably made of metal, particularly aluminum or stainless steel with a polished surface, in order to increase the reflectance and perform highly sensitive measurements.

【0039】試料保持凹部28の中央底部は、照射光の
正反射光を受光するために、平坦になっている。
The center bottom of the sample holding recess 28 is flat in order to receive the specularly reflected light of the irradiation light.

【0040】また、試料保持凹部28の表面には、撥水
性物質30がコーティングされている。
Furthermore, the surface of the sample holding recess 28 is coated with a water-repellent substance 30.

【0041】撥水性物質30は、採集する試料の表面張
力よりも表面自由エネルギーの小さい物質がよい。これ
は、撥水性効果が大きくなり、いわゆる濡れ現象が生ぜ
ず、試料が析出し難くなるからである。このようなコー
ティング物質としては、例えば、フッ化樹脂、ポリエチ
レン又はシリコン系オイル等が好ましい。コーティング
物質自体が赤外測定波長域において赤外吸収を示す場合
には、コーティング物質の厚さを単分子層から数分子層
の範囲に止めた方が好ましい。
The water-repellent material 30 is preferably a material whose surface free energy is smaller than the surface tension of the sample to be collected. This is because the water-repellent effect increases, so-called wetting phenomenon does not occur, and the sample becomes difficult to precipitate. As such a coating material, for example, fluorinated resin, polyethylene, silicone oil, etc. are preferable. When the coating material itself exhibits infrared absorption in the infrared measurement wavelength range, it is preferable to keep the thickness of the coating material within the range of a monomolecular layer to several molecular layers.

【0042】このような溶出液濃縮容器24で、HPL
Cから流出した溶出液32を採集し、溶出液32の揮発
性に応じて、自然乾燥させ、加熱し、減圧し又は乾燥気
体を流したりして、溶出液32中の溶媒を蒸発させ、溶
質32Aを析出させる。
[0042] In such an eluate concentration container 24, HPL
The eluate 32 flowing out from C is collected and, depending on the volatility of the eluate 32, is air-dried, heated, depressurized, or passed with dry gas to evaporate the solvent in the eluate 32 and remove the solute. 32A is precipitated.

【0043】この際、試料保持凹部28の底面平坦部以
外の周辺部分にも溶質34Aが析出するが、図8に示す
従来方式と比較すると、撥水性物質30により溶出液3
2が凝集するので、試料保持凹部28の底面平坦部に圧
倒的に高い割合で溶質32Aが局在析出する。
At this time, the solute 34A is also precipitated in the surrounding area other than the flat bottom part of the sample holding recess 28, but compared to the conventional method shown in FIG.
Since the solute 2 aggregates, the solute 32A is locally precipitated at an overwhelmingly high rate on the flat bottom surface of the sample holding recess 28.

【0044】次に、図3に示す如く、赤外顕微鏡34の
カセグレン対物鏡34aに溶出液濃縮容器24を対向配
置させる。この赤外顕微鏡34には、フーリエ赤外分光
光度計(FT−IR)36が連設されており、フーリエ
赤外分光光度計36からの赤外線IRが、赤外顕微鏡3
4のカセグレン対物鏡34aの右側半分を介して、試料
保持凹部28の底部平坦部に析出した溶質32Aに収束
投射される。したがって、この底部平坦部部直径は、理
想的には投射赤外線IRの収束円直径程度(100〜2
00μm程度)にするのが望ましい。赤外線IRは、溶
質34Aを通り、試料保持凹部28の底部平坦部で反射
され、再度溶質32Aを通った赤外線IRがカセグレン
対物鏡34aの左側半分で集光され、フーリエ赤外分光
光度計36へ供給されて赤外スペクトルが測定される。
Next, as shown in FIG. 3, the eluate concentration container 24 is placed opposite the Cassegrain objective 34a of the infrared microscope 34. A Fourier infrared spectrophotometer (FT-IR) 36 is connected to the infrared microscope 34, and infrared IR from the Fourier infrared spectrophotometer 36 is transmitted to the infrared microscope 34.
The solute 32A deposited on the flat bottom of the sample holding recess 28 is convergently projected through the right half of the Cassegrain objective mirror 34a of No. 4. Therefore, the diameter of this bottom flat part is ideally about the diameter of the convergence circle of the projected infrared IR (100 to 2
00 μm) is desirable. The infrared IR passes through the solute 34A and is reflected at the flat bottom of the sample holding recess 28. The infrared IR passes through the solute 32A again and is focused on the left half of the Cassegrain objective 34a, and is directed to the Fourier infrared spectrophotometer 36. and the infrared spectrum is measured.

【0045】(2)第2実施例 通常の溶出液32に対しては上述の溶出液濃縮容器24
で殆ど対応できるが、溶出液32がコーティング物質と
化学反応したり、測定波長域において撥水性物質30が
大きな吸収を示す場合には、撥水性物質30を用いるこ
とができない。そこで、このような場合には、図4に示
すような溶出液濃縮容器38を用いる。
(2) Second Embodiment For the normal eluate 32, the eluate concentration container 24 described above is used.
However, if the eluate 32 chemically reacts with the coating material or if the water-repellent material 30 exhibits large absorption in the measurement wavelength range, the water-repellent material 30 cannot be used. Therefore, in such a case, an eluate concentration container 38 as shown in FIG. 4 is used.

【0046】この溶出液濃縮容器38は、直方体の基材
40に円錐状の試料保持凹部42が形成されている。
The eluate concentration container 38 has a rectangular parallelepiped base material 40 and a conical sample holding recess 42 formed therein.

【0047】基材40は撥水性物質、例えばフッ化樹脂
である。フッ化樹脂は、板厚が小さくても光透過率が低
いため、後述の透過法には適しない。
The base material 40 is a water-repellent material, such as a fluorinated resin. Fluorinated resin has low light transmittance even if the plate thickness is small, so it is not suitable for the transmission method described below.

【0048】基材40の中心部には、直径100〜20
0μm程度の貫通穴が形成され、これに、先端面が平坦
に磨かれた金属線44が嵌入されている。
The center of the base material 40 has a diameter of 100 to 20 mm.
A through hole with a diameter of about 0 μm is formed, and a metal wire 44 whose tip end surface is polished flat is inserted into the through hole.

【0049】このような溶出液濃縮容器38を製作する
際に注意すべきことは、金属線44の先端部が試料保持
凹部42の底部から突出しないようにすることである。 なぜなら、この突出があると、金属線44の先端部周面
と試料保持凹部42の底部との間に溶質34Aが析出し
、試料凝縮率が低下するからである。
When manufacturing such an eluate concentration container 38, care must be taken to ensure that the tip of the metal wire 44 does not protrude from the bottom of the sample holding recess 42. This is because, if this protrusion exists, the solute 34A will precipitate between the peripheral surface of the tip end of the metal wire 44 and the bottom of the sample holding recess 42, and the sample condensation rate will decrease.

【0050】この点がクリアできれば、金属線44上に
撥水性物質がコーティングされていないので、コーティ
ング物質の赤外吸収やコーティング物質との化学反応が
問題とならず、広範囲の試料に適用することができる。
If this point can be cleared, since the metal wire 44 is not coated with a water-repellent substance, infrared absorption of the coating substance and chemical reaction with the coating substance will not be a problem, and it can be applied to a wide range of samples. Can be done.

【0051】(3)第3実施例 試料凝縮率を高めるためには、カップの形状を円錐形に
し、その底部に平坦部分を設けないほうがよい。しかし
、平坦部分を設けないと、照射光の正反射光を受光する
ことができず、高感度測定を行うことができない。そこ
で、この問題を解決するために、図5に示すような溶出
液濃縮容器46を用いる。
(3) Third Embodiment In order to increase the sample condensation rate, it is better to make the cup conical in shape and not provide a flat portion at the bottom. However, unless a flat portion is provided, specularly reflected light of the irradiated light cannot be received, and high sensitivity measurement cannot be performed. Therefore, in order to solve this problem, an eluate concentration container 46 as shown in FIG. 5 is used.

【0052】同図(B)に示す如く、溶出液濃縮容器4
6は、板状の形状記憶合金で試料保持凹部48がプレス
成形されている。この際、試料保持凹部48の底部に、
微小面積の平坦部を形状記憶させておく。
As shown in the same figure (B), the eluate concentration container 4
6, a sample holding recess 48 is press-molded from a plate-shaped shape memory alloy. At this time, at the bottom of the sample holding recess 48,
The shape of a flat part with a small area is memorized.

【0053】溶出液32を採集する際には、同図(A)
に示す如く、この平坦部分のない形状にしておく。溶出
液32の溶媒が蒸発して凝縮が完了すると、試料保持凹
部48を加熱して、同図(B)に示す状態にする。
[0053] When collecting the eluate 32,
As shown in the figure, the shape is made without this flat part. When the solvent of the eluate 32 has evaporated and condensation has been completed, the sample holding recess 48 is heated to bring it into the state shown in FIG. 3(B).

【0054】これにより、溶質34Aは試料保持凹部4
8の円錐状底部により局所的に集中し、かつ、照射光の
正反射光を受光して高感度測定することができる。
[0054] As a result, the solute 34A is transferred to the sample holding recess 4.
The conical bottom of 8 allows for highly sensitive measurement by locally concentrating and receiving specularly reflected light of the irradiated light.

【0055】試料保持凹部48を小さく形成すれば溶出
液濃縮容器46を平面板に戻すことも可能であり、この
場合、図4に示すカセグレン対物鏡34aの開口角と試
料保持凹部の円錐角との関係を考慮しなくてよいので、
測定に際して取扱いが大変便利になる。
If the sample holding recess 48 is formed small, the eluate concentration container 46 can be returned to a flat plate. In this case, the opening angle of the Cassegrain objective 34a and the cone angle of the sample holding recess shown in FIG. Since there is no need to consider the relationship between
Handling becomes very convenient during measurement.

【0056】(4)第4実施例 図6は、間欠的に連続測定する場合に用いられる溶出液
濃縮容器50を示す。
(4) Fourth Embodiment FIG. 6 shows an eluate concentration container 50 used for intermittent continuous measurement.

【0057】矩形プレート状の溶出液濃縮容器50には
、多数の試料保持凹部50aがマトリックス状に形成さ
れている。例えば、各試料保持凹部50aには図2に示
す撥水性物質30がコーティングされ、又は、図4に示
すような金属線44が嵌着されている。この溶出液濃縮
容器50は、X−Yステージ52上に載置され、図示X
方向及びY方向へ間欠駆動されて、排出管54から流出
する溶出液が収容される。
The rectangular plate-shaped eluate concentration container 50 has a large number of sample holding recesses 50a formed in a matrix. For example, each sample holding recess 50a is coated with a water-repellent substance 30 as shown in FIG. 2, or a metal wire 44 as shown in FIG. 4 is fitted. This eluate concentration container 50 is placed on an X-Y stage 52, and is
The eluate flowing out from the discharge pipe 54 is accommodated by being driven intermittently in the direction and the Y direction.

【0058】(5)第5実施例 図7は、同じく間欠的に連続測定する場合に用いられる
溶出液濃縮容器56を示す。
(5) Fifth Embodiment FIG. 7 shows an eluate concentration container 56 which is also used for intermittent and continuous measurements.

【0059】溶出液濃縮容器56は円板状であり、外周
に沿って縁部に試料保持凹部56aが多数形成されてい
る。例えば、各試料保持凹部56aには図2に示す撥水
性物質30がコーティングされ、又は、図4に示すよう
な金属線44が嵌着されている。溶出液濃縮容器56は
回転ステージ58上に載置され、試料保持凹部56aの
ピッチ角θで間欠的に連続回転される。
The eluate concentration container 56 has a disc shape, and has a large number of sample holding recesses 56a formed at the edge along the outer periphery. For example, each sample holding recess 56a is coated with a water-repellent substance 30 as shown in FIG. 2, or a metal wire 44 as shown in FIG. 4 is fitted. The eluate concentration container 56 is placed on a rotation stage 58, and is intermittently and continuously rotated at the pitch angle θ of the sample holding recess 56a.

【0060】この構成の場合、排出管54から溶出液を
流下させながら、他方において同時に、試料保持凹部5
6a内の析出試料に対し赤外顕微鏡測定を行うことがで
きる。
In this configuration, while the eluate is flowing down from the discharge pipe 54, the sample holding recess 5 is simultaneously
Infrared microscopic measurements can be performed on the precipitated sample within 6a.

【0061】2).透過法 透過法の場合には、正反射を考慮する必要がないので、
図2(B)に示すような試料保持凹部28の底部平坦部
は不要になる。したがって、試料凝縮率を反射法の場合
よりも大きくすることができる。
2). Transmission method In the case of transmission method, there is no need to consider specular reflection, so
The flat bottom portion of the sample holding recess 28 as shown in FIG. 2(B) becomes unnecessary. Therefore, the sample condensation rate can be made higher than in the case of the reflection method.

【0062】しかし、試料保持凹部が形成される基材と
しての板の厚みをできるだけ小さくして、この板内での
光散乱を小さくし、光透過率を高くする必要がある。こ
の板は、赤外吸収の小さいZnSe、KRS−5等が適
している。特に、このKRS−5はそれ自体で撥水性が
あるので、撥水性物質をコーティングする必要がない。
However, it is necessary to minimize the thickness of the plate serving as the base material on which the sample holding recess is formed, to reduce light scattering within this plate, and to increase light transmittance. Suitable materials for this plate include ZnSe, KRS-5, etc., which have low infrared absorption. In particular, since KRS-5 itself is water repellent, there is no need to coat it with a water repellent material.

【0063】[0063]

【発明の効果】以上説明した如く本発明に係る赤外スペ
クトル測定用溶出液濃縮容器によれば、横断面の面積が
底面に近づくほど小さくなっている試料保持凹部が基材
に形成され、該底面が光反射性を有し、該試料保持凹部
表面が撥水性物質であるので、この溶出液濃縮容器に採
集した溶出液は、溶媒を蒸発させると、試料保持凹部の
底部に凝縮して濃縮が行われるという優れた効果を奏し
、赤外分析適用範囲の拡大に寄与するところが大きい。
Effects of the Invention As explained above, according to the eluate concentration container for infrared spectrum measurement according to the present invention, a sample holding recess whose cross-sectional area becomes smaller as it approaches the bottom is formed in the base material. Since the bottom surface is light reflective and the surface of the sample holding recess is a water-repellent material, the eluate collected in this eluate concentration container will condense and concentrate at the bottom of the sample holding recess when the solvent evaporates. This method has the excellent effect of allowing infrared analysis to be carried out, and greatly contributes to expanding the scope of application of infrared analysis.

【0064】試料保持凹部を、底面が平坦で該底面の面
積が赤外顕微鏡から収束照射される赤外線の収束断面の
面積程度である構成にすれば、赤外照射光の正反射光を
受光することができ、また、大部分の試料を赤外線収束
部に存在させることができるので、微量試料の高感度測
定が可能となるという効果を奏する。
If the sample holding recess has a flat bottom surface and the area of the bottom surface is approximately the area of the convergent cross section of the infrared rays emitted from the infrared microscope, the specularly reflected light of the infrared irradiation light can be received. In addition, since most of the sample can be present in the infrared convergence section, it is possible to perform high-sensitivity measurement of a trace amount of sample.

【0065】基材を光沢性金属とし、試料保持凹部を撥
水性物質でコーティングすれば、制作が容易になり、溶
出液濃縮容器を安価に提供することができるという効果
を奏する。
[0065] If the base material is made of a shiny metal and the sample holding recess is coated with a water-repellent substance, the production becomes easy and the eluate concentration container can be provided at a low cost.

【0066】基材を撥水性物質とし、試料保持凹部の底
面を光沢性金属とすれば、金属面上に撥水性物質がコー
ティングされていないので、コーティング物質の赤外吸
収やコーティング物質との化学反応が問題とならず、広
範囲の試料に適用することができるという効果を奏する
If the base material is made of a water-repellent material and the bottom surface of the sample holding recess is made of a shiny metal, the metal surface is not coated with a water-repellent material, so that the infrared absorption of the coating material and the chemical interaction with the coating material are prevented. This method has the advantage that reaction is not a problem and can be applied to a wide range of samples.

【0067】試料保持凹部の底部を円錐状の形状記憶合
金とし、該底部を平坦にした状態を記憶されておけば、
試料は円錐状底部により局所的に集中して析出し、しか
も、赤外スペクトル測定の際に溶出液濃縮容器を加熱し
て記憶形状に戻すことにより、照射赤外線の正反射光を
受光することができ、これによって、高感度測定するこ
とができるという効果を奏する。
If the bottom of the sample holding recess is made of a conical shape memory alloy and the flat state of the bottom is memorized,
The sample is locally concentrated and precipitated at the conical bottom, and by heating the eluate concentration container to return it to its memorized shape during infrared spectrum measurement, it is possible to receive the specularly reflected light of the irradiated infrared rays. This brings about the effect that high-sensitivity measurement can be performed.

【0068】試料保持凹部を基材に所定間隔をおいて複
数個形成すれば、間欠的に連続して試料を溶出液濃縮容
器に採集することができ、また、場合によっては、試料
を採集しながら、他方において同時に、試料保持凹部内
の析出試料に対し赤外スペクトル測定を行うことができ
るという効果を奏する。
[0068] By forming a plurality of sample holding recesses on the base material at predetermined intervals, it is possible to collect samples intermittently and continuously into the eluate concentration container, and in some cases, it is possible to collect samples in a continuous manner. However, on the other hand, it is also possible to perform infrared spectrum measurement on the precipitated sample within the sample holding recess.

【0069】上述の溶出液濃縮容器は反射測定に用いら
れるが、横断面の面積が底面に近づくほど小さくなって
いる試料保持凹部が、赤外線透過物質の基材に形成され
、該試料保持凹部表面が撥水性物質である溶出液濃縮容
器を用いれば、上記同様に濃縮効果が得られ、透過測定
が可能となるという効果を奏する。
The eluate concentration container described above is used for reflection measurement, and a sample holding recess whose cross-sectional area becomes smaller as it approaches the bottom is formed in the base material of the infrared transmitting material, and the surface of the sample holding recess is If the eluate concentration container is made of a water-repellent substance, the same concentration effect as described above can be obtained and the permeation measurement becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】赤外スペクトル測定用溶出液濃縮容器の試料保
持凹部形状の種類を示す斜視図である。
FIG. 1 is a perspective view showing the types of sample holding recess shapes of an eluate concentration container for infrared spectrum measurement.

【図2】第1実施例の赤外スペクトル測定用溶出液濃縮
容器を示し、(A)は斜視図、(B)は(A)のB−B
線断面図である。
FIG. 2 shows an eluate concentration container for infrared spectrum measurement of the first embodiment, (A) is a perspective view, and (B) is a B-B of (A).
FIG.

【図3】赤外顕微鏡測定状態図である。FIG. 3 is a state diagram of infrared microscope measurement.

【図4】第2実施例の赤外スペクトル測定用溶出液濃縮
容器の断面図である。
FIG. 4 is a sectional view of an eluate concentration container for infrared spectrum measurement according to a second embodiment.

【図5】第3実施例の赤外スペクトル測定用溶出液濃縮
容器の断面図であり、(A)は試料採集状態を示し、(
B)は試料析出状態を示す。
FIG. 5 is a cross-sectional view of the eluate concentration container for infrared spectrum measurement of the third example, in which (A) shows the sample collection state;
B) shows the state of sample precipitation.

【図6】間欠的に連続測定する場合に用いられる第4実
施例の赤外スペクトル測定用溶出液濃縮容器を示す斜視
図である。
FIG. 6 is a perspective view showing an eluate concentration container for infrared spectrum measurement according to a fourth embodiment, which is used for intermittently continuous measurement.

【図7】間欠的に連続測定する場合に用いられる第5実
施例の赤外スペクトル測定用溶出液濃縮容器を示す斜視
図である。
FIG. 7 is a perspective view showing an eluate concentration container for infrared spectrum measurement according to a fifth embodiment, which is used for intermittently continuous measurement.

【図8】従来のサンプリングプレート10の断面図であ
り、(A)は試料採集状態を示し、(B)は試料析出状
態を示す。
FIG. 8 is a cross-sectional view of a conventional sampling plate 10, in which (A) shows a sample collection state and (B) shows a sample deposited state.

【符号の説明】[Explanation of symbols]

28、42、48、50a、56a  試料保持凹部3
2  溶出液 32A  溶質 18、20、22  カップ 24、38、46、50、56  溶出液濃縮容器26
、40  基材 30  撥水性物質 34  赤外顕微鏡 34a  カセグレン対物鏡 36  フーリエ赤外分光光度計 44  金属線
28, 42, 48, 50a, 56a Sample holding recess 3
2 Eluate 32A Solute 18, 20, 22 Cup 24, 38, 46, 50, 56 Eluate concentration container 26
, 40 base material 30 water-repellent substance 34 infrared microscope 34a Cassegrain objective mirror 36 Fourier infrared spectrophotometer 44 metal wire

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  横断面の面積が底面に近づくほど小さ
くなっている試料保持凹部(28、42、48、50a
、56a)が基材(26、40)に形成され、該底面が
光反射性を有し、該試料保持凹部表面が撥水性物質(3
0、40)であることを特徴とする赤外スペクトル測定
用溶出液濃縮容器。
Claim 1: A sample holding recess (28, 42, 48, 50a) whose cross-sectional area becomes smaller as it approaches the bottom surface.
, 56a) is formed on the base material (26, 40), the bottom surface has light reflective properties, and the surface of the sample holding recess is coated with a water-repellent material (3).
0.0, 40) An eluate concentration container for infrared spectrum measurement.
【請求項2】  前記試料保持凹部(28、42、48
)は、底面が平坦で、該底面の面積が赤外顕微鏡から収
束照射される赤外線の収束断面の面積程度であることを
特徴とする請求項1記載の赤外スペクトル測定用溶出液
濃縮容器。
2. The sample holding recess (28, 42, 48
2. The eluate concentration container for infrared spectrum measurement according to claim 1, wherein the container has a flat bottom surface, and the area of the bottom surface is approximately the area of a convergent cross section of infrared rays emitted from an infrared microscope.
【請求項3】  前記基材(26)は光沢性金属であり
、前記試料保持凹部(28)が撥水性物質(30)でコ
ーティングされていることを特徴とする請求項1又は2
記載の赤外スペクトル測定用溶出液濃縮容器。
3. The base material (26) is a shiny metal, and the sample holding recess (28) is coated with a water-repellent material (30).
The eluate concentration container for infrared spectrum measurement described above.
【請求項4】  前記基材(40)は撥水性物質であり
、前記試料保持凹部(42)の底面は光沢性金属である
ことを特徴とする請求項1乃至3のいずれか1つに記載
の赤外スペクトル測定用溶出液濃縮容器。
4. The base material (40) is a water-repellent material, and the bottom surface of the sample holding recess (42) is a shiny metal. Eluate concentration container for infrared spectrum measurement.
【請求項5】  前記基材は、前記試料保持凹部(48
)の底部が円錐状の形状記憶合金であり、該底部を平坦
にした状態が記憶されていることを特徴とする請求項1
記載の赤外スペクトル測定用溶出液濃縮容器。
5. The base material includes the sample holding recess (48
) is made of a conical shape memory alloy, and a flat state of the bottom is memorized.
The eluate concentration container for infrared spectrum measurement described above.
【請求項6】  前記試料保持凹部(50a、56a)
は、前記基材に所定間隔をおいて複数個形成されている
ことを特徴とする請求項1乃至5のいずれか1つに記載
の赤外スペクトル測定用溶出液濃縮容器。
6. The sample holding recess (50a, 56a)
The eluate concentration container for infrared spectrum measurement according to any one of claims 1 to 5, wherein a plurality of are formed on the base material at predetermined intervals.
【請求項7】  横断面の面積が底面に近づくほど小さ
くなっている試料保持凹部が、赤外線透過物質の基材に
形成され、該試料保持凹部表面が撥水性物質であること
を特徴とする赤外スペクトル測定用溶出液濃縮容器。
7. A sample holding recess, the cross-sectional area of which becomes smaller as it approaches the bottom surface, is formed in a base material of an infrared transmitting material, and the surface of the sample holding recess is made of a water-repellent material. Eluate concentration container for external spectrum measurement.
JP2415796A 1990-12-31 1990-12-31 Concentrating vessel of eluate for infrared spectral measurement Pending JPH04249736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415796A JPH04249736A (en) 1990-12-31 1990-12-31 Concentrating vessel of eluate for infrared spectral measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415796A JPH04249736A (en) 1990-12-31 1990-12-31 Concentrating vessel of eluate for infrared spectral measurement

Publications (1)

Publication Number Publication Date
JPH04249736A true JPH04249736A (en) 1992-09-04

Family

ID=18524080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415796A Pending JPH04249736A (en) 1990-12-31 1990-12-31 Concentrating vessel of eluate for infrared spectral measurement

Country Status (1)

Country Link
JP (1) JPH04249736A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167779A (en) * 1993-09-17 1995-07-04 Boehringer Mannheim Gmbh Quantitative analysis method of sample liquid
US5831184A (en) * 1995-09-22 1998-11-03 U.S. Philips Corporation Sample holder for a sample to be subjected to radiation analysis
JP2000193570A (en) * 1998-09-24 2000-07-14 Toshiba Ceramics Co Ltd Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
JP2006112789A (en) * 2004-10-12 2006-04-27 Sekisui Chem Co Ltd Microanalysis method
GB2440957A (en) * 2006-06-14 2008-02-20 Biochrom Ltd Spectrophotometric apparatus
JP2018141670A (en) * 2017-02-27 2018-09-13 株式会社島津製作所 Laser-induced analysis device, sample plate to be used for the same, and laser-induced analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109065A (en) * 1973-02-01 1974-10-17
JPS6266141A (en) * 1985-09-19 1987-03-25 Sumitomo Bakelite Co Ltd Vessel for fluorescent immunological measurement
JPS62274240A (en) * 1986-05-23 1987-11-28 Kurita Water Ind Ltd Absorbancy measuring instrument
JPS633244A (en) * 1986-06-24 1988-01-08 Japan Spectroscopic Co Sampling method for infrared spectral measurement, and interface of high-speed liquid chromatograph and infrared spectrophotometer and infrared spectrophotometer for high precision liquid chromatograph detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109065A (en) * 1973-02-01 1974-10-17
JPS6266141A (en) * 1985-09-19 1987-03-25 Sumitomo Bakelite Co Ltd Vessel for fluorescent immunological measurement
JPS62274240A (en) * 1986-05-23 1987-11-28 Kurita Water Ind Ltd Absorbancy measuring instrument
JPS633244A (en) * 1986-06-24 1988-01-08 Japan Spectroscopic Co Sampling method for infrared spectral measurement, and interface of high-speed liquid chromatograph and infrared spectrophotometer and infrared spectrophotometer for high precision liquid chromatograph detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167779A (en) * 1993-09-17 1995-07-04 Boehringer Mannheim Gmbh Quantitative analysis method of sample liquid
US5831184A (en) * 1995-09-22 1998-11-03 U.S. Philips Corporation Sample holder for a sample to be subjected to radiation analysis
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
JP2000193570A (en) * 1998-09-24 2000-07-14 Toshiba Ceramics Co Ltd Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same
JP2006112789A (en) * 2004-10-12 2006-04-27 Sekisui Chem Co Ltd Microanalysis method
JP4585267B2 (en) * 2004-10-12 2010-11-24 積水化学工業株式会社 Trace analysis method
GB2440957A (en) * 2006-06-14 2008-02-20 Biochrom Ltd Spectrophotometric apparatus
US8208145B2 (en) 2006-06-14 2012-06-26 Biochrom Limited Analytical apparatus
JP2018141670A (en) * 2017-02-27 2018-09-13 株式会社島津製作所 Laser-induced analysis device, sample plate to be used for the same, and laser-induced analysis method

Similar Documents

Publication Publication Date Title
US5605838A (en) Method for the quantitative analysis of sample liquid
US4823009A (en) Ir compatible deposition surface for liquid chromatography
EP0200302B1 (en) Blocker device for eliminating specular reflectance from a diffuse reflection spectrum
US5171995A (en) Sample holder for optical spectrometer and method for taking a spectrum
US5019715A (en) Optical system and method for sample analyzation
CA1321488C (en) Biological sensors
EP2618133B1 (en) Optical-electric-field enhancement device
US7939345B2 (en) Versatile substrate for SPR detection
EP2618134B1 (en) Light measurement method and measurement device using optical-electric field enhancement device
KR101639686B1 (en) substrate which have multiple nano-gaps and fabricating method for the same
JPH04249736A (en) Concentrating vessel of eluate for infrared spectral measurement
Korte et al. Infrared diffuse reflectance accessory for local analysis on bulky samples
WO2002077616A1 (en) Atr crystal device
US7671989B2 (en) Information maintenance during intensity attenuation in focused beams
US5210418A (en) Ultra-small sample analyzer for internal reflection spectroscopy
US7846396B2 (en) Sample holder for surface plasmon resonance measuring instruments
JP2005530152A (en) Achromatic spectroscopic ellipsometer with high spatial resolution
US6539075B1 (en) Slight amount sample analyzing apparatus
JPH0599813A (en) Method for micro-spectroscopic analysis and sample stage using the method
Lang et al. The versatile sampling methods of infrared microspectroscopy
JPH0682398A (en) X-ray diffraction analyser
WO2012079018A2 (en) Surface plasmon sensors and methods for producing the same
JPH03248045A (en) Sample pan for spectroscopic analysis and spectroscopic analysis method
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JPH0557536B2 (en)