JPH04248504A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JPH04248504A
JPH04248504A JP3035619A JP3561991A JPH04248504A JP H04248504 A JPH04248504 A JP H04248504A JP 3035619 A JP3035619 A JP 3035619A JP 3561991 A JP3561991 A JP 3561991A JP H04248504 A JPH04248504 A JP H04248504A
Authority
JP
Japan
Prior art keywords
optical
dispersion
dispersion medium
optical amplifier
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035619A
Other languages
Japanese (ja)
Other versions
JP2904445B2 (en
Inventor
Kazuo Hagimoto
萩本 和男
Yutaka Miyamoto
裕 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12446873&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04248504(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3035619A priority Critical patent/JP2904445B2/en
Publication of JPH04248504A publication Critical patent/JPH04248504A/en
Application granted granted Critical
Publication of JP2904445B2 publication Critical patent/JP2904445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain constitution wherein the loss of a dispersed medium causes no deterioration in reception sensitivity while adding the dispersed medium which compensates the dispersion of a transmission line. CONSTITUTION:A receiver consisting of an optical amplifier OA and an O/E conversion part has its S/N as a receiver determined by an initial-stage optical amplifier OA and has higher sensitivity than reception by only the O/E. Further the level itself of an optical signal after optical amplification is not S/N- sensitive. For the purpose, the output level of the OA is set much higher than the reception sensitivity of the 0/E and then even when the dispersed medium is interposed between the OA and OE, the dispersion can be compensated without any influence upon the reception sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高速光伝送システム、
長中継伝送システムにおいて必要とされる光伝送装置に
関する。
[Industrial Application Field] The present invention relates to a high-speed optical transmission system,
The present invention relates to an optical transmission device required in a long relay transmission system.

【0002】0002

【従来の技術】高速・長中継デジタル光伝送システムを
実現する上で、伝送路である光ファイバの分散と伝送さ
れる信号光のスペクトル広がりによる波形歪みが大きな
問題であった。それを解決する方法として、ファイバの
分散を零にするのが最も有効な方法である。しかし、あ
るファイバが与えられたときそのファイバの分散は、あ
る特定の波長(零分散波長)で零となるのみで、零分散
波長の両側で分散の符号が反転し、零分散波長からずれ
る従って大きくなって行く。現実のシステムを考えた場
合、ファイバおよび光源の波長特性のバラツキを考えた
とき、例えファイバの零分散波長を用いたシステムでも
、光源の波長と施設されるファイバの零分散波長は完全
には一致せず有限の分散σを持つことになる。そこで、
図4のように伝送路であるファイバの分散とちょうど反
対の分散(−σ)を持った分散媒質(例えばファイバ)
を接続しトータルの分散を零にすることにより、分散に
よる波形劣化を除去した後に受光素子で電気信号に変換
することができる。
2. Description of the Related Art In realizing a high-speed, long-haul digital optical transmission system, waveform distortion caused by dispersion of optical fibers serving as transmission lines and spectrum broadening of transmitted signal light has been a major problem. The most effective way to solve this problem is to make the fiber dispersion zero. However, when a certain fiber is given, the dispersion of that fiber becomes zero only at a certain wavelength (zero dispersion wavelength), and the sign of the dispersion is reversed on both sides of the zero dispersion wavelength, and it deviates from the zero dispersion wavelength. It's getting bigger. When considering actual systems, and considering variations in the wavelength characteristics of fibers and light sources, even in systems that use the zero dispersion wavelength of the fiber, the wavelength of the light source and the zero dispersion wavelength of the installed fiber do not completely match. Therefore, it has a finite variance σ. Therefore,
As shown in Figure 4, a dispersion medium (for example, a fiber) has a dispersion (-σ) that is exactly opposite to the dispersion of the fiber that is the transmission path.
By connecting them to make the total dispersion zero, it is possible to remove waveform deterioration due to dispersion and then convert it into an electrical signal using the light receiving element.

【0003】0003

【発明が解決しようとする課題】ところで、上記従来技
術においては次のような問題があった。一般に、光信号
の強度を電気信号に変換する直接検波方式は簡便でかつ
特性も優れているため実用装置として広く用いられてい
る。しかし、直接検波方式において復調される電気信号
のS/N比はO/E変換部の雑音特性と入力光信号パワ
ーで決定されるため、分散媒質を付加するとその媒質が
有する損失分だけ受信感度の低下をもたらす。このこと
は送信側についても同様なことが言える。即ち、送信出
力が分散媒質の損失分だけ減少し、送信受信レベル差と
して伝送路に割り振れる許容損失が減少する。つまり、
分散による波形劣化を補償するために送受信レベル差の
減少が同時に生じるため現実的な有効な方法とは言えな
かった。
However, the above-mentioned prior art has the following problems. In general, a direct detection method that converts the intensity of an optical signal into an electrical signal is simple and has excellent characteristics, so it is widely used as a practical device. However, since the S/N ratio of the demodulated electrical signal in the direct detection method is determined by the noise characteristics of the O/E converter and the input optical signal power, adding a dispersion medium increases the reception sensitivity by the loss of that medium. resulting in a decrease in The same thing can be said about the sending side. That is, the transmission output is reduced by the loss of the dispersion medium, and the allowable loss allocated to the transmission path as the difference in transmission and reception levels is reduced. In other words,
In order to compensate for waveform deterioration due to dispersion, the difference in transmission and reception levels simultaneously decreases, so this cannot be said to be a realistically effective method.

【0004】本発明は前記課題を解決するもので、伝送
路の分散を補償する分散媒質を付加しながら、分散媒質
の損失が受信感度の劣化を招かない構成を可能にした光
伝送装置の提供を目的とする。
[0004] The present invention solves the above-mentioned problems, and provides an optical transmission device that enables a configuration in which a dispersion medium is added to compensate for the dispersion of the transmission path, but the loss of the dispersion medium does not cause deterioration of reception sensitivity. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は、1台又は複数
の光増幅器を有する光受信回路、光送信回路あるいは光
中継器において、光増幅器と光電気変換部あるいは光増
幅器と光増幅器との間に、伝送路の分散特性を補償する
分散性媒質を有することを特徴とする。
[Means for Solving the Problems] The present invention provides an optical receiving circuit, an optical transmitting circuit, or an optical repeater having one or more optical amplifiers. It is characterized by having a dispersive medium in between that compensates for the dispersion characteristics of the transmission path.

【0006】[0006]

【作用】本発明によれば、光増幅器と分散媒質を装置に
適した組み合せにより、伝送装置の性能が分散媒質の損
失により低下することなく、伝送路の分散を補償するこ
とができる。
According to the present invention, by combining an optical amplifier and a dispersion medium suitable for the device, it is possible to compensate for the dispersion of the transmission line without degrading the performance of the transmission device due to loss in the dispersion medium.

【0007】[0007]

【実施例】以下、本発明による第1、第2、第3、第4
実施例を図面に基づき説明する。本発明においては、光
増幅器と分散媒質を装置に適した組み合せにより、伝送
装置の性能が分散媒質の損失により低下することなく、
伝送路の分散を補償することができる。即ち、直接検波
方式では、光電気変換部でS/Nが決定され、かつベー
スバンド電気信号に変換されてしまうため伝送路の分散
の影響を光電気変換後では等化できない。従って、S/
Nを決定する回路の前に分散媒質を挿入するしかないた
めに、その損失に敏感に送受信レベル差の減少に反映さ
れてしまっていた。かかる不具合を解決すべく本発明の
図5の光増幅器OAとO/E変換部とからなる受信装置
は、初段の光増幅器OAで受信機としてのS/Nが決定
され更にO/E単独で受信するよりも高感度になる。し
かも、光増幅された後では、光信号のレベルそのものは
、S/N敏感でない。そこで、OAの出力レベルがO/
Eの受信感度より十分高く設定することにより、OAと
OEの間に分散媒質を挿入しても受信感度には影響せず
分散を補償できる構成が可能となる。
[Example] Hereinafter, the first, second, third, and fourth embodiments according to the present invention will be described.
Examples will be described based on the drawings. In the present invention, by combining an optical amplifier and a dispersion medium suitable for the device, the performance of the transmission device is not degraded due to loss in the dispersion medium.
It is possible to compensate for dispersion in the transmission path. That is, in the direct detection method, the S/N is determined in the opto-electric converter and converted into a baseband electrical signal, so the influence of dispersion of the transmission path cannot be equalized after opto-electric conversion. Therefore, S/
Since there is no choice but to insert a dispersion medium in front of the circuit that determines N, the loss is sensitively reflected in a decrease in the difference in transmission and reception levels. In order to solve this problem, the receiving device of the present invention, which is composed of the optical amplifier OA and the O/E converter shown in FIG. The sensitivity is higher than when receiving. Furthermore, after optical amplification, the level of the optical signal itself is not sensitive to S/N. Therefore, the output level of OA is O/
By setting the reception sensitivity sufficiently higher than the reception sensitivity of E, it is possible to create a configuration in which dispersion can be compensated for without affecting the reception sensitivity even if a dispersion medium is inserted between OA and OE.

【0008】第1実施例。図1は、上記原理を用いて光
受信部を構成した場合である。Cは同軸ケーブル、O/
Eは光・電気変換回路、Dは分散媒質、OA1およびO
A2は光増幅器、Fは光ファイバである。OA2は分散
媒質の損失が大きい場合に必要となる。
[0008] First embodiment. FIG. 1 shows a case where an optical receiver is constructed using the above principle. C is coaxial cable, O/
E is a photoelectric conversion circuit, D is a dispersion medium, OA1 and O
A2 is an optical amplifier, and F is an optical fiber. OA2 is necessary when the loss of the dispersion medium is large.

【0009】第2実施例。図2は、光中継器として光増
幅器を用いた場合の実施例である。2台の光増幅器の間
に、伝送路のファイバの分散に対し予め逆の分散を与え
る分散媒質を挿入することにより伝送路の分散を補償す
る。図2において、F1及びF2は光ファイバ、Dは分
散媒質、OA1及びOA2は光増幅器である。第一段の
光増幅器OA1により伝送路で減衰した光信号を増幅し
た後、第1実施例と同様の原理・構成で光信号の出力特
性を損なうことなく、伝送路の分散を補償できる。該装
置の場合、到達した光信号を最初に増幅するOA1でS
/Nが決定されるので、その後段分散媒質はS/N比劣
化を来たすことなく分散を補償することができる。ただ
し、第一段の光増幅器の光出力が十分に高い場合あるい
は分散媒質の損失が無視できる場合、OA2は省略する
ことができる。
Second embodiment. FIG. 2 shows an embodiment in which an optical amplifier is used as an optical repeater. The dispersion of the transmission line is compensated for by inserting a dispersion medium that gives an opposite dispersion to the fiber dispersion of the transmission line between the two optical amplifiers. In FIG. 2, F1 and F2 are optical fibers, D is a dispersion medium, and OA1 and OA2 are optical amplifiers. After the first-stage optical amplifier OA1 amplifies the optical signal attenuated on the transmission line, the dispersion of the transmission line can be compensated for without impairing the output characteristics of the optical signal using the same principle and configuration as in the first embodiment. In the case of this device, S
/N is determined, the subsequent dispersion medium can compensate for dispersion without deteriorating the S/N ratio. However, if the optical output of the first stage optical amplifier is sufficiently high or if the loss of the dispersion medium can be ignored, OA2 can be omitted.

【0010】第3実施例。図3は、送信部での実施例で
ある。送信部において、伝送路のファイバの分散に対し
予め逆の分散を与え分散媒質とそれによる光損失を補う
光増幅器により構成されている。図3において、Cは同
軸ケーブル、E/Oは電気・光変換回路、Dは分散媒質
、OAは光増幅器、Fは光ファイバである。分散媒質D
を用いないで直接光増幅器OAに電気光変換部E/O出
力を入力する構成において、光増幅器OAとしてEr−
ドープ光ファイバ増幅器を用いた場合、電気光変換部E
/Oの光出力パワーP0は光増幅器OAの利得分だけ増
幅されるが、光増幅器OAの3dB飽和出力以上となる
光増幅器OAの入力パワーPinより増加させても、光
増幅器OAが出力飽和し光出力パワーはほとんど増加し
ない。図3のように分散媒質Dを電気光変換部E/Oと
光増幅器OAの間に挿入することにより、分散媒質Dの
損失を光増幅器OAで補償できるだけでなく、更に増幅
できる。とりわけ、飽和が生じているような条件下では
、光増幅器OAの未飽和利得に対し減じた分だけ、分散
媒質Dの損失は全く光増幅器OAの出力パワーに影響し
ない。例えば、光増幅器OAの飽和により10dB利得
圧縮が生じた場合、分散媒質Dの損失が10dB以下で
あれば、この送信部光出力パワーは分散媒質Dを挿入し
ないものと同等となり、分散媒質Dによる損失によって
出力性能が劣化しない。
Third embodiment. FIG. 3 shows an example of a transmitter. The transmitting section is composed of a dispersion medium and an optical amplifier that compensates for the optical loss caused by the dispersion medium, which gives an inverse dispersion in advance to the dispersion of the fiber of the transmission line. In FIG. 3, C is a coaxial cable, E/O is an electrical/optical conversion circuit, D is a dispersion medium, OA is an optical amplifier, and F is an optical fiber. Dispersion medium D
In a configuration in which the output of the electro-optic converter E/O is directly input to the optical amplifier OA without using
When using a doped optical fiber amplifier, the electro-optical converter E
The optical output power P0 of /O is amplified by the gain of the optical amplifier OA, but even if it is increased from the input power Pin of the optical amplifier OA, which is 3 dB saturation output or more of the optical amplifier OA, the output of the optical amplifier OA will not be saturated. The optical output power hardly increases. By inserting the dispersion medium D between the electro-optical converter E/O and the optical amplifier OA as shown in FIG. 3, the loss of the dispersion medium D can not only be compensated by the optical amplifier OA, but also can be further amplified. In particular, under conditions where saturation occurs, the loss of the dispersion medium D does not affect the output power of the optical amplifier OA at all by the amount reduced by the unsaturated gain of the optical amplifier OA. For example, when 10 dB gain compression occurs due to saturation of the optical amplifier OA, if the loss of the dispersion medium D is 10 dB or less, the optical output power of this transmitting section will be equivalent to that without inserting the dispersion medium D, and Output performance does not deteriorate due to loss.

【0011】第4実施例。図4は、具体的に分散媒質と
して光ファイバを用いた場合の実施例である。光増幅器
として希土類イオン(エルビウム)を添加したファイバ
増幅器を用いた例である。伝送路として用いた分散シフ
トファイバ150km(F1)での波長分散を光増幅器
(OA)と光電気変換(O/E)の間に挿入した分散媒
質(光ファイバF2;ただしF1とは波長分散の符号が
反対でその値も大きい)で打ち消す構成である。即ち、
図7・図8に示す如く、実験により分散補償の効果を確
認することができた。
Fourth embodiment. FIG. 4 specifically shows an example in which an optical fiber is used as the dispersion medium. This is an example in which a fiber amplifier doped with rare earth ions (erbium) is used as an optical amplifier. The chromatic dispersion in the dispersion shifted fiber 150 km (F1) used as a transmission line is replaced by a dispersion medium (optical fiber F2; however, F1 is the chromatic dispersion (the sign is opposite and the value is also large). That is,
As shown in FIGS. 7 and 8, the effect of dispersion compensation could be confirmed through experiments.

【0012】0012

【発明の効果】以上説明したように本発明によれば、光
送信部で、あるいは光中継部で、あるいは光受信部で補
償用の分散媒質の損失に特性を損なわれることなく、そ
れぞれ伝送路のファイバの分散を補償することができ、
長距離伝送後にも波形歪みの光信号を得ることができる
As explained above, according to the present invention, the transmission path can be improved without losing the characteristics due to the loss of the compensation dispersion medium in the optical transmitter, the optical repeater, or the optical receiver. can compensate for fiber dispersion,
Even after long-distance transmission, optical signals with waveform distortion can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例の構成を示す図である。FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.

【図2】本発明の第2実施例の構成を示す図である。FIG. 2 is a diagram showing the configuration of a second embodiment of the present invention.

【図3】本発明の第3実施例の構成を示す図である。FIG. 3 is a diagram showing the configuration of a third embodiment of the present invention.

【図4】従来の構成を示す図である。FIG. 4 is a diagram showing a conventional configuration.

【図5】本発明の光増幅器を用いた受信回路の構成例を
示す図である。
FIG. 5 is a diagram showing a configuration example of a receiving circuit using the optical amplifier of the present invention.

【図6】本発明の第4実施例の構成を示す図である。FIG. 6 is a diagram showing the configuration of a fourth embodiment of the present invention.

【図7】本発明の第4実施例の分散媒質なしの時の15
0Km伝送後の波形図である。
FIG. 7: 15 when there is no dispersion medium according to the fourth embodiment of the present invention
It is a waveform diagram after 0km transmission.

【図8】本発明の第4実施例の分散媒質ありの時の15
0Km伝送後の波形図である。
FIG. 8: 15 with dispersion medium according to the fourth embodiment of the present invention
It is a waveform diagram after 0km transmission.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  1台又は複数の光増幅器を有する光受
信回路、光送信回路あるいは光中継器において、光増幅
器と光電気変換部あるいは光増幅器と光増幅器との間に
、伝送路の分散特性を補償する分散性媒質を有すること
を特徴とする光伝送装置。
Claim 1: In an optical receiving circuit, optical transmitting circuit, or optical repeater having one or more optical amplifiers, dispersion characteristics of the transmission line are provided between the optical amplifier and the opto-electrical converter or between the optical amplifiers. An optical transmission device characterized by having a dispersive medium that compensates for.
JP3035619A 1991-02-04 1991-02-04 Optical transmission equipment Expired - Lifetime JP2904445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035619A JP2904445B2 (en) 1991-02-04 1991-02-04 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035619A JP2904445B2 (en) 1991-02-04 1991-02-04 Optical transmission equipment

Publications (2)

Publication Number Publication Date
JPH04248504A true JPH04248504A (en) 1992-09-04
JP2904445B2 JP2904445B2 (en) 1999-06-14

Family

ID=12446873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035619A Expired - Lifetime JP2904445B2 (en) 1991-02-04 1991-02-04 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JP2904445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930824B1 (en) 1993-08-10 2005-08-16 Fujitsu Limited Optical amplifier which compensates for dispersion of a WDM optical signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037303A (en) * 1973-06-14 1975-04-08
JPS6265529A (en) * 1985-09-17 1987-03-24 Hitachi Cable Ltd Decentralization compensation method for optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037303A (en) * 1973-06-14 1975-04-08
JPS6265529A (en) * 1985-09-17 1987-03-24 Hitachi Cable Ltd Decentralization compensation method for optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930824B1 (en) 1993-08-10 2005-08-16 Fujitsu Limited Optical amplifier which compensates for dispersion of a WDM optical signal

Also Published As

Publication number Publication date
JP2904445B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US6577439B2 (en) Optical amplifier
US7263296B2 (en) Optical transmission system using in-line amplifiers
AU664449B2 (en) Optical communication transmission system
US6021245A (en) Method and optical transmission system for compensating dispersion in optical transmission paths
JPH05204004A (en) Optical communication link for correcting non-linear effect and optical signal processing method
JPH1084323A (en) Receiver for digital signal transmission system using optical communication channel
Hagimoto et al. A 17 Gb/s Long-Span Fiber Transmission Experiment Using a Low-noise Broadband Receiver with Optical Amplification and Eqaulization
US5444238A (en) Device for assessing the transmission quality of an optical amplifier equipment
US20050201762A1 (en) Optical RZ-duobinary transmission system with narrow bandwidth optical filter
JPH04248504A (en) Optical transmitter
Ramachandran et al. 1700-km transmission at 40-Gb/s with 100 km amplifier-spacing enabled by higher-order-mode dispersion-compensation
Kannan et al. Unrepeatered bidirectional transmission system over a single fiber using optical fiber amplifiers
JP3215153B2 (en) Optical amplification repeater
JP2919193B2 (en) Optical communication transmission system
JP3503720B2 (en) Soliton transmission line
JP2840878B2 (en) Optical repeater and optical transmission device using this optical repeater
JPH08204634A (en) Optical transmission system with non-relay
Lee et al. Effects of decision ambiguity level on optical receiver sensitivity
JPH06311114A (en) Dispersion compensated light amplifying repeater
Granlund et al. A comparison of direct and coherent detection systems with optical amplifiers
JPH05181019A (en) Optical dynamic range compressing device
Abid Semi-analytical BER performance of a direct detection soliton transmission system
JPH0821908B2 (en) Optical communication transmission system
JP2001358656A (en) Optical transmission line
JPH06112906A (en) Optical reception method and optical receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

EXPY Cancellation because of completion of term