JPH0424819B2 - - Google Patents

Info

Publication number
JPH0424819B2
JPH0424819B2 JP10623083A JP10623083A JPH0424819B2 JP H0424819 B2 JPH0424819 B2 JP H0424819B2 JP 10623083 A JP10623083 A JP 10623083A JP 10623083 A JP10623083 A JP 10623083A JP H0424819 B2 JPH0424819 B2 JP H0424819B2
Authority
JP
Japan
Prior art keywords
anode
outer tube
cathode
cathodes
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10623083A
Other languages
Japanese (ja)
Other versions
JPS59230254A (en
Inventor
Makoto Toho
Ryohei Itaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10623083A priority Critical patent/JPS59230254A/en
Publication of JPS59230254A publication Critical patent/JPS59230254A/en
Publication of JPH0424819B2 publication Critical patent/JPH0424819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Description

【発明の詳細な説明】 (技術分野) 本発明は、例えばコンパクトで高効率の照明用
光源として利用し得る光放射電子管に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light-emitting electron tube that can be used, for example, as a compact and highly efficient light source for illumination.

(背景技術) 照明用光源として、低圧水銀蒸着放電とけい光
体を組合せたけい光ランプが、その高効率性故、
古くから広く用いられている。しかし、かかるけ
い光ランプは陽光柱部の発光(紫外線放射)を利
用するため、一般に高効率たるためには管長が長
くなり、大形化する欠点がある。
(Background technology) As a light source for illumination, fluorescent lamps that combine low-pressure mercury vapor deposition discharge and a phosphor have been used because of their high efficiency.
It has been widely used since ancient times. However, since such fluorescent lamps utilize light emission (ultraviolet radiation) from the positive column, they generally have the disadvantage of requiring a longer tube length and larger size in order to achieve high efficiency.

また、上記発光原理とは全く異なる原理、すな
わち電子励起による発光方式がある。これはブラ
ウン管(以下CRTという)として実用化され、
古くからテレビ等に広く利用されている。この方
式は第1図に示す如く、外管1の内部を真空とし
て、熱電子放射性陰極(電子銃)2より放射され
た電子eを高圧電界で加速し、格子状陽極3を通
過せしめて直接けい光体(電子線励起形)4に衝
突・励起させるものであるが、この励起変換効率
が悪く、また電子の加速のため高電圧と相当の距
離を必要とするため、やはり大形化し、照明用光
源としては不向きである。なお、同図中5は偏向
用磁界装置、6は加速用直流電源、7は抵抗であ
る。
Furthermore, there is a light emission method based on a completely different principle from the above-mentioned light emission principle, that is, electronic excitation. This was put into practical use as a cathode ray tube (hereinafter referred to as CRT).
It has been widely used in televisions etc. since ancient times. As shown in Fig. 1, this method uses a vacuum inside an outer tube 1, accelerates electrons e emitted from a thermionic emissive cathode (electron gun) 2 using a high-voltage electric field, and causes them to directly pass through a lattice anode 3. The phosphor (electron beam excitation type) is collided with and excited by the phosphor 4, but this excitation conversion efficiency is poor and high voltage and considerable distance are required to accelerate the electrons, resulting in a large size. It is unsuitable as a light source for illumination. In the figure, 5 is a deflection magnetic field device, 6 is an acceleration DC power supply, and 7 is a resistor.

さらに、第2図に示す如く、上記CRT方式に
気体放電方式を折衷、組合わせたような方式が最
近提案されている(特開昭57−130364号)。かか
る方式は、透明外管11内を上記CRT方式のよ
うに完全な真空とするのではなく、水銀蒸気が数
mTorr程度存在する低真空とし、熱電子放射性
陰極(電子銃)12より放射された電子eを、上
記CRT方式と同様に電界印加で加速すると共に、
陽極13をメツシユ状あるいは格子状構造にする
ことにより、電子の大半を通過せしめ、背後空間
14で水銀蒸気の如き紫外線放射用気体に衝突さ
せ、水銀を励起し紫外線放射させ、この紫外線放
射をけい光体(紫外線励起形)15に当て励起さ
せ、所望の可視光変換を行なわせる方式である。
なお、同図中16は加速用直流電源、17は抵抗
である。
Furthermore, as shown in FIG. 2, a system has recently been proposed that combines the above-mentioned CRT system with a gas discharge system (Japanese Patent Application Laid-open No. 130364/1983). In this method, instead of creating a complete vacuum inside the transparent outer tube 11 as in the CRT method described above, a low vacuum is created in which mercury vapor exists on the order of several mTorr, and mercury vapor is emitted from the thermionic cathode (electron gun) 12. The electron e is accelerated by applying an electric field as in the above CRT method, and
By forming the anode 13 into a mesh-like or lattice-like structure, most of the electrons are allowed to pass through and collide with an ultraviolet emitting gas such as mercury vapor in the back space 14 to excite the mercury and emit ultraviolet rays. This is a method in which a light body (ultraviolet excitation type) 15 is applied and excited to perform desired visible light conversion.
In addition, in the figure, 16 is an acceleration DC power supply, and 17 is a resistor.

かかる方式は、電子の加速空間に比し、陽極通
過後の水銀との衝突空間を十分大きくとること、
及び電子に適切な運動エネルギを印加せしめるこ
とにより、水銀の励起確率が極めて高くなり、全
体としての可視発光効率が従来のCRT方式に比
べ向上し、また、電子エネルギは水銀を共鳴励起
させる程度でよいため、加速電界及び加速空間は
CRT方式に比べ小さくてよいと報じられている。
This method requires that the space for collision with mercury after passing through the anode is sufficiently large compared to the space for electron acceleration;
By applying appropriate kinetic energy to the mercury and electrons, the probability of excitation of mercury becomes extremely high, and the overall visible light emission efficiency is improved compared to the conventional CRT method. Therefore, the accelerating electric field and accelerating space are
It is reported that it is smaller than the CRT method.

しかしながら、かかる方式は背後空間を十二分
に有する必要があり、結果として発光管が大きく
なつてしまう欠点が残る。
However, such a method requires a sufficient amount of space behind it, which leaves the drawback that the arc tube becomes large as a result.

(発明の目的) 本発明は上記の点に鑑みなされたもので、その
目的とするところは、極めてコンパクトな寸法で
しかも十分な発光効率が得られる光放射電子管を
提供するにある。
(Object of the Invention) The present invention has been made in view of the above points, and its object is to provide a light-emitting electron tube that is extremely compact in size and yet provides sufficient luminous efficiency.

(発明の開示) 本発明は、メツシユ状陽極に対し陰極を対称配
置することにより、上記陽極に対し電子を往復振
動させ、水銀の如き放射気体との衝突確率を飛躍
的に増大させ、従来の方式に比べ極めてコンパク
トな構成で、しかも高効率の放射(発光)を可能
とした光放射電子管を提供するものである。
(Disclosure of the Invention) The present invention arranges a cathode symmetrically with respect to a mesh-shaped anode, thereby causing electrons to vibrate back and forth with respect to the anode, dramatically increasing the probability of collision with a radiation gas such as mercury. The present invention provides a light-emitting electron tube that has an extremely compact configuration compared to other conventional methods and is capable of highly efficient radiation (light emission).

以下、本発明を詳細に説明する。第3図は本発
明の基本構成を示す概念図で、所望の放射(発
光)に対して透光性を有する材料、例えば透明ガ
ラスにより気密に形成された外管21の内部に
は、1対の陰極22,23と陽極24が配設され
ており、両陰極22,23の少なくとも一方(同
図においては左側の陰極22)は電子放射性陰極
(図示しない直流または交流電源により電流加熱
し、所望の熱電子放射温度を得るようにした陰
極、例えば、通常の螢光ランプ等に用いられるも
のと同類の熱電子放射型バリウムオキサイド被着
のタングステンフイラメントコイルの如き陰極)
で構成され、陽極24は両陰極22,23の略中
間に配され、粗いメツシユ状または格子状(以下
メツシユ状陽極という)に形成されている。ま
た、外管21内には蒸気化水銀の如き紫外線また
は可視線を照射する低気圧(10-2〜10-4Torrレ
ベル)の放射気体が封入されている。そして、陽
極24と1対の陰極22,23との間にはそれぞ
れ正の直流電圧が、抵抗25を介して直流電源2
6,27により印加されている。
The present invention will be explained in detail below. FIG. 3 is a conceptual diagram showing the basic configuration of the present invention. Inside the outer tube 21, which is airtightly formed of a material that transmits desired radiation (light emission), such as transparent glass, there is a pair of cathodes 22, 23 and an anode 24 are disposed, and at least one of the two cathodes 22, 23 (the left cathode 22 in the figure) is an electron-emitting cathode (currently heated by a direct current or alternating current power supply (not shown), and heated to a desired temperature). (e.g., a thermionic barium oxide coated tungsten filament coil similar to those used in conventional fluorescent lamps).
The anode 24 is disposed approximately midway between the cathodes 22 and 23, and is formed into a rough mesh or lattice shape (hereinafter referred to as a mesh anode). Furthermore, a low pressure (10 -2 to 10 -4 Torr level) radiation gas such as vaporized mercury that irradiates ultraviolet rays or visible radiation is sealed within the outer tube 21 . A positive DC voltage is applied between the anode 24 and the pair of cathodes 22 and 23 via a resistor 25 to the DC power supply 2.
6 and 27.

而して、上記直流電圧の大きさは、一方の陰極
22より放射された熱電子eを加速すると共に、
ビーム状に形成して陽極24に到達せしめ、該陽
極24を通過した後は減速し、他方の陰極23に
到達する直前で速度0になるように設定されてい
る。
Therefore, the magnitude of the DC voltage accelerates the thermoelectrons e emitted from one cathode 22, and
The beam is formed into a beam shape to reach the anode 24, and after passing through the anode 24, it is decelerated, and the speed is set to zero just before reaching the other cathode 23.

次に動作を説明する。まず第1の陰極22すな
わち電子放射性熱陰極22により熱電子eが放射
されると、陽極24との間に正電界が印加されて
いるため、熱電子eは加速される。そして、陽極
24は粗いメツシユ状または格子状であるため、
熱電子eの大半はそのまま陽極24を通り抜け
て、陽極24と第2の陰極23により形成される
減速電界域へ入る。ここでは熱電子eは減速を受
け、第2の陰極23の直前で失速し速度が0とな
る。すると今後は陽極24と第2の陰極23間に
加わる正電界で、上記方向とは逆方向に加速され
再び陽極24に達し、陽極24を通り抜ける。以
下、陽極24と第1の陰極22は上記と同様に減
速電界となるため、熱電子eは減速し、第1の陰
極22の直前で再び反転し、陽極24に向う。以
降この動作を繰り返えし、熱電子eは陽極24を
中心に電気振動する。
Next, the operation will be explained. First, when the first cathode 22, that is, the electron-emitting hot cathode 22 emits thermoelectrons e, the thermoelectrons e are accelerated because a positive electric field is applied between it and the anode 24. Since the anode 24 has a rough mesh or lattice shape,
Most of the thermoelectrons e directly pass through the anode 24 and enter the deceleration electric field region formed by the anode 24 and the second cathode 23. Here, the thermoelectron e is decelerated, stalls just before the second cathode 23, and has a speed of 0. Then, from now on, due to the positive electric field applied between the anode 24 and the second cathode 23, it is accelerated in the opposite direction to the above direction, reaches the anode 24 again, and passes through the anode 24. Thereafter, since the anode 24 and the first cathode 22 form a decelerating electric field in the same manner as described above, the thermoelectrons e are decelerated, reversed again just before the first cathode 22, and head toward the anode 24. Thereafter, this operation is repeated, and the thermoelectrons e vibrate electrically around the anode 24.

而して、第4図に示す実施例のように、外管2
1で形成される気密空間に水銀を封入し、外管2
1の内面にハロリン酸カルシウムの如きけい光体
28を塗布した場合、水銀の一部は管壁最冷温度
に相応した蒸気圧の気体となるため、管内は常温
では数mTorr近くの気体で存在している。今、
陽極24と両陰極22,23間のそれぞれの電圧
及び寸法関係を、電子eの平均運動エネルギが
5eV程度になるように設計すると、上述の電気振
動による何回もの往復運動の中で、電子は効率よ
く気体水銀原子を63P1の共鳴励起準位(中性の基
底準位より約4.9eV高い準位)へ励起せしめるこ
とができる。かかる励起は直ちに254nmの紫外
線を放射し、外管21の内面に塗布せるけい光体
28により可視光に変換され放射される。
Thus, as in the embodiment shown in FIG.
The airtight space formed by 1 is filled with mercury, and the outer tube 2
When a phosphor 28 such as calcium halophosphate is coated on the inner surface of the tube, a part of the mercury becomes a gas with a vapor pressure corresponding to the coldest temperature of the tube wall, so the inside of the tube exists as a gas close to several mTorr at room temperature. ing. now,
The voltage and dimensional relationship between the anode 24 and both cathodes 22 and 23 are determined by the average kinetic energy of the electrons e.
If designed to be about 5 eV, the electrons will efficiently move the gaseous mercury atoms to the 6 3 P 1 resonance excitation level (approximately 4.9 eV high level). Such excitation immediately emits ultraviolet light of 254 nm, which is converted into visible light by the phosphor 28 coated on the inner surface of the outer tube 21 and emitted.

なお、電子の運動と励起衝突を確率良く生起せ
しめるには、発光(放射)さすべき気体の必要な
励起エネルギに相当した電子エネルギEを、第5
図において実線で示すように平均的に得るよう
に、電極間の加速電圧と距離を設計すること、加
速電子の陽極へのトラツプの少ない陽極構造設計
をすること、陽極通過後の電子が次の陰極の直前
で速度v=0(第5図において破線で示す)に減
速され反転するように電極間電圧及び距離を設計
することが肝要である。
In addition, in order to cause electron movement and excitation collision with a high probability, the electron energy E corresponding to the necessary excitation energy of the gas to be emitted (radiated) is
The accelerating voltage and distance between the electrodes should be designed to obtain the average value as shown by the solid line in the figure, the anode structure should be designed to minimize the trapping of accelerated electrons to the anode, and the electrons after passing through the anode should be It is important to design the voltage and distance between the electrodes so that the speed is decelerated to v=0 (indicated by the broken line in FIG. 5) and reversed just before the cathode.

具体例を第4図を基に説明する。1対の陰極2
2,23は共に熱電子放射性のフイラメントで構
成され、該フイラメントは図示しない外部補助電
源により加熱され、1A程度の電子放射が十分可
能なように構成されている。陽極24と両陰極2
2,23間のそれぞれの距離は約1〜数cmで、両
極間の印加電圧はそれぞれ約10V程度である。外
管1内に封入される放射気体は水銀数〜10数mg
で、管内最冷温度は10〜60℃内であり、必要に応
じ0.1Torr以下の希ガスが封入される。
A specific example will be explained based on FIG. 1 pair of cathodes 2
2 and 23 are both composed of thermionic emissive filaments, which are heated by an external auxiliary power source (not shown) and are configured to be able to sufficiently emit electrons of about 1 A. Anode 24 and both cathodes 2
The distance between 2 and 23 is about 1 to several cm, and the voltage applied between the two poles is about 10V. The radiation gas sealed in the outer tube 1 contains several to 10 mg of mercury.
The coldest temperature inside the pipe is between 10 and 60°C, and if necessary, a rare gas of 0.1 Torr or less is filled.

以上のように設定すると、放射電子は平均1〜
10eV程度のエネルギとなり、水銀を励起し254n
mの紫外線(約4.9eV相当)または185nmの紫外
線(約6.7eV相当)を効率的に放射できる。
With the above settings, the emitted electrons will average 1~
The energy is about 10eV, which excites mercury and generates 254n.
It can efficiently emit ultraviolet rays of m (equivalent to about 4.9 eV) or ultraviolet rays of 185 nm (equivalent to about 6.7 eV).

なお、発光すべき気体は上述の水銀のような部
分的金属蒸気でも、アルゴンの如き全気体でもい
ずれでもよい。また、けい光体を介さず直接紫外
線等の放射をさせてもよい。要は、外管により形
成される気密空間内には1対の陰極が配され、該
両陰極の少なくとも一方は熱電子放射性陰極であ
り、両陰極の略中間にはメツシユ状陽極が配され
ていること。上記陽極と陰極間の電圧及び距離
は、一方の陰極より放射された電子が陽極を介し
て往復運動を継続するように設定されているこ
と。
The gas to be emitted may be a partial metal vapor such as the above-mentioned mercury or a full gas such as argon. Alternatively, ultraviolet light or the like may be emitted directly without using a phosphor. In short, a pair of cathodes are arranged in the airtight space formed by the outer tube, at least one of which is a thermionic emissive cathode, and a mesh-shaped anode is arranged approximately in the middle of the two cathodes. To be there. The voltage and distance between the anode and cathode are set so that electrons emitted from one cathode continue reciprocating motion through the anode.

上記気密空間には、放射(発光)さすべき気体
が極く低気圧(電子の弾性衝突及び電離衝突によ
るロスが全体入力に対して相対的に無視しうるレ
ベル。水銀であれば数mTorr程度内である)封
入されていることである。
In the above airtight space, the gas to be radiated (light-emitted) is at an extremely low pressure level (at a level where losses due to elastic collisions of electrons and ionization collisions are relatively negligible with respect to the overall input. In the case of mercury, it is within a few mTorr). ) is enclosed.

次に、本発明を効果的に実施し得る範囲につい
て説明する。
Next, the scope in which the present invention can be effectively implemented will be explained.

まず、電極間(陽極と陰極との間)距離は、10
cm以上では全体の寸法が大きくなりすぎ、また加
速電子の外管壁面への拡散ロスが増大し、有効発
光(紫外線放射)域の相対的限定が起るため実用
的に不利益となる。また0.5cm以下では陽極及び
陰極の構成がしにくく、電界の均一化も難かしく
実用に供し得ない。従つて、電極間距離は0.5〜
10cmが望ましい。
First, the distance between the electrodes (between the anode and the cathode) is 10
If it is more than cm, the overall size becomes too large, and the diffusion loss of accelerated electrons to the wall surface of the outer tube increases, resulting in a relative limitation of the effective light emission (ultraviolet radiation) range, which is disadvantageous in practice. Moreover, if it is less than 0.5 cm, it is difficult to construct the anode and cathode, and it is also difficult to make the electric field uniform, making it impractical. Therefore, the distance between the electrodes is 0.5~
10cm is preferable.

次に陽極と陰極間の印加電圧は5〜20Vが望ま
しい。水銀により所望の紫外線(254nm)を得
るには、電子を5eV前後に加速するのが最適であ
り、上述の如く電極間距離を0.5〜10cmとすると、
この間でそれぞれ5eV程度のエネルギが与えられ
るためには、約5Vの電圧が必要である。そして
電子の衝突ロス及び散乱ロスを考慮して変換効率
を約50%とすると、実質的には倍の電圧10Vを印
加するのが望ましく、さらに分布を考慮すれば最
適域は5〜20Vとなる。なお、5V以下では水銀
気体との衝突ロス等で、所望の電子エネルギに達
し得ない可能性が増大し、20V以上では電子エネ
ルギが強過ぎ、5eV前後を得る空間及び電子密度
が相対的に減少し、放射効率が低下してしまう。
Next, the voltage applied between the anode and the cathode is preferably 5 to 20V. In order to obtain the desired ultraviolet light (254 nm) using mercury, it is optimal to accelerate the electrons to around 5 eV, and as mentioned above, if the distance between the electrodes is 0.5 to 10 cm,
In order to provide energy of about 5 eV each during this time, a voltage of about 5 V is required. If we assume that the conversion efficiency is approximately 50% taking into consideration electron collision loss and scattering loss, it is practically desirable to apply twice the voltage of 10V, and if we further consider the distribution, the optimal range is 5 to 20V. . Note that below 5V, there is an increased possibility that the desired electron energy cannot be achieved due to collision loss with mercury gas, etc. Above 20V, the electron energy is too strong, and the space and electron density to obtain around 5eV are relatively reduced. However, the radiation efficiency decreases.

最後に、動作時における外管内面最冷温度は、
周囲温度を25℃とすると25〜100℃が望ましい。
水銀気体が最も効率良く254nmの紫外線放射を
するのは、周知の如く約40℃であり、蒸気圧にし
て約5×10-3Torrの近辺である。そして、これ
より高温になる程、より長波長スペクトルの発光
へとシフトし、逆に低温になると短波長スペクト
ルへとシフトする。従つて、水銀紫外〜近紫外放
射をけい光体を介して可視光変換させ、高効率の
照明用光源を得ようとする場合には、200〜400n
m域(具体的に該当するスペクトルは254nm、
297nm、313nm、365nm、366nm)の紫外放射
率が最も高いのは、大略25〜100℃と云える。25
℃以下では上記効率の低下と共に、水銀の蒸気圧
そのものも非常に小さくなるため、絶対放射強度
そのものが低下する。また100℃以上では、もは
や紫外の放射効率の低下が著しく、可視そのもの
の放射になつてしまう。
Finally, the coldest temperature on the inner surface of the outer tube during operation is
Assuming the ambient temperature is 25°C, a temperature of 25 to 100°C is desirable.
As is well known, mercury gas most efficiently emits ultraviolet light at 254 nm at a temperature of approximately 40° C. and a vapor pressure of approximately 5×10 −3 Torr. As the temperature rises higher than this, the emission shifts to a longer wavelength spectrum, and conversely, as the temperature becomes lower, the emission shifts to a shorter wavelength spectrum. Therefore, when converting mercury ultraviolet to near ultraviolet radiation into visible light through a phosphor to obtain a highly efficient illumination light source, it is necessary to use 200 to 400n.
m range (specifically applicable spectrum is 254nm,
It can be said that the highest ultraviolet emissivity of wavelengths (297 nm, 313 nm, 365 nm, 366 nm) is approximately 25 to 100°C. twenty five
At temperatures below .degree. C., the efficiency decreases and the vapor pressure of mercury itself becomes extremely small, resulting in a decrease in the absolute radiation intensity itself. Moreover, at temperatures above 100°C, the radiation efficiency of ultraviolet radiation decreases significantly, and radiation becomes visible radiation itself.

(発明の効果) 本発明は上記のように、メツシユ状陽極に対し
て対称的に、少なくとも一方が熱電子放射性を有
する1対の陰極を配設すると共に、両陰極間で電
子の往復動を継続せしめることにより、気密空間
内の放射気体との衝突確立を飛躍的に増大させる
ことができる。従つて、コンパクトな構成にもか
かわらず、効率的な放射を得ることができる光放
射電子管を提供することができる。
(Effects of the Invention) As described above, the present invention includes a pair of cathodes, at least one of which has thermionic emissivity, arranged symmetrically with respect to a mesh-like anode, and which allows electrons to move back and forth between the two cathodes. By continuing to do so, the probability of collision with the radiated gas in the airtight space can be dramatically increased. Therefore, it is possible to provide a light emitting electron tube that can obtain efficient radiation despite its compact configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例を示す簡略図、第3
図は本発明の基本構成を示す概念図、第4図は本
発明に係る一実施例を示す簡略図、第5図は本発
明に係る電子の運動状況及びエネルギ状況を示す
図である。
Figures 1 and 2 are simplified diagrams showing conventional examples;
The figure is a conceptual diagram showing the basic configuration of the present invention, FIG. 4 is a simplified diagram showing one embodiment of the present invention, and FIG. 5 is a diagram showing the state of movement and energy state of electrons according to the present invention.

Claims (1)

【特許請求の範囲】 1 内部に低気圧(10-2〜10-4Torrレベル)の
放射気体が封入され、放射に対して透光性を有す
る外管と、上記外管内の略両端に配設され、少な
くとも一方が熱電子放射性を有する一対の陰極
と、上記両陰極の略中間に配設された粗いメツシ
ユ状の陽極とより成る電子管であつて、上記陽極
と陰極間距離を0.5〜10cmとし、上記陽極と両陰
極間にそれぞれ5〜20Vの直流電圧を印加したこ
とを特徴とする光放射電子管。 2 上記放射気体の主気体を蒸気化水銀とし、動
作時の外管最冷温度を周囲温度25℃のとき25〜
100℃とし、外管の内面に紫外線励起形可視変換
けい光体を被着した特許請求の範囲第1項記載の
光放射電子管。
[Scope of Claims] 1. An outer tube in which a low-pressure radiation gas (10 -2 to 10 -4 Torr level) is sealed and is transparent to radiation; and an outer tube disposed at substantially both ends of the outer tube. An electron tube consisting of a pair of cathodes, at least one of which has thermionic emissivity, and a rough mesh-shaped anode disposed approximately midway between the two cathodes, the distance between the anode and cathode being 0.5 to 10 cm. A light-emitting electron tube characterized in that a DC voltage of 5 to 20 V is applied between the anode and both cathodes. 2 The main gas of the above radiation gas is vaporized mercury, and the coldest temperature of the outer tube during operation is 25~25°C when the ambient temperature is 25°C.
The light-emitting electron tube according to claim 1, wherein the temperature is 100° C. and an ultraviolet-excited visible conversion phosphor is coated on the inner surface of the outer tube.
JP10623083A 1983-06-13 1983-06-13 Light radiation electron tube Granted JPS59230254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10623083A JPS59230254A (en) 1983-06-13 1983-06-13 Light radiation electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10623083A JPS59230254A (en) 1983-06-13 1983-06-13 Light radiation electron tube

Publications (2)

Publication Number Publication Date
JPS59230254A JPS59230254A (en) 1984-12-24
JPH0424819B2 true JPH0424819B2 (en) 1992-04-28

Family

ID=14428318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10623083A Granted JPS59230254A (en) 1983-06-13 1983-06-13 Light radiation electron tube

Country Status (1)

Country Link
JP (1) JPS59230254A (en)

Also Published As

Publication number Publication date
JPS59230254A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
EP0054959A1 (en) Beam mode fluorescent lamp
JPH0424819B2 (en)
US7397193B2 (en) Discharge light source with electron beam excitation
JPS6212059A (en) Luminous radiation electron tube
JPH0636356B2 (en) Light emitting electron tube lighting device
JPS601750A (en) Light emission electron tube
JPS6212058A (en) Luminous radiation electron tube
JPS61190851A (en) Light-emission electron tube
JPS6012659A (en) System for controlling light-emitting electron tube
JPH0652653B2 (en) Light emitting electron tube
JPH0685314B2 (en) Light emitting electron tube
JPH0636353B2 (en) Light emitting electron tube
JPS6122560A (en) Light emitting electron tube
JPS61190852A (en) Light-emission electron tube
JPS63264859A (en) Light emitting electron tube
JPH0670899B2 (en) Light emitting electron tube
JPH0636354B2 (en) Light emitting electron tube
JPS603851A (en) Light-emitting electron tube
JPS61284050A (en) Light emitting electron tube
JPS6119049A (en) Light-emitting electron tube
JPH0582705B2 (en)
JPH0531266B2 (en)
JPS60136158A (en) Luminous radiation electron tube
JPS6122559A (en) Light emitting electron tube
JPH0685315B2 (en) Light emitting electron tube