JPH042480B2 - - Google Patents

Info

Publication number
JPH042480B2
JPH042480B2 JP60033465A JP3346585A JPH042480B2 JP H042480 B2 JPH042480 B2 JP H042480B2 JP 60033465 A JP60033465 A JP 60033465A JP 3346585 A JP3346585 A JP 3346585A JP H042480 B2 JPH042480 B2 JP H042480B2
Authority
JP
Japan
Prior art keywords
fuel
liquid level
aircraft
level
accelerometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60033465A
Other languages
Japanese (ja)
Other versions
JPS61193999A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60033465A priority Critical patent/JPS61193999A/en
Publication of JPS61193999A publication Critical patent/JPS61193999A/en
Publication of JPH042480B2 publication Critical patent/JPH042480B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、姿勢変動がある飛行体に取付けられ
た燃料タンク内の燃料を測定するに際して、特に
燃料レベルと液面傾斜値とに基づいて燃料重量残
量を演算して、演算出力の高精度化を図つた飛行
体の燃料重量残量の測定方法に関する。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention provides a method for measuring fuel in a fuel tank attached to a flying vehicle with attitude fluctuations, particularly based on the fuel level and the liquid level slope value. The present invention relates to a method for measuring the remaining fuel weight of an aircraft by calculating the remaining fuel weight and improving the accuracy of the calculation output.

<従来の技術> 従来の技術を飛行体の代表である航空機に取付
けられた燃料重量残量を測定する装置を例にとつ
て説明する。尚、前記燃料の液面レベルを測定す
る燃料レベルセンサは航空機に用いられる場合は
静電容量式のタンクユニツトが一般に広く用いら
れるので、以下「T/U」(タンクユニツトの略
称)と表現する。尚このシステムでは変化がリニ
アなものを使用する。
<Prior Art> A conventional technology will be described using as an example a device for measuring the remaining fuel weight attached to an aircraft, which is a representative type of flying vehicle. In addition, when the fuel level sensor for measuring the fuel level is used in an aircraft, a capacitance type tank unit is generally widely used, so it is hereinafter expressed as "T/U" (abbreviation for tank unit). . Note that this system uses a system with linear changes.

第3図は従来の技術の説明に供する図である。 FIG. 3 is a diagram for explaining the conventional technology.

この場合、燃料タンク内の燃料の液面レベルは
T/Uで測定し、燃料液面は加速度に対して垂直
になることを利用して燃料の液面傾斜角は加速度
計を用いて測定し、これら燃料レベルと液面傾斜
角に基づいて燃料重量残量を演算する必要があ
る。
In this case, the fuel level in the fuel tank is measured by T/U, and the angle of inclination of the fuel level is measured using an accelerometer, taking advantage of the fact that the fuel level is perpendicular to acceleration. , it is necessary to calculate the remaining fuel weight based on these fuel levels and liquid level inclination angles.

以下、従来の技術を第3図で説明する。 The conventional technique will be explained below with reference to FIG.

第3図において、T/U1(図では(T/U)
a,…(T/U)cから成る)は燃料タンクT内
の燃料Qの燃料レベル(図ではZ1,…Z3)を測定
し、航空機のX方向、Y方向、Z方向の加速度を
加速度計3で測定し、燃料演算部2で加速度に基
づいて液面傾斜角を演算した上でこの液面傾斜角
と燃料レベルに基づいて燃料重量残量Wを演算し
出力するものである。
In Figure 3, T/U1 ((T/U in the figure)
a,...(T/U)c) measures the fuel level of fuel Q in the fuel tank T (Z 1 ,...Z 3 in the figure) and calculates the acceleration of the aircraft in the X, Y, and Z directions. The fuel level is measured by an accelerometer 3, a liquid level inclination angle is calculated based on the acceleration in a fuel calculating section 2, and a fuel weight remaining amount W is calculated and output based on this liquid level inclination angle and the fuel level.

尚、燃料演算部2は、T/U1が接続される燃
料入力インターフエイス(以下「I/F」と略称
する)21と、液面傾斜角を演算し、この液面傾
斜角と燃料レベルに基づいて燃料重量残量Wを演
算する演算機能22と、各設定箇所に応じた重み
係数を記憶する記憶要素(ROM)23と、適宜
必要な情報をアクセスするランダムアクセスメモ
リ(RAM)24と、この燃料演算結果を外部に
出力する出力I/F25と、加速度信号が入力す
る加速度入力I/F26とから成る。
The fuel calculation unit 2 calculates the liquid level inclination angle with the fuel input interface (hereinafter abbreviated as "I/F") 21 to which the T/U 1 is connected, and calculates the liquid level inclination angle and the fuel level. a calculation function 22 that calculates the fuel weight remaining amount W based on the fuel weight, a storage element (ROM) 23 that stores weighting coefficients corresponding to each setting location, and a random access memory (RAM) 24 that accesses necessary information as appropriate; It consists of an output I/F 25 that outputs this fuel calculation result to the outside, and an acceleration input I/F 26 that inputs an acceleration signal.

<発明が解決しようとする問題点> ところで、このような燃料測定システムは、航
空機の翼の取付け角の変化等に対して加速度計3
の信号から傾斜補正値を得るのでは充分のフオロ
ーができない。大型航空機の場合、燃料タンクは
翼内に有り、地上・空中の諸条件により上反角
(機体に対する取付角度)が変化したり加速度が
加わつたりして正確な液面傾斜(燃料タンクに対
する燃料の液面の傾き)を検出することが難し
く、結果的に燃料残量出力の誤差を生じる原因と
なつている。液面傾斜角を測定する加速度計3は
飛行体の胴体内に設置されるのが普通である。し
かるに燃料タンクTが設置される翼は一般に取付
け角が変動することが考えられるので、この点を
考えた場合は加速度計3は翼内に設置されなけれ
ば正確な傾斜角は測定ができず誤差となる。翼の
取付け角が変動する場合として、地上と空中とで
は上反角が大きく変ること、地上にあつて燃料供
給に際して燃料Qが増加するに従つて翼の撓みが
増大すること等が考えられる。加速度計3の加速
度信号で液面傾斜補正を行なう場合、全体が変化
しない場合はよいが、上記したように翼が撓む状
態にあつては撓みの誤差が発生する。従つて、正
確な燃料重量残量Wの値を把握することができな
い。
<Problems to be Solved by the Invention> By the way, such a fuel measurement system does not measure the accelerometer 3 in response to changes in the installation angle of the aircraft wing.
Obtaining the tilt correction value from the signal does not provide sufficient follow-up. In the case of large aircraft, the fuel tanks are located inside the wings, and the dihedral angle (mounting angle relative to the aircraft) changes depending on various conditions on the ground and in the air, and when acceleration is applied, the fuel tank is located within the wing, and the accurate liquid level slope (fuel tank relative to the fuel It is difficult to detect the slope of the liquid level, which results in an error in the remaining fuel output. The accelerometer 3 for measuring the liquid level inclination angle is usually installed in the fuselage of the aircraft. However, since the installation angle of the wing on which the fuel tank T is installed generally fluctuates, taking this into consideration, the accelerometer 3 must be installed inside the wing to measure the accurate inclination angle, resulting in errors. becomes. Possible cases in which the attachment angle of the wing changes include that the dihedral angle changes greatly between on the ground and in the air, and that the deflection of the wing increases as the fuel Q increases during fuel supply on the ground. When liquid level inclination correction is performed using the acceleration signal from the accelerometer 3, it is fine if the whole does not change, but if the blade is in a state where it is deflected as described above, a deflection error will occur. Therefore, it is not possible to accurately determine the value of the fuel weight remaining amount W.

ところで、液面傾斜補正を最低3本のT/Uで
燃料レベルと共に得ることも当然考えられるが、
3本では傾斜角に対するダイナミツクレンジが狭
く、ダイナミツクレンジを広げようとする必然的
にT/Uの数が沢山必要となる。このようにする
と全体の重量が増加し、保守や燃費や等の面で好
ましくない。という問題点がある。
By the way, it is naturally possible to obtain liquid level slope correction along with the fuel level using at least three T/Us,
With three, the dynamic range with respect to the inclination angle is narrow, and in order to widen the dynamic range, a large number of T/Us are inevitably required. This increases the overall weight, which is unfavorable in terms of maintenance, fuel consumption, etc. There is a problem.

本発明はこのような従来の技術の問題点に鑑み
て成されたものであつて、姿勢変動がある飛行体
に設けられた燃料タンク内の燃料の燃料重量残量
を測定する方法において、従来は飛行体が地上や
空中にあるか否かに拘らず、燃料レベルはT/U
で測定し液面傾斜演算は加速度計で測定した値を
利用する技術、又は全てをT/Uで測定し演算し
ていたものを、本発明にあつては燃料レベルは
T/Uで測定し、液面傾斜演算は、地上において
は3本のT/Uで行ない、空中では加速度計によ
つて行なうことにより、全体の液面傾斜演算精度
を向上して、この各液面傾斜演算値とT/Uによ
る燃料レベルとに基づいて飛行体の翼の変形に左
右されることなく正確かつ高精度に燃料重量残量
を測定できる飛行体の燃料重量残量の測定方法を
提供することを目的とする。
The present invention has been made in view of the problems of the conventional technology, and is a method for measuring the remaining amount of fuel weight in a fuel tank installed in an aircraft that has attitude fluctuations. The fuel level is T/U regardless of whether the aircraft is on the ground or in the air.
The fuel level slope calculation is performed using a technology that uses the value measured with an accelerometer, or everything is measured and calculated using T/U, but in the present invention, the fuel level is measured using T/U. The liquid level slope calculation is performed by three T/Us on the ground, and by an accelerometer in the air, improving the overall liquid level slope calculation accuracy and comparing each liquid level slope calculation value with The purpose of the present invention is to provide a method for measuring the remaining fuel weight of an aircraft, which can accurately and highly accurately measure the remaining fuel weight based on the fuel level determined by T/U, without being affected by the deformation of the wings of the aircraft. shall be.

<問題点を解決するための手段> 上述の目的を達成するための本発明は、飛行体
に設けられた燃料タンク内の燃料の液面レベルを
燃料レベルセンサで測定し、前記飛行体の加速度
を加速度計で測定し、これら各測定値に基づいて
燃料重量残量を測定する装置において、前記飛行
体に設けられてこの飛行体の離着陸に伴つて
ON/OFFする離着陸確認スイツチ4と、少なく
とも3本配置される燃料レベルセンサ(T/U1
と、該燃料レベルセンサ、前記離着陸確認スイツ
チ及び前記加速度計3が接続されて燃料重量残量
を演算する燃料演算部20とを具備し、該燃料演
算部で、前記離着陸確認スイツチの信号により前
記飛行体が空中にいる時を認識した場合は前記加
速度計の信号から前記燃料の空中時の液面傾斜値
を演算し、前記離着陸確認スイツチの信号により
前記飛行体が地上にいる時を認識した場合は前記
少なくとも3本の燃料レベルセンサの信号から前
記燃料の地上時の液面傾斜値を演算し、前記空中
時の液面傾斜値又は前記地上時の液面傾斜値と前
記燃料レベルセンサで測定される前記液面レベル
とから前記燃料重量残量を演算する飛行体の燃料
重量残量の測定方法である。
<Means for Solving the Problems> To achieve the above-mentioned object, the present invention measures the liquid level of fuel in a fuel tank provided in a flying object with a fuel level sensor, and calculates the acceleration of the flying object. A device that measures the remaining fuel weight based on each of these measured values using an accelerometer, which is installed on the aircraft and measures the amount of fuel remaining as the aircraft takes off and lands.
Takeoff and landing confirmation switch 4 that turns ON/OFF and at least three fuel level sensors (T/U 1 )
and a fuel calculation unit 20 to which the fuel level sensor, the takeoff and landing confirmation switch, and the accelerometer 3 are connected to calculate the remaining fuel weight, and the fuel calculation unit uses the signal from the takeoff and landing confirmation switch to calculate the amount of fuel remaining. When it is recognized that the flying object is in the air, a liquid level slope value of the fuel when in the air is calculated from the signal of the accelerometer, and when the flying object is on the ground is recognized based on the signal of the takeoff and landing confirmation switch. In this case, the liquid level slope value of the fuel when on the ground is calculated from the signals of the at least three fuel level sensors, and the liquid level slope value when the fuel is in the air or the liquid level slope value when on the ground and the fuel level sensor are calculated. This is a method for measuring the remaining fuel weight of an aircraft by calculating the remaining fuel weight from the measured liquid level.

<実施例> 以下本発明の実施例を図面に基づき詳細に説明
する。尚、以下に示す図面と第3図おいて重複す
る部分は同一番号を付してその説明は省略する。
<Examples> Examples of the present invention will be described in detail below based on the drawings. It should be noted that overlapping parts in the drawings shown below and FIG.

第1図は本発明の具体的実施例を示す図であ
る。
FIG. 1 is a diagram showing a specific embodiment of the present invention.

第1図において、4は航空機の例えば着陸足の
部分に設けられてこの航空機の離着陸に伴つて
ON/OFFする離着陸確認スイツチ(以下「GAS
SW」と略称する)、20はT/U1とGAS SW
4と加速度計3とが接続され燃料重量残量Wを演
算する燃料演算部(26はGAS SW I/Fであ
る)である。この燃料演算部20は、GAS SW
4の信号により航空機が空中にいる時を認識した
場合、加速度計3の信号から燃料Qの空中時の液
面傾斜値を演算し、GAS SW4の信号により航
空機が地上にいる時を認識した場合は、T/U1
の信号から燃料Qの地上時の液面傾斜値を演算
し、空中時の液面傾斜値又は前記地上時の液面傾
斜値とT/U1で測定される燃料の液面レベルの
値とから燃料重量残量Wを演算する。
In Fig. 1, numeral 4 is provided on, for example, the landing leg of the aircraft and
ON/OFF takeoff and landing confirmation switch (hereinafter referred to as “GAS”)
20 is T/U1 and GAS SW
4 and the accelerometer 3 are connected to a fuel calculation unit (26 is a GAS SW I/F) that calculates the remaining fuel weight W. This fuel calculation unit 20 is a GAS SW
When it is recognized that the aircraft is in the air based on the signal of 4, the liquid level slope value of fuel Q in the air is calculated from the signal of the accelerometer 3, and when it is recognized that the aircraft is on the ground based on the signal of GAS SW4. is T/U1
Calculate the liquid level slope value of the fuel Q when on the ground from the signal of Calculate the fuel weight remaining amount W.

以下、特に、加速度計3の信号から燃料Qの空
中時の液面傾斜値を演算する場合と、T/U1の
信号から燃料Qの地上時の液面傾斜値を演算する
場合とを説明する。
In the following, in particular, the case where the liquid level slope value of the fuel Q when in the air is calculated from the signal of the accelerometer 3, and the case where the liquid level slope value of the fuel Q when on the ground is calculated from the signal of T/U1 will be explained. .

燃料演算部20はGAS SW4の接点情報を入
力して航空機が地上にあるか空中にいるかを判断
する。
The fuel calculation unit 20 inputs the contact information of the GAS SW 4 and determines whether the aircraft is on the ground or in the air.

≪航空機が地上にある場合≫ この時の夫々の(T/U)a,(T/U)b,
(T/U)cの液面レベルをZ1,Z2,Z3とする。
又、これらのx座標、y座標が夫々(x1,y1),
(x2,y2),(x3,y3)であれば、機体のピツチ方
向、ロール方向の液面傾斜角θe,eを燃料演算
部20で演算する。
<<When the aircraft is on the ground>> At this time, each of (T/U)a, (T/U)b,
Let the liquid level of (T/U)c be Z 1 , Z 2 , and Z 3 .
Also, these x and y coordinates are (x 1 , y 1 ), respectively.
If (x 2 , y 2 ), (x 3 , y 3 ), the fuel calculation unit 20 calculates the liquid level inclination angles θe and e in the pitch direction and roll direction of the aircraft.

ここで、x座標、y座標の点(O,O,Z0)を
通り、ピツチ角θe,ロール角eなる平面は、 Z=x・tanθe+y・tane+Z0 ……(3) で表わされる。この平面上に点(x1,y1,Z1),
(x2,y2,Z2),(x3,y3,Z3)があるので、夫々、 Z1=x1・tanθe+y1・tane+Z0 ……(4) Z2=x2・tanθe+y2・tane+Z0 ……(5) Z3=x3・tanθe+y3・tane+Z0 ……(6) を満す。従つて、これらの式を連立方程式として
θ,について解けば、 θe=tan-1・{(Z3−Z1)(y3−y2) −(Z3−Z2)(y3−y1)} /{(x3−x1)(y3−y2) −(x3−x2)(y3−y1)} ……(1) e=tan-1・{(Z3−Z2)(x3−x1) −(Z3−Z1)(x3−x2)} /{(x3−x1)(y3−y2) −(x3−x2)(y3−y1)} ……(2) が得られる。即ち、T/U1を用いて燃料Qの地
上時の液面傾斜値を得ることができる。
Here, a plane passing through the x-coordinate and y-coordinate point (O, O, Z 0 ) and having a pitch angle θe and a roll angle e is expressed as Z=x・tan θe+y・tane+Z 0 (3). On this plane, there are points (x 1 , y 1 , Z 1 ),
(x 2 , y 2 , Z 2 ) and (x 3 , y 3 , Z 3 ), respectively, Z 1 = x 1・tanθe+y 1・tane+Z 0 ...(4) Z 2 =x 2・tanθe+y 2・tane+Z 0 ……(5) Z 3 =x 3・tanθe+y 3・tane+Z 0 ……(6) is satisfied. Therefore, if these equations are solved for θ as simultaneous equations, θe=tan -1・{(Z 3 −Z 1 )(y 3 −y 2 ) −(Z 3 −Z 2 )(y 3 −y 1 )} /{(x 3 −x 1 )(y 3 −y 2 ) −(x 3 −x 2 )(y 3 −y 1 )} ……(1) e=tan −1・{(Z 3 −Z 2 )(x 3 −x 1 ) −(Z 3 −Z 1 )(x 3 −x 2 )} / {(x 3 −x 1 )(y 3 −y 2 ) −(x 3 −x 2 )(y 3 −y 1 )} ...(2) is obtained. That is, the liquid level slope value of the fuel Q on the ground can be obtained using T/U1.

≪航空機が空中にある場合≫ 第2図は加速度と液面の関係図である。≪When the aircraft is in the air≫ FIG. 2 is a diagram showing the relationship between acceleration and liquid level.

航空機の液面は加速度を受けても傾く。このよ
うな液面の変化は、タンクを基準にしてタンクに
対するピツチ角、ロール角の変化として扱うこと
ができる。従つて、GAS SW4の信号により航
空機が空中にいる時を認識した場合は、加速度計
3からx,y,z方向の加速度Ax,Ay,Azを
入力し、燃料の空中時の液面傾斜値を演算するこ
とができる。燃料が加速度に対し平衡した場合、
航空機のピツチ方向、ロール方向の液面傾斜角
θs,sは次式に基づいて燃料演算部20で演算
される。
The liquid level of an aircraft tilts even when subjected to acceleration. Such a change in the liquid level can be treated as a change in pitch angle and roll angle with respect to the tank with respect to the tank. Therefore, when it is recognized that the aircraft is in the air based on the signal from GAS SW4, input the accelerations Ax, Ay, and Az in the x, y, and z directions from the accelerometer 3, and calculate the liquid level slope value of the fuel when it is in the air. can be calculated. When the fuel is in equilibrium with the acceleration,
The liquid level inclination angles θs and s in the pitch and roll directions of the aircraft are calculated by the fuel calculation unit 20 based on the following equations.

液面Q1は加速度αの方向に対し直角な平面で
平衡する。この時、ピツチ方向の液面傾斜角は第
2図から、 θs=tan-1(Ax/Az) ……(7) となる。ロール方向の液面傾斜角についても同様
にして、 s=tan-1(Ay/Az) ……(8) となる。即ち、燃料演算部20は、各加速度Ax,
Ay,Azを入力して(7)、(8)式から、燃料の空中時
の液面傾斜値を演算することができる。
The liquid level Q 1 is in equilibrium on a plane perpendicular to the direction of acceleration α. At this time, the liquid level inclination angle in the pitch direction is θs=tan -1 (Ax/Az)...(7) from Figure 2. Similarly, for the liquid level inclination angle in the roll direction, s=tan -1 (Ay/Az)...(8). That is, the fuel calculation unit 20 calculates each acceleration Ax,
By inputting Ay and Az, the liquid level slope value of the fuel in the air can be calculated from equations (7) and (8).

以上のことから、空中時の液面傾斜値又は前記
地上時の液面傾斜値及びT/U1で測定される燃
料の液面レベルの値を用いて現在の飛行体の燃料
重量残量Wが燃料演算部20で演算される。その
演算式の一例である近似演算式は、 W=Zi+K1θ+K2+K3θ ……(9) となる。但し、K1,K2,K3は燃料レベルZi及び
液面傾斜角演算値θの区間に対応して定まる定
数であり、折線近似式で求めたものである。
From the above, the current remaining fuel weight W of the aircraft can be calculated using the liquid level slope value when in the air or the liquid level slope value when on the ground, and the value of the fuel level measured at T/U1. It is calculated by the fuel calculation section 20. The approximate calculation formula, which is an example of the calculation formula, is as follows: W=Zi+K 1 θ+K 2 +K 3 θ (9). However, K 1 , K 2 , and K 3 are constants that are determined corresponding to the intervals of the fuel level Zi and the liquid level inclination angle calculation value θ, and are obtained using a polygonal line approximation formula.

上述した説明は、T/Uを3個設置した場合で
説明したが、必ずしもこれに限定されるものでは
なく、例えば4個以上T/Uを設置するようにし
ても本発明を実現することは可能である。
Although the above explanation has been given for the case where three T/Us are installed, the present invention is not necessarily limited to this, and the present invention can be realized even if four or more T/Us are installed, for example. It is possible.

又、本発明の飛行体の燃料測定システムは、上
述の航空機に用いられることに限定されることな
く、同様の機能、構成を有するものであれば広く
利用できることはいうまでもない。
Further, it goes without saying that the fuel measuring system for an aircraft according to the present invention is not limited to being used in the above-mentioned aircraft, but can be widely used as long as it has similar functions and configurations.

<発明の効果> 以上、実施例と共に具体的に本発明を説明した
ように、本発明によれば :地上と空中で傾斜検出方法を変えることによ
り、各々の方法の利点が生かされる。以下、燃
料タンクが翼の内にある民間機の場合について
見ると、 a:地上においては、航空機の機体は傾いた姿
勢をとることはなく、むしろ翼が下方向に撓
むことが問題となるので、T/Uによる液面
傾斜検出方式はこの翼の撓みを含めた傾斜検
出ができるので、翼の撓みが誤差とならず、
翼が撓むことにより、燃料に浸るT/Uの数
が増えるので、この方式の欠点である『最低
3本のT/Uが燃料に浸る必要があるので、
T/Uの数を増やす必要がある』という心配
がない。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention: By changing the inclination detection method on the ground and in the air, the advantages of each method can be utilized. Below, we look at the case of a commercial aircraft whose fuel tank is inside the wing: a: On the ground, the aircraft body does not take a tilted attitude, but rather the problem is that the wing bends downward. Therefore, the liquid level slope detection method using T/U can detect the slope including the deflection of the blade, so the deflection of the blade does not cause an error.
As the wing flexes, the number of T/Us immersed in fuel increases, so the disadvantage of this method is that ``At least three T/Us need to be immersed in fuel.
There is no need to worry about the need to increase the number of T/Us.

b:空中においては、航空機は上昇・下降・旋
回等をするため大きく傾くので、傾斜角のダ
イナミツクレンジの広い加速度による液面検
出方式が有利となる。
b: In the air, an aircraft tilts significantly as it ascends, descends, turns, etc., so a liquid level detection method that uses a dynamic range of tilt angle and wide acceleration is advantageous.

c:このように、機体のその時の状態に応じて
適切なセンサを用いて液面傾斜値を正確に得
ることにより、この液面傾斜値とT/Uで得
られた燃料レベルとに基づいて高精度で燃料
残量Wが得られる。
c: In this way, by accurately obtaining the liquid level slope value using an appropriate sensor according to the aircraft's current state, the fuel level can be calculated based on this liquid level slope value and the fuel level obtained at T/U. The remaining fuel amount W can be obtained with high accuracy.

:このような構成(最低3個のT/Uと加速度
計とGAS SW)なので、どのような形状の燃
料タンクにも設置することができる。
:With this configuration (at least 3 T/Us, accelerometers, and GAS SW), it can be installed in any shape of fuel tank.

:燃料の空中時の液面傾斜値を演算することが
できるようにしたので、測定精度の向上が図れ
た。
:The measurement accuracy has been improved by making it possible to calculate the liquid level slope value when the fuel is in the air.

:T/Uを少なくとも3個で構成している構造
なので、従来技術に比較して故障等に対しても
強くなり、高信頼性を得ることが出来ると共
に、全体としてのT/Uの数は、従来技術で得
られる精度と対応させた場合少なくてよい。
:Since the structure consists of at least three T/Us, it is more resistant to failures than conventional technology, achieving high reliability, and the total number of T/Us can be reduced. , if compared to the accuracy obtained with the prior art.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的実施例を示す図、第2
図は加速度と液面の関係図、第3図は従来の技術
の説明に供する図である。 1……燃料レベルセンサ(T/U)、2,20
……燃料演算部、3……加速度計、4……GAS
SW。
Figure 1 is a diagram showing a specific embodiment of the present invention, Figure 2 is a diagram showing a specific embodiment of the present invention.
The figure is a diagram showing the relationship between acceleration and liquid level, and FIG. 3 is a diagram for explaining the conventional technology. 1...Fuel level sensor (T/U), 2,20
...Fuel calculation unit, 3...Accelerometer, 4...GAS
SW.

Claims (1)

【特許請求の範囲】[Claims] 1 飛行体に設けられた燃料タンク内の燃料の液
面レベルを燃料レベルセンサで測定し、前記飛行
体の加速度を加速度計で測定し、これら各測定値
に基づいて燃料重量残量を測定する方法におい
て、前記飛行体に設けられてこの飛行体の離着陸
に伴つてON/OFFする離着陸確認スイツチ4
と、少なくとも3本配置される燃料レベルセンサ
(T/U1)と、該燃料レベルセンサ、前記離着陸
確認スイツチ及び前記加速度計3が接続されて燃
料重量残量を演算する燃料演算部20とを具備
し、該燃料演算部で、前記離着陸確認スイツチの
信号により前記飛行体が空中にいる時を認識した
場合は前記加速度計の信号から前記燃料の空中時
の液面傾斜値を演算し、前記離着陸確認スイツチ
の信号により前記飛行体が地上にいる時を認識し
た場合は前記少なくとも3本の燃料レベルセンサ
の信号から前記燃料の地上時の液面傾斜値を演算
し、前記空中時の液面傾斜値又は前記地上時の液
面傾斜値と前記燃料レベルセンサで測定される前
記液面レベルとから前記燃料重量残量を演算する
飛行体の燃料重量残量の測定方法。
1. Measuring the liquid level of fuel in a fuel tank provided on a flying object with a fuel level sensor, measuring the acceleration of the flying object with an accelerometer, and measuring the remaining fuel weight based on each of these measured values. In the method, a takeoff and landing confirmation switch 4 provided on the aircraft and turned ON/OFF when the aircraft takes off and lands;
, at least three fuel level sensors (T/U 1 ), and a fuel calculating section 20 to which the fuel level sensors, the takeoff and landing confirmation switch, and the accelerometer 3 are connected to calculate the remaining fuel weight. When the fuel calculation unit recognizes that the flying object is in the air based on the signal of the takeoff and landing confirmation switch, calculates the liquid level slope value of the fuel when it is in the air from the signal of the accelerometer; When it is recognized that the aircraft is on the ground based on the signal from the takeoff and landing confirmation switch, the slope value of the fuel level when on the ground is calculated from the signals from the at least three fuel level sensors, and the liquid level when in the air is calculated. A method for measuring a remaining fuel weight of an aircraft, wherein the remaining fuel weight is calculated from an inclination value or the liquid level inclination value on the ground and the liquid level measured by the fuel level sensor.
JP60033465A 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile Granted JPS61193999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033465A JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033465A JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Publications (2)

Publication Number Publication Date
JPS61193999A JPS61193999A (en) 1986-08-28
JPH042480B2 true JPH042480B2 (en) 1992-01-17

Family

ID=12387292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033465A Granted JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Country Status (1)

Country Link
JP (1) JPS61193999A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810346B2 (en) * 1986-08-21 1996-01-31 キヤノン株式会社 Toner for electrostatic image development
JPH04131715A (en) * 1990-09-25 1992-05-06 Yazaki Corp Level detecting system for automobile fuel
US6467337B2 (en) 1998-05-29 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Device for calculating cruising range and method therefor
EP1001155A4 (en) * 1998-05-29 2006-02-22 Mitsubishi Electric Corp Method and device for calculating cruising range
JP2005345373A (en) * 2004-06-04 2005-12-15 Aloka Co Ltd Interface detecting method, and interface detector
GB2510634B (en) * 2013-02-12 2015-03-04 Ge Aviat Systems Ltd Methods of monitoring hydraulic fluid levels in an aircraft

Also Published As

Publication number Publication date
JPS61193999A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
US5138559A (en) System and method for measuring liquid mass quantity
US5072615A (en) Apparatus and method for gauging the amount of fuel in a vehicle fuel tank subject to tilt
US6456905B2 (en) Method and apparatus for limiting attitude drift during turns
US4949269A (en) Process and system for determining the longitudinal position of the center of gravity of an aircraft provided with an adjustable horizontal stabilizer
EP0082874B1 (en) Strut mounted multiple static tube
GB2428922A (en) Altitude measurement system for a ground effect vehicle
EP1256863B1 (en) Method to calculate sideslip angle and correct static pressure for sideslip effects using inertial information
JPS60623B2 (en) Method for measuring changes in angle of attack and prog for the same
US3868074A (en) Method and apparatus for attitude detection and stabilization of an airborne vehicle using the electrostatic field in the earth{3 s atmosphere
JPH0249136A (en) Apparatus for measuring effect of transverse window on vehicle, especially automobile or the like
EP1256811A2 (en) Multi-function air data probes using neural network for sideslip compensation
US5590853A (en) Aircraft control system
JPH042480B2 (en)
US20180299312A1 (en) Aircraft fuel gauging method using virtual probes
JPH07507144A (en) Aerodynamic pressure sensor system
GB2421083A (en) Magnetic Null Accelerometer
CN104748734A (en) Vehicle-mounted electronic altitude compass having dip angle compensation function
JPH0827192B2 (en) How to measure angles and angle characteristic curves
US4199715A (en) Method and apparatus for defining an equipotential line or _surface in the earth&#39;s atmosphere and measuring the misalignment of a _selected line or plane relative to an equipotential line or surface
US3391568A (en) Navigation system
US3873050A (en) Attitude sensing method and apparatus
US4766767A (en) Method for determining the horizontal airspeed of helicopters in higher speed ranges
JPH01136028A (en) Liquid level measuring apparatus
Kaletka Evaluation of the helicopter low airspeed system lassie
KR100447243B1 (en) Aircraft Attitude Measurement using the Difference of Atmospheric Pressures