JPH04247411A - Fiber input/output type optical parts - Google Patents

Fiber input/output type optical parts

Info

Publication number
JPH04247411A
JPH04247411A JP3032323A JP3232391A JPH04247411A JP H04247411 A JPH04247411 A JP H04247411A JP 3032323 A JP3032323 A JP 3032323A JP 3232391 A JP3232391 A JP 3232391A JP H04247411 A JPH04247411 A JP H04247411A
Authority
JP
Japan
Prior art keywords
fiber
optical
circular
hole
cylindrical sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032323A
Other languages
Japanese (ja)
Inventor
Yoichi Suzuki
洋一 鈴木
Hideaki Yuri
油利 秀明
Toru Shiraki
徹 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3032323A priority Critical patent/JPH04247411A/en
Publication of JPH04247411A publication Critical patent/JPH04247411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To lower the coupling loss of light in the fiber input/output type optical parts, such as optical isolator, which are combined with an optical element part and a fiber collimator by easily aligning optical axes by the simple adjustment alone even with less severe working accuracy. CONSTITUTION:A non-antimetrical part 10 and the fiber collimator 12 are built into a housing 14. The housing has a circular through-hole 16 for insertion of the collimator and holds the non-antimetrical part by inclining this part with the central axis thereof. The collimator has a cylindrical sleeve 20 having the circular through-hole 26 inclined with the central axis, a spherical lens 22, and a ferrule 24 with a fiber diagonally polished at the front end. A cylindrical sleeve is inserted into the housing and the ferrule into the cylindrical sleeve and the position where the coupling loss of light is minimized is found by rotating the sleeve and the ferrule. The sleeve and the ferrule are then fixed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光学素子部とファイバ
コリメータとを組み合わせ、光学素子部と光ファイバと
が光の空間伝播によって結合する形式のファイバ入出力
型光部品に関するものである。更に詳しく述べると、光
学素子部を保持する筒状の筐体及びフェルールを保持す
る円筒状スリーブとに傾斜した円形貫通孔を設けて互い
に嵌合させることにより、それらの相対的な回転で光軸
合わせを可能とした光部品に関するものである。この技
術は、例えば非相反機能をもつ光学素子部の両側にファ
イバコリメータを配設した偏光無依存型光アイソレータ
などに利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber input/output type optical component that combines an optical element section and a fiber collimator, and the optical element section and the optical fiber are coupled by spatial propagation of light. More specifically, by providing an inclined circular through hole in the cylindrical housing that holds the optical element and the cylindrical sleeve that holds the ferrule, and making them fit together, the optical axis can be adjusted by their relative rotation. This relates to optical components that can be combined. This technique is used, for example, in polarization-independent optical isolators in which fiber collimators are disposed on both sides of an optical element section with a non-reciprocal function.

【0002】0002

【従来の技術】以下、本発明の典型的な適用例である偏
光無依存型光アイソレータの場合について説明する。光
アイソレータは、光通信などにおいてレーザ光源への反
射戻り光を除去するために用いられている。光アイソレ
ータの形式は種々あるが、その一つに偏光子として楔形
のルチル単結晶等の一軸性単結晶(複屈折偏光板)を使
用し、偏光依存性を無くした入出力ファイバ型光アイソ
レータがある。
2. Description of the Related Art The case of a polarization-independent optical isolator, which is a typical application example of the present invention, will be described below. Optical isolators are used in optical communications and the like to remove reflected light returning to a laser light source. There are various types of optical isolators, one of which is an input/output fiber type optical isolator that uses a uniaxial single crystal (birefringent polarizing plate) such as a wedge-shaped rutile single crystal as a polarizer and eliminates polarization dependence. be.

【0003】この種の光アイソレータは、円筒状の永久
磁石内に45度ファラデー回転子を装着し、その両側に
それぞれ楔形の一軸性単結晶からなる偏光子を、それら
の光学軸が45度食い違うように設け、更にその両側に
それぞれレンズとファイバ付きフェルールを配置するこ
とによって構成している。ここで技術的には、両光ファ
イバ間での光の結合損失を極力小さくすることが肝要で
ある。
This type of optical isolator has a 45-degree Faraday rotator mounted inside a cylindrical permanent magnet, and polarizers made of wedge-shaped uniaxial single crystals are placed on both sides of the rotator, so that their optical axes are offset by 45 degrees. It is constructed by arranging a lens and a ferrule with a fiber on each side of the ferrule. Technically, it is important here to minimize the coupling loss of light between the two optical fibers.

【0004】このような光アイソレータの組立工程とし
ては、レンズとフェルールとを備えたコリメータを作製
し、その後にコリメータ同士の結合をとる方法と、まず
フェルールを筐体に固定し、後にレンズを挿入・調整し
て結合をとる方法とがある。これら使用部材の固定は、
部材がブロック状の場合はテーパ・ブロックを間隙に挿
入することによって行い、部材が円筒状の場合は寸法精
度を高めて間隙を無くしたり、ネジなどで押し付けるこ
とによって行っている。
[0004] As for the assembly process of such an optical isolator, there is a method in which a collimator equipped with a lens and a ferrule is made and then the collimators are coupled together, and a method in which the ferrule is first fixed to a housing and then the lens is inserted. - There is a method of adjusting and combining. Fixing of these used parts is
If the member is block-shaped, this is done by inserting a tapered block into the gap, and if the member is cylindrical, this is done by increasing the dimensional accuracy to eliminate the gap or by pressing it with a screw or the like.

【0005】[0005]

【発明が解決しようとする課題】しかし、部材がブロッ
ク状である場合は、小型化並びに調整が困難であり、固
定箇所が円対称でないため比較的温度特性が悪くなる。 また部材が円筒状の場合は精度出しが困難であり、仮に
精度がでたとしても非相反部やフェルールの傾きによっ
て光が曲がったり、平行にシフトしたりして、無調整で
結合をとることは困難である。ネジなどを用いて押し付
けるにしても、その光軸合わせ(位置合わせ)作業は必
ずしも容易ではない。
However, if the member is block-shaped, it is difficult to miniaturize and adjust it, and the fixing locations are not circularly symmetrical, resulting in relatively poor temperature characteristics. In addition, if the component is cylindrical, it is difficult to achieve precision, and even if precision could be achieved, the light may be bent or shifted parallel due to the inclination of the non-reciprocal part or ferrule, making it difficult to achieve coupling without adjustment. It is difficult. Even if it is pressed using a screw or the like, the optical axis alignment (positioning) work is not necessarily easy.

【0006】本発明の目的は、上記のような従来技術の
欠点を解消し、ゆるい加工精度でも簡単な調整のみによ
って容易に光軸を合わせることができ、光の結合損失を
低減できるファイバ入出力型光部品を提供することであ
る。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a fiber input/output system that can easily align the optical axis by simple adjustment even with loose processing precision and reduce optical coupling loss. Our goal is to provide molded optical components.

【0007】[0007]

【課題を解決するための手段】本発明は、光学素子部と
ファイバコリメータとを筐体に組み込み、その光学素子
部と光ファイバとが光の空間伝播によって結合する形式
の光部品である。筐体は、ファイバコリメータ挿入用の
円形貫通孔を有し、且つその中心軸に対して光学素子部
を傾けて保持する凹部を備えた筒状構造体である。また
前記ファイバコリメータは、筐体の円形貫通孔の径にほ
ぼ等しい外径の外周面をもち且つその中心軸に対して傾
いた円形貫通孔とを有する円筒状スリーブと、該円筒状
スリーブの円形貫通孔内に装着したレンズと、該円筒状
スリーブの口径にほぼ等しい外径を有し且つ先端に斜め
研磨を施したファイバ付きフェルールを具備している。 そして円筒状スリーブを筐体の円形貫通孔内に挿入し、
フェルールを円筒状スリーブの円形貫通孔内に挿入して
、それらを相対的に回転して光軸合わせを行い固定する
SUMMARY OF THE INVENTION The present invention is an optical component in which an optical element part and a fiber collimator are built into a housing, and the optical element part and the optical fiber are coupled by spatial propagation of light. The housing is a cylindrical structure that has a circular through hole for inserting a fiber collimator and a recess that holds the optical element section at an angle with respect to its central axis. Further, the fiber collimator includes a cylindrical sleeve having an outer peripheral surface with an outer diameter approximately equal to the diameter of the circular through hole of the casing and a circular through hole inclined with respect to the central axis thereof, and a circular through hole of the cylindrical sleeve. It includes a lens installed in the through hole and a fiber-attached ferrule having an outer diameter approximately equal to the diameter of the cylindrical sleeve and having an obliquely polished tip. Then insert the cylindrical sleeve into the circular through hole of the housing,
The ferrule is inserted into the circular through hole of the cylindrical sleeve, and the optical axes are aligned and fixed by rotating them relative to each other.

【0008】ここで光部品が例えば偏光無依存型光アイ
ソレータである場合は、光学素子部として円筒状の永久
磁石内に収容した45度ファラデー回転子の両側に楔形
の一軸性単結晶を使用する偏光子を配置した非相反部を
用い、ファイバコリメータを該非相反部の両側に配設し
た構成とする。なおフェルール先端に位置するファイバ
端面をには斜め研磨を施しておく。
When the optical component is, for example, a polarization-independent optical isolator, wedge-shaped uniaxial single crystals are used as the optical element on both sides of a 45-degree Faraday rotator housed in a cylindrical permanent magnet. A non-reciprocal section in which a polarizer is arranged is used, and fiber collimators are arranged on both sides of the non-reciprocal section. Note that the fiber end face located at the tip of the ferrule is polished diagonally.

【0009】[0009]

【作用】例えば光ファイバから光が出射する場合につい
てみると、筐体に対して円筒状スリーブを回転させれば
光の軌跡は円錐面上で変化する。また円筒状スリーブに
対してフェルールを回転させると出射位置は光ファイバ
先端が斜め研磨されているので光の屈折が生じ円運動を
描くように移動するから、光ファイバから出射する光の
軌跡は平行に円筒面に沿って変化する。従って、筐体に
対する円筒状スリーブとフェルールとの相対的な位置関
係によって光の結合損失が変化し、それが最小となる最
適位置が存在する。その最適位置を見出し、その位置で
固定することによって組立・調整が完了する。
[Operation] For example, when light is emitted from an optical fiber, if the cylindrical sleeve is rotated with respect to the housing, the trajectory of the light changes on the conical surface. In addition, when the ferrule is rotated relative to the cylindrical sleeve, the optical fiber tip is polished diagonally, so the light is refracted and moves in a circular motion, so the trajectory of the light emitted from the optical fiber is parallel. changes along the cylindrical surface. Therefore, the optical coupling loss changes depending on the relative positional relationship between the cylindrical sleeve and the ferrule with respect to the housing, and there is an optimal position where the loss is minimized. Assembly and adjustment are completed by finding the optimal position and fixing it at that position.

【0010】光アイソレータの場合は両側にファイバ付
きフェルールが位置するから、両側で回転調整を行うこ
とにより、両フェルールでの入射・出射の位置及び方向
が変化して最適位置が見出せる。またフェルール先端に
位置するファイバ端面に斜め研磨を施してあると、非相
反部内で空間伝播する光路の中心軸からのずれを修正で
き、且つ光部品自体の内部での反射を低減できる。
In the case of an optical isolator, since ferrules with fibers are located on both sides, by performing rotational adjustment on both sides, the positions and directions of input and output from both ferrules are changed, and the optimum position can be found. If the fiber end face located at the tip of the ferrule is obliquely polished, it is possible to correct the deviation from the central axis of the optical path spatially propagating within the non-reciprocal portion, and to reduce reflection within the optical component itself.

【0011】[0011]

【実施例】図1は本発明によるファイバ入出力の偏光無
依存形光アイソレータの一実施例を示す断面図であり、
図2はその組立説明図である。この光アイソレータは、
非相反部10とその両側に位置するファイバコリメータ
12とを筐体14内に組み込み、各部材が光の空間伝播
によって結合する形式である。
Embodiment FIG. 1 is a sectional view showing an embodiment of a polarization-independent optical isolator with fiber input and output according to the present invention.
FIG. 2 is an explanatory diagram of its assembly. This optical isolator is
The non-reciprocal part 10 and the fiber collimators 12 located on both sides thereof are built into a housing 14, and each member is coupled by spatial propagation of light.

【0012】筐体14はステンレス鋼からなり、ファイ
バコリメータ12を挿通するための円形貫通孔16と、
その中心軸に対して非相反部10を傾けて保持する凹部
18とを有する円筒状構造である。該凹部18は筐体1
4の中央に設けられ、側面に対して直角に削り込んであ
る。ここで円形貫通孔16と筐体14の中心線のあおり
角は4度である。ファイバコリメータ12は、円筒状ス
リーブ20と、その内部に組み込まれた球レンズ22、
及びファイバ付きフェルール24からなる。円筒状スリ
ーブ20もステンレス鋼からなり、その外周面の径は前
記筐体14の円形貫通孔16の径にほぼ等しく(但し円
筒状スリーブ20が円形貫通孔16に嵌入し回転可能な
寸法精度)、その中心軸に対して傾いて円形貫通孔26
が形成されている。球レンズ22は円形貫通孔26内に
圧入する。円筒状スリーブ20の口径は、フェルール2
4の外径にほぼ等しい(但しこの場合もフェルール24
が円形貫通孔26に嵌入し回転可能な寸法精度である)
。円筒状スリーブ20の外周面と円形貫通孔の中心軸の
あおり角も4度である。
The housing 14 is made of stainless steel and has a circular through hole 16 for inserting the fiber collimator 12,
It is a cylindrical structure having a concave portion 18 that holds the non-reciprocal portion 10 at an angle with respect to its central axis. The recess 18 is located in the housing 1.
4, and is carved perpendicular to the side surface. Here, the tilt angle between the circular through hole 16 and the center line of the housing 14 is 4 degrees. The fiber collimator 12 includes a cylindrical sleeve 20, a ball lens 22 built into the sleeve,
and a ferrule 24 with a fiber. The cylindrical sleeve 20 is also made of stainless steel, and the diameter of its outer peripheral surface is approximately equal to the diameter of the circular through hole 16 of the housing 14 (provided that the dimensional accuracy allows the cylindrical sleeve 20 to fit into the circular through hole 16 and rotate). , a circular through hole 26 inclined with respect to its central axis.
is formed. The ball lens 22 is press-fitted into the circular through hole 26. The diameter of the cylindrical sleeve 20 is the same as that of the ferrule 2.
approximately equal to the outer diameter of ferrule 24 (however, in this case, ferrule 24
is of such dimensional accuracy that it can be fitted into the circular through hole 26 and rotated)
. The tilt angle between the outer peripheral surface of the cylindrical sleeve 20 and the central axis of the circular through hole is also 4 degrees.

【0013】なおファイバ付きフェルールは光ファイバ
28の一部をフェルール24の中心で接着したものであ
る。非相反部10は、円筒状永久磁石30内に収容した
45度ファラデー回転子32と、その両側に配置した偏
光子34からなる。両偏光子34は楔形(傾斜角4度)
のルチル単結晶板からなり、それらの光学軸が互いに4
5度食い違うように配置する。この非相反部10は、実
際にはホルダ(図示せず)などを使用して組み立てる。
Note that the fiber-attached ferrule is one in which a part of the optical fiber 28 is glued at the center of the ferrule 24. The non-reciprocal section 10 consists of a 45-degree Faraday rotator 32 housed within a cylindrical permanent magnet 30 and polarizers 34 placed on both sides thereof. Both polarizers 34 are wedge-shaped (angle of inclination 4 degrees)
of rutile single crystal plates, and their optical axes are aligned with each other by 4.
Arrange them so that they differ by 5 degrees. This non-reciprocal part 10 is actually assembled using a holder (not shown) or the like.

【0014】まず非相反部10を筐体14に形成した凹
部18に側面から嵌め込み、溶接により固定する。次に
円筒状スリーブ20を筐体14の円形貫通孔16内に両
端から挿入し、更にファイバ付きフェルール24を円筒
状スリーブ20の円形貫通孔26内に挿入して、それら
を相対的に回転して調整する。フェルール24及び円筒
状スリーブ20を回転させると、フェルール24での光
の出射位置が円運動を描くように変化すると共に光の出
射・入射角度も変化し、どこかに必ず最適位置(光の結
合損失が最小となる位置)を見出せる。その最適位置を
保ったまま溶接により固定する。なお円筒状スリーブ2
0内におけるフェルール24の軸方向の位置は、球レン
ズ22の焦点位置に光ファイバ28の端面が合致するよ
うに調整することは言うまでもない。
First, the non-reciprocal portion 10 is fitted from the side into the recess 18 formed in the housing 14 and fixed by welding. Next, the cylindrical sleeve 20 is inserted into the circular through hole 16 of the housing 14 from both ends, and the fiber-equipped ferrule 24 is further inserted into the circular through hole 26 of the cylindrical sleeve 20, and they are rotated relative to each other. Adjust. When the ferrule 24 and the cylindrical sleeve 20 are rotated, the light emitting position at the ferrule 24 changes in a circular motion, and the light emitting and incident angles also change. The position where the loss is minimum can be found. It is fixed by welding while maintaining its optimal position. Note that the cylindrical sleeve 2
Needless to say, the axial position of the ferrule 24 within the ferrule 24 is adjusted so that the end face of the optical fiber 28 matches the focal position of the spherical lens 22.

【0015】光アイソレータの基本的動作は、前記従来
構造の光アイソレータと全く同様である。2個の偏光子
34は、一方が狭義の偏光子として機能すれば、他方は
検光子として機能する。順方向の場合、第1の(一方の
)ファイバから入力した光は第2の(他方の)ファイバ
からそのまま出力するが、逆方向の場合、第2のファイ
バから入力した光は第1のファイバからは出力しない。 つまり非相反動作を行う。これによって例えばレーザ光
源から出力した光は光伝送路へ出力するが、反射光がレ
ーザ光源へ戻るのは阻止できる。
The basic operation of the optical isolator is exactly the same as that of the optical isolator of the conventional structure. If one of the two polarizers 34 functions as a polarizer in a narrow sense, the other functions as an analyzer. In the forward direction, the light input from the first (one) fiber is output as is from the second (other) fiber, but in the reverse direction, the light input from the second fiber is output from the first fiber. There is no output from . In other words, non-reciprocal operation is performed. As a result, for example, the light output from the laser light source is output to the optical transmission path, but the reflected light can be prevented from returning to the laser light source.

【0016】ファイバ端面(フェルール先端も含む)は
予め斜め研磨してあり、その傾斜角度を、非相反部で空
間伝播する光路の中心軸からのずれ量を丁度相殺できる
ようにできる。ここでは8度に設定してある。またこの
斜め研磨によって光アイソレータ自体内での反射も低減
できる。
The fiber end face (including the ferrule tip) is obliquely polished in advance, and the inclination angle can be adjusted to exactly offset the amount of deviation from the central axis of the optical path spatially propagating in the non-reciprocal portion. Here it is set to 8 degrees. This oblique polishing also reduces reflection within the optical isolator itself.

【0017】以上、ファイバ入出力の偏光無依存形光ア
イソレータに適用した場合を例にとって本発明について
説明したが、本発明はかかる構成のみに限定されるもの
ではない。光ファイバと光受動素子や光能動素子とを組
み合わせ、それらの間で光が空間伝播して結合する任意
の光部品に適用できることは言うまでもない。従って光
ファイバが光学素子部の両側に位置する場合のほか、片
側のみに位置する場合も含まれる。
Although the present invention has been described above with reference to the case where it is applied to a polarization-independent optical isolator with fiber input and output, the present invention is not limited to such a configuration. Needless to say, the present invention can be applied to any optical component that combines an optical fiber and an optical passive element or an optical active element, and in which light is spatially propagated and coupled between them. Therefore, in addition to the case where the optical fiber is located on both sides of the optical element section, the case where the optical fiber is located only on one side is also included.

【0018】[0018]

【発明の効果】本発明は上記のように、光学素子部を保
持する筐体及びフェルールを保持する円筒状スリーブと
に傾斜した貫通孔を設けて互いに回転自在に嵌合させる
構成としたから、各部材を回転させることにより、比較
的ゆるい加工精度でも、単純な構造の部材を用いて、比
較的簡単に角度ずれを合わせることができ、光の結合損
失の小さい光部品を製作できることになる。
Effects of the Invention As described above, the present invention has a structure in which the casing for holding the optical element portion and the cylindrical sleeve for holding the ferrule are provided with inclined through holes and are rotatably fitted into each other. By rotating each member, angular misalignment can be relatively easily adjusted using members with a simple structure, even with relatively low processing precision, and an optical component with low optical coupling loss can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を適用したファイバ入出力の偏光無依存
型光アイソレータの一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a fiber input/output polarization-independent optical isolator to which the present invention is applied.

【図2】図1の組立説明図。FIG. 2 is an explanatory diagram of the assembly of FIG. 1;

【符号の説明】[Explanation of symbols]

10  非相反部 12  ファイバコリメータ 14  筐体 16  円形貫通孔 18  凹部 20  円筒状スリーブ 22  球レンズ 24  ファイバ付きフェルール 26  円形貫通孔 28  光ファイバ 10 Non-reciprocal part 12 Fiber collimator 14 Housing 16 Circular through hole 18 Recess 20 Cylindrical sleeve 22 Ball lens 24 Ferrule with fiber 26 Circular through hole 28 Optical fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学素子部とファイバコリメータとを
筐体に組み込み、その光学素子部と光ファイバとが光の
空間伝播によって結合する形式の光部品において、前記
筐体はファイバコリメータ挿入用の円形貫通孔を有し且
つその中心軸に対して光学素子部を傾けて保持する凹部
を備えた筒状構造であり、前記ファイバコリメータは、
筐体の円形貫通孔の径にほぼ等しい外径の外周面をもち
且つその中心軸に対して傾いた円形貫通孔を有する円筒
状スリーブと、該円筒状スリーブの円形貫通孔内に装着
したレンズと、該円筒状スリーブの口径にほぼ等しい外
径を有し且つ先端を斜め研磨したファイバ付きフェルー
ルを具備し、円筒状スリーブを筐体の円形貫通孔内に挿
入し、フェルールを円筒状スリーブの円形貫通孔内に挿
入して、それらを相対的に回転して光軸を合わせ固定し
たことを特徴とするファイバ入出力型光部品。
1. An optical component in which an optical element part and a fiber collimator are built into a housing, and the optical element part and the optical fiber are coupled by spatial propagation of light, wherein the housing has a circular shape for inserting the fiber collimator. The fiber collimator is a cylindrical structure having a through hole and a concave portion for tilting and holding the optical element portion with respect to its central axis.
A cylindrical sleeve having an outer circumferential surface with an outer diameter approximately equal to the diameter of the circular through hole of the casing and a circular through hole inclined with respect to its central axis, and a lens installed in the circular through hole of the cylindrical sleeve. and a fiber-attached ferrule having an outer diameter approximately equal to the diameter of the cylindrical sleeve and having an obliquely polished tip.The cylindrical sleeve is inserted into the circular through hole of the housing, and the ferrule is inserted into the cylindrical sleeve. A fiber input/output type optical component characterized by being inserted into a circular through hole and relatively rotated to align and fix the optical axis.
【請求項2】  光学素子部が、円筒状永久磁石内に収
容した45度ファラデー回転子と、その両側に配置した
楔形の一軸性単結晶からなる偏光子を組み合わせた非相
反部であり、ファイバコリメータを該非相反部の両側に
配設して偏光無依存型光アイソレータを構成した請求項
1記載のファイバ入出力型光部品。
2. The optical element part is a non-reciprocal part that combines a 45-degree Faraday rotator housed in a cylindrical permanent magnet and polarizers made of a wedge-shaped uniaxial single crystal arranged on both sides of the rotator, and 2. The fiber input/output type optical component according to claim 1, wherein a polarization-independent optical isolator is constructed by disposing collimators on both sides of the non-reciprocal portion.
JP3032323A 1991-02-01 1991-02-01 Fiber input/output type optical parts Pending JPH04247411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032323A JPH04247411A (en) 1991-02-01 1991-02-01 Fiber input/output type optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032323A JPH04247411A (en) 1991-02-01 1991-02-01 Fiber input/output type optical parts

Publications (1)

Publication Number Publication Date
JPH04247411A true JPH04247411A (en) 1992-09-03

Family

ID=12355736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032323A Pending JPH04247411A (en) 1991-02-01 1991-02-01 Fiber input/output type optical parts

Country Status (1)

Country Link
JP (1) JPH04247411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502424A (en) * 2002-07-26 2006-01-19 アトメル グルノーブル ソシエテ アノニム Method and device for determining the position of an optical component between two optical fibers
KR100666978B1 (en) * 2001-10-18 2007-01-10 삼성전자주식회사 Micro optics assembly and the assembly method
JP2009042521A (en) * 2007-08-09 2009-02-26 Fdk Corp Reflective variable optical attenuator
JP2009098112A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Optical rotary adapter and optical tomographic imaging system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666978B1 (en) * 2001-10-18 2007-01-10 삼성전자주식회사 Micro optics assembly and the assembly method
JP2006502424A (en) * 2002-07-26 2006-01-19 アトメル グルノーブル ソシエテ アノニム Method and device for determining the position of an optical component between two optical fibers
JP2009042521A (en) * 2007-08-09 2009-02-26 Fdk Corp Reflective variable optical attenuator
JP2009098112A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Optical rotary adapter and optical tomographic imaging system using the same

Similar Documents

Publication Publication Date Title
US5446813A (en) Optical isolator
KR0142017B1 (en) Method for assembling optical isolator and method for measuring isolation
JPH06138342A (en) Optical fiber function parts and their production
JPH04247411A (en) Fiber input/output type optical parts
US6813400B1 (en) Optical isolator
JP2857502B2 (en) Optical isolator
US6407861B1 (en) Adjustable optical circulator
JPH0980355A (en) Polarizing glass and optical isolator
US4852959A (en) Adjustable fiber optic bulk polarizer
JP4911519B2 (en) Reflective variable optical attenuator
JP3517010B2 (en) Optical connector
JP2551877B2 (en) Fiber I / O type optical components
CA2530179A1 (en) In-line optical isolator
JP3075435B2 (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JPH10319346A (en) Optical isolator
JPH06273698A (en) Multicore optical isolator
JPS634214A (en) Optical isolator
JPS6136725A (en) Optical isolator and its production
JPH05323234A (en) Three port type optical circulator
JPH0633105U (en) Optical coupling device
JPH0933860A (en) Optical connector
JP2512597Y2 (en) Optical connector adapter for single polarization fiber
JPH08184727A (en) Optical connector
JPH07151997A (en) Optical isolator