JPH04247284A - Treatment of ammonia liquor - Google Patents

Treatment of ammonia liquor

Info

Publication number
JPH04247284A
JPH04247284A JP3012072A JP1207291A JPH04247284A JP H04247284 A JPH04247284 A JP H04247284A JP 3012072 A JP3012072 A JP 3012072A JP 1207291 A JP1207291 A JP 1207291A JP H04247284 A JPH04247284 A JP H04247284A
Authority
JP
Japan
Prior art keywords
water
activated carbon
ammonia liquor
oxidation
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3012072A
Other languages
Japanese (ja)
Inventor
Shinji Hasebe
長谷部 新次
Susumu Matsumura
進 松村
Hiroki Ishiguro
宏樹 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3012072A priority Critical patent/JPH04247284A/en
Publication of JPH04247284A publication Critical patent/JPH04247284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Treatment By Sorption (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To prevent the generation of gaseous H2S occurring in the sulfuric acid reducing bacteria generated in an active carbon adsorption column which is one of ammonia liquor treatment stages. CONSTITUTION:The oxidation/reduction potential in the treated water in the final active carbon treatment stage is measured and the quantity of the air to be blown into an aeration tank is so regulated that this oxidation/reduction potential attain >=40mV in the ammonia liquor treatment method of passing the ammonia liquor generated at the time of producing coke by carbonization of coal through the aeration tank, a flocculation settling tank, a filter tank and the active carbon adsorption column to remove impurities and releasing the ammonia liquor after lowering the impurity content down to a regulated value or below. The clouding of the treated water arising from the generation of the gaseous H2S is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、石炭を乾留してコー
クスを製造するときに発生する安水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for treating ammonium water generated when coke is produced by carbonizing coal.

【0002】0002

【従来の技術】石炭をコークス炉で乾留してコークスを
製造する際には、副産物としてコークス炉ガス、軽油お
よびタール等が発生する外に、安水が発生する。この安
水は、タールと混合された状態で発生するので、タール
と安水の混合液をタールデカンタに受け、この混合液を
静置することにより、タールを沈澱させ、タールと安水
に分離するようにしている。
2. Description of the Related Art When coke is produced by carbonizing coal in a coke oven, not only coke oven gas, light oil, tar, etc. are produced as by-products, but also ammonium water is produced. This ammonium water is generated mixed with tar, so by receiving the mixture of tar and ammonium water in a tar decanter and allowing this mixture to stand, the tar is precipitated and separated into tar and ammonium water. I try to do that.

【0003】上述した安水中には、アンモニアをはじめ
とする不純物が含まれており、そのまま放流すると公害
を引き起こすことになるので、これらの不純物を安水中
から除去するための水処理が行われている。
[0003] The above-mentioned ammonium water contains impurities such as ammonia, and if released as is, it will cause pollution, so water treatment is carried out to remove these impurities from the ammonium water. There is.

【0004】図2は、安水処理の1例を示す工程図であ
る。タールデカンタでタールと分離された安水は、安水
タンク21に貯蔵される。そして、ポンプ22により安
水ストリッパー23に送られ、処理水中からアンモニア
が分離され、分離されたアンモニアはコークス炉ガス管
に送られる。アンモニアが分離された処理水は、pH調
整槽24に送られ、ここで硫酸が添加されて中和される
。pHを調整された処理水は、ポンプ25により原水タ
ンク26に蓄えられる。そして、原水タンク26に蓄え
られた処理水は、ポンプ27により曝気槽28に送られ
、ここで処理水中のフェノール、アンモニア等の不純物
は、好気性バクテリアにより食べられる。そして、増殖
したバクテリアは、処理水の表面に浮いているので、沈
澱槽29で沈澱させるとともに、処理水を凝集沈澱槽3
0に送って、凝集剤を加えてバクテリアを凝集沈澱させ
るようにしている。さらに、ポンプ31により処理水を
ろ過器32に送ってろ過し、活性炭吸着塔33で処理水
中の着色成分を吸着させ、処理水を無色かつ無害な状態
にして、放流する。
FIG. 2 is a process diagram showing one example of ammonium water treatment. Ammonium water separated from tar in the tar decanter is stored in an ammonium water tank 21. Then, the water is sent to the ammonium water stripper 23 by the pump 22, where ammonia is separated from the treated water, and the separated ammonia is sent to the coke oven gas pipe. The treated water from which ammonia has been separated is sent to the pH adjustment tank 24, where sulfuric acid is added to neutralize it. The pH-adjusted treated water is stored in a raw water tank 26 by a pump 25. The treated water stored in the raw water tank 26 is sent to the aeration tank 28 by a pump 27, where impurities such as phenol and ammonia in the treated water are eaten by aerobic bacteria. Since the bacteria that have proliferated are floating on the surface of the treated water, they are precipitated in the sedimentation tank 29 and the treated water is coagulated and sedimented in the sedimentation tank 3.
0, and a flocculant is added to flocculate and precipitate the bacteria. Further, the pump 31 sends the treated water to the filter 32 for filtration, and the activated carbon adsorption tower 33 adsorbs colored components in the treated water, making the treated water colorless and harmless, and then discharging it.

【0005】上述した安水処理工程を利用して、硫安製
造プラントで発生した凝縮水を処理することがある。硫
安の製造は、硫安母液(硫安30%、残り水)中の水分
を蒸発させて、硫安の結晶を得るという方法で行われる
が、蒸発した水分は再び凝縮させ、水分中の有害成分を
水処理を行うことにより除去した後、放流するようにし
ている。そして、これ自体を単独で水処理するには、処
理費用がかかりすぎるので、上記したように安水処理工
程を利用して処理するのである。
[0005] The above-mentioned ammonium water treatment process is sometimes used to treat condensed water generated in an ammonium sulfate manufacturing plant. Ammonium sulfate is produced by evaporating the water in the ammonium sulfate mother liquor (30% ammonium sulfate, remaining water) to obtain ammonium sulfate crystals. After removing it through treatment, it is released into the water. Since it would be too expensive to treat this substance alone with water, it is treated using the ammonium water treatment process as described above.

【0006】ところで、この凝縮水の中には、硫黄分や
SO42−が含まれるが、これらの成分の影響にり活性
炭吸着塔の活性炭内に硫酸還元菌が発生する。そして、
このためH2Sガスが発生し、処理水が白濁して透視度
が悪くなり、そのままでは処理水を放流できなくなる。 そのため、従来はH2Sガスが発生すると、その発生量
に対比させて処理水中に硝酸ソーダ(NaNO3)を添
加して、H2Sガスの発生を抑制するようにしている。
By the way, this condensed water contains sulfur and SO42-, and due to the influence of these components, sulfate-reducing bacteria are generated within the activated carbon of the activated carbon adsorption tower. and,
As a result, H2S gas is generated, and the treated water becomes cloudy and its visibility deteriorates, making it impossible to discharge the treated water as it is. Therefore, conventionally, when H2S gas is generated, sodium nitrate (NaNO3) is added to the treated water in proportion to the amount of H2S gas generated to suppress the generation of H2S gas.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た硝酸ソーダを添加して、H2Sガスの発生を抑制する
方法には、次のような問題点があった。 (1)H2Sガスの発生が予知できず、H2Sガス発生
後に硝酸ソーダを添加するので、対応が遅れる。 (2)使用する硝酸ソーダの費用が莫大となる。
[Problems to be Solved by the Invention] However, the above-mentioned method of adding sodium nitrate to suppress the generation of H2S gas has the following problems. (1) Since the generation of H2S gas cannot be predicted and sodium nitrate is added after H2S gas is generated, the response is delayed. (2) The cost of the sodium nitrate used becomes enormous.

【0008】この発明は、従来技術の上記のような問題
点を解消し、活性炭吸着塔の活性炭内で硫酸還元菌が発
生しない、安水の水処理方法を提供することを目的とし
ている。
The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for treating ammonium water in which sulfate-reducing bacteria are not generated in the activated carbon of an activated carbon adsorption tower.

【0009】[0009]

【課題を解決するための手段】この発明に係る安水処理
方法は、石炭を乾留してコークスを製造するときに発生
する安水を、曝気槽、凝集沈澱槽、ろ過槽および活性炭
吸着塔を通して不純物を除去し、規制値以下にしてから
放流する安水の水処理方法において、最終活性炭処理工
程における処理水中の酸化還元電位を測定し、この酸化
還元電位が40mV以上になるように、活性炭処理前に
吹き込む空気量を調整する安水処理方法である。
[Means for Solving the Problems] The ammonium water treatment method according to the present invention passes ammonium water generated when coke is produced by carbonizing coal through an aeration tank, a coagulation sedimentation tank, a filter tank, and an activated carbon adsorption tower. In the water treatment method of ammonium water, which removes impurities and brings the temperature below the regulatory value before discharging it, the redox potential of the treated water in the final activated carbon treatment step is measured, and the activated carbon treatment is performed so that the redox potential is 40 mV or higher. This is a low water treatment method that adjusts the amount of air that is blown in beforehand.

【0010】0010

【作用】この発明に係る安水処理方法は、石炭を乾留し
てコークスを製造するときに発生する安水を、曝気槽、
凝集沈澱槽、ろ過槽および活性炭吸着塔を通して不純物
を除去し、規制値以下にしてから放流する安水処理方法
において、最終活性炭処理工程における処理水中の酸化
還元電位を測定し、この酸化還元電位が40mV以上に
なるように、活性炭処理前に吹き込む空気量を調整する
ようにしている。
[Function] The ammonium water treatment method according to the present invention is characterized in that the ammonium water generated when coke is produced by carbonizing coal is treated in an aeration tank,
In the ammonium water treatment method, in which impurities are removed through a coagulation sedimentation tank, a filter tank, and an activated carbon adsorption tower, and the water is discharged after being brought to below a regulatory value, the oxidation-reduction potential of the treated water in the final activated carbon treatment step is measured, and this oxidation-reduction potential is The amount of air blown before activated carbon treatment is adjusted so that the voltage is 40 mV or higher.

【0011】上記のようにしているのは、次の理由によ
るものである。硫酸還元菌が発生していることから、活
性炭内は還元雰囲気と思われるので、活性炭吸着塔で発
生するH2Sガス濃度(ppm)と、処理水の酸化還元
電位(mV)との関係を調査したところ、図3のグラフ
に示すような関係にあることが分かった。酸化還元電位
がマイナス側、すなわち還元側にあるときには、H2S
ガス濃度が高くなり、その濃度は酸化還元電位がマイナ
スになればなるほど高くなる。そして、酸化還元電位が
40mV以上であれば、H2Sガスの発生が抑えられる
ということが分かった。当然酸化還元電位が40mVか
ら高くなればなるほど、H2Sガスの発生は限り無く0
に近づいていくが、実用的には200mV程度以下であ
ればよい。
The reason for doing so is as follows. Since sulfate-reducing bacteria are present, it seems that there is a reducing atmosphere inside the activated carbon, so we investigated the relationship between the H2S gas concentration (ppm) generated in the activated carbon adsorption tower and the redox potential (mV) of the treated water. However, it was found that there was a relationship as shown in the graph of FIG. When the redox potential is on the negative side, that is, on the reduction side, H2S
The gas concentration increases, and the more negative the redox potential becomes, the higher the concentration becomes. It was also found that when the oxidation-reduction potential is 40 mV or more, the generation of H2S gas can be suppressed. Naturally, the higher the redox potential is from 40 mV, the less H2S gas will be generated.
However, for practical purposes, it is sufficient that it is about 200 mV or less.

【0012】次に、酸化還元電位と、活性炭処理前での
処理水中に含まれる溶存酸素濃度(ppm)との関係を
調査した。これは、処理水中に含まれる溶存酸素濃度が
高まれば、処理水が好気性の雰囲気になり、硝酸イオン
の発生が活発となって、これが活性炭吸着塔でのH2S
ガスの発生を抑え、したがって酸化還元電位が高まると
考えられるからである。調査の結果、酸化還元電位と、
曝気槽での処理水中に含まれる溶存酸素濃度との関係は
、図4のグラフに示す関係となり、溶存酸素濃度を高め
れば、ひいては酸素の吹き込み量を多くすれば、酸化還
元電位を高めることができ、したがって活性炭吸着塔で
のH2Sガスの発生が抑えられることが分かった。
Next, the relationship between the oxidation-reduction potential and the dissolved oxygen concentration (ppm) contained in the treated water before the activated carbon treatment was investigated. This is because when the dissolved oxygen concentration in the treated water increases, the treated water becomes an aerobic atmosphere, and the generation of nitrate ions becomes active, which causes H2S in the activated carbon adsorption tower.
This is because it is believed that gas generation is suppressed and therefore the redox potential is increased. As a result of the investigation, the redox potential and
The relationship between the concentration of dissolved oxygen contained in the water treated in the aeration tank is as shown in the graph in Figure 4, and the redox potential can be increased by increasing the dissolved oxygen concentration and by increasing the amount of oxygen blown into the water. It was found that the generation of H2S gas in the activated carbon adsorption tower was suppressed.

【0013】本発明に係る安水処理方法は、上述のよう
な理由により、最終活性炭処理工程における処理水中の
酸化還元電位を測定し、この酸化還元電位が40mV以
上になるように、曝気槽に吹き込む空気量を調整するよ
うにしたのである。
[0013] For the reasons mentioned above, the ammonium water treatment method according to the present invention measures the oxidation-reduction potential of the treated water in the final activated carbon treatment step, and injects water into the aeration tank so that the oxidation-reduction potential becomes 40 mV or more. The amount of air blown was adjusted.

【0014】[0014]

【実施例】本発明の1実施例の安水処理方法を実施した
結果を、図1に示す。図1(a)は、本発明の1実施例
の安水処理方法を100日以上にわたって実施したとき
の溶存酸素濃度(ppm)の推移、図1(b)はH2S
ガスの発生量(ppm)の推移を示すグラフである。図
1から明らかなように、酸化還元電位を40mV以上に
保つように、溶存酸素濃度、すなわち空気の吹き込み量
を調整することにより、H2Sガスの発生が抑えられて
いることが分かる。
[Example] Figure 1 shows the results of carrying out the ammonium water treatment method according to one example of the present invention. Figure 1(a) shows the change in dissolved oxygen concentration (ppm) when the ammonium water treatment method of one embodiment of the present invention was carried out for over 100 days, and Figure 1(b) shows the H2S
It is a graph showing changes in the amount of gas generated (ppm). As is clear from FIG. 1, the generation of H2S gas is suppressed by adjusting the dissolved oxygen concentration, that is, the amount of air blown so as to maintain the redox potential at 40 mV or higher.

【0015】[0015]

【発明の効果】この発明により、活性炭吸着塔でのH2
Sガスの発生が抑えられる。
Effect of the invention: According to this invention, H2 in an activated carbon adsorption tower can be reduced.
Generation of S gas is suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1実施例の安水の水処理方法を100
日以上にわたって実施したときの溶存酸素濃度およびH
2Sガスの発生量の推移を示すグラフである。
FIG. 1 shows a method for treating ammonium water according to one embodiment of the present invention.
Dissolved oxygen concentration and H
It is a graph showing changes in the amount of 2S gas generated.

【図2】安水処理工程を示す工程図である。FIG. 2 is a process diagram showing an ammonium water treatment process.

【図3】H2Sガスの発生量と酸化還元電位との関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of H2S gas generated and the oxidation-reduction potential.

【図4】酸化還元電位と溶存酸素濃度との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between redox potential and dissolved oxygen concentration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  石炭を乾留してコークスを製造すると
きに発生する安水を、曝気槽、凝集沈澱槽、ろ過槽およ
び活性炭吸着塔を通して不純物を除去し、規制値以下に
してから放流する安水処理方法において、最終活性炭処
理工程における処理水中の酸化還元電位を測定し、この
酸化還元電位が40mV以上になるように、活性炭処理
前に吹き込む空気量を調整することを特徴とする安水処
理方法。
Claim 1: An ammonium water produced when producing coke by carbonizing coal is passed through an aeration tank, a coagulation sedimentation tank, a filter tank, and an activated carbon adsorption tower to remove impurities and bring it below regulatory values before discharging it. In the water treatment method, the ammonium water treatment is characterized by measuring the oxidation-reduction potential in the treated water in the final activated carbon treatment step, and adjusting the amount of air blown in before the activated carbon treatment so that the oxidation-reduction potential becomes 40 mV or more. Method.
JP3012072A 1991-02-01 1991-02-01 Treatment of ammonia liquor Pending JPH04247284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012072A JPH04247284A (en) 1991-02-01 1991-02-01 Treatment of ammonia liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012072A JPH04247284A (en) 1991-02-01 1991-02-01 Treatment of ammonia liquor

Publications (1)

Publication Number Publication Date
JPH04247284A true JPH04247284A (en) 1992-09-03

Family

ID=11795394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012072A Pending JPH04247284A (en) 1991-02-01 1991-02-01 Treatment of ammonia liquor

Country Status (1)

Country Link
JP (1) JPH04247284A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819780A (en) * 1994-07-07 1996-01-23 Mikasa:Kk Water redox potential control device
CN102358656A (en) * 2011-09-14 2012-02-22 黑龙江建龙钢铁有限公司 Residual ammonia water degreasing method
JP2014130064A (en) * 2012-12-28 2014-07-10 Toshiba Corp Washing waste liquid processing device and washing waste liquid processing method
CN104496102A (en) * 2014-12-15 2015-04-08 刘刚 Reusing treatment method and reusing treatment system for residual coking ammonia water
CN108658291A (en) * 2018-05-22 2018-10-16 重庆欣欣向荣精细化工有限公司 A method of it reducing o-ethoxyphenol and produces Determination of Volatile Phenol in Refinery Wastewater content

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819780A (en) * 1994-07-07 1996-01-23 Mikasa:Kk Water redox potential control device
CN102358656A (en) * 2011-09-14 2012-02-22 黑龙江建龙钢铁有限公司 Residual ammonia water degreasing method
JP2014130064A (en) * 2012-12-28 2014-07-10 Toshiba Corp Washing waste liquid processing device and washing waste liquid processing method
CN104496102A (en) * 2014-12-15 2015-04-08 刘刚 Reusing treatment method and reusing treatment system for residual coking ammonia water
CN108658291A (en) * 2018-05-22 2018-10-16 重庆欣欣向荣精细化工有限公司 A method of it reducing o-ethoxyphenol and produces Determination of Volatile Phenol in Refinery Wastewater content

Similar Documents

Publication Publication Date Title
JP6546581B2 (en) Process for the biological removal of nitrogen from wastewater
JP3445901B2 (en) Method and apparatus for treating selenium-containing wastewater
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
CN105084589A (en) Treatment method and system for wet magnesium desulphurization wastewater
US5647996A (en) Groundwater total cyanide treatment method
JPH04247284A (en) Treatment of ammonia liquor
CN108726669A (en) A kind of method that magnetic activated sludge process synchronizes a variety of non-steroidal estrogenics of removal
JP2004033897A (en) Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith
CN111995181A (en) Treatment method of photovoltaic industrial wastewater
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
CN104860455A (en) Methylene dithiocyanate wastewater treatment method
JPH04235796A (en) Treatment of ammoniacal liquor
JPS6320600B2 (en)
DE2848710A1 (en) METHOD FOR WASTEWATER CLEANING
JP4051183B2 (en) Water quality control equipment for sewage treatment plants
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JPS62289299A (en) Treatment of phosphorus-containing waste liquid
CN103214073B (en) Coagulant adding method of A/O biological decarbonization and denitrification technology
KR101367904B1 (en) Method for Removing Phosphate from Waste water by Recycling Unreacted Coagulant in the third treatment sludge into a Previous Process
SU1346587A1 (en) Method of biological purification of waste water from phosphorus and nitrogen
JPH11128982A (en) Treatment of selenium-containing waste water
Sabirova et al. Final purification of biochemically treated coke-plant wastewater
JPS62193697A (en) Treatment of heavy metal-containing waste water by sulfuric acid reducing bacteria
JPH0232036B2 (en)
CN117105474A (en) Oxidation treatment process of desulfurization wastewater three-header device